张继鹏 陈鼐基 董子博
(1.同济大学道路与交通工程教育部重点实验室,201804,上海;2.宁波市轨道交通集团有限公司,315010,宁波∥第一作者,硕士研究生)
盾构隧道注浆抬升对隧道结构内力的影响分析
张继鹏1陈鼐基1董子博2
(1.同济大学道路与交通工程教育部重点实验室,201804,上海;2.宁波市轨道交通集团有限公司,315010,宁波∥第一作者,硕士研究生)
采用注浆抬升技术治理盾构隧道不均匀沉降时,注浆产生的附加应力会增加管片内力,对隧道的长期服役性能造成影响。以宁波地铁某区间盾构隧道不均匀沉降治理工程为背景,通过对比现场实测数据与有限元模拟的结果,验证了有限元计算的可靠性,并在此基础上分析了有无内部支撑体系、不同注浆范围及注浆顺序情况下隧道结构内力的变化。分析模拟结果发现,内部支撑体系可有效减小隧道结构变形及附加内力;采用由近及远、先中部后两侧的注浆顺序,并尽可能扩大横向注浆范围的情况下,隧道产生的附加内力较小。
盾构隧道; 结构内力; 注浆抬升
First-author′s address Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,201804,Shanghai,China
软土地区地铁盾构隧道多穿越于较厚的淤泥质土层中[1-2],当周边工程活动频繁、隧道发生渗漏水、施工处理不当时,隧道极易发生局部的不均匀沉降现象[3-5]。
目前软土地区普遍采用微扰动注浆技术治理地铁盾构隧道不均匀沉降,但通过调研发现,在注浆抬升过程中隧道横断面收敛变形有所增大,管片内力势必有所增大。管片内力和收敛变形过大会导致管片出现破损、漏水等病害,严重时将会危及隧道结构的安全使用[6]。
宁波轨道交通1、2号线盾构区间采用错缝拼装带凹凸榫槽的通用环管片,其成型隧道整体刚度较大。而刚度较大的管片在受到外力作用(注浆产生)下,其结构内部产生的附加内力更大。与传统通缝拼装管片相比,在变形量一定时,管片更容易出现破损、开裂。因此,需对注浆抬升时隧道结构内力的变化做进一步的研究。
宁波市轨道交通某区间隧道采用盾构法施工。2013年4月9日隧道170环位置最大沉降量为214 mm,导致成型隧道轴线曲率半径偏小(如图1所示)。因此须对沉降较大区段进行抬升处理。计划抬升40 mm。隧道上方为市政道路,且道路两侧有7层居民楼。
图1 盾构隧道沉降示意图
经研究,确定采用注浆抬升工艺对隧道线形进行整治。由于抬升量较大,在隧道内部还额外架设了支撑体系以控制隧道变形。
由于隧道注浆抬升具有高风险性,故在注浆开始前,有必要利用有限元软件对注浆过程中的隧道结构内力变化规律进行分析。建立有限元模型时利用了有限元软件Plaxis2D 2012。计算中,隧道左右两侧边缘距离隧道中心50 m(大于3倍隧道直径),因此,边界影响可忽略。假定隧道结构为均质圆环,采用板单元模拟,其刚度折减系数取0.75。
注浆过程是通过对“注浆单元”(代表注浆土体的单元)施加体应变以使单元体积膨胀来模拟抬升过程。模拟过程包括2个步骤:①增加注浆区域的土体刚度和强度;②施加各向大小相同的体应变。
2.1 模型参数选取
进行有限元分析时,选取第168环作为研究对象。相应的土层分层情况如图2所示,土层主要物理力学性质指标如表1所示。
图2 土层分层示意图
土层编号土层名称天然重度/(kN/m3)压缩模量/kPa黏聚力/kPa内摩擦角/(°)静止侧压力系数①1素填土18.004.3030.0014.000.53①2黏土19.004.4030.0014.000.53①3淤泥质粉质黏土18.003.1015.808.900.70②2c淤泥质粉质黏土17.602.8816.909.800.75④1淤泥质黏土17.502.8317.209.800.75⑤2黏土19.305.9238.4017.300.50
根据实际支撑布置情况,计算模型相应在隧道内增加支撑。隧道中部支撑用杆单元模拟,其杆单元选用参数如表2所示。根据第168环注浆量的统计,对隧道两注浆孔下方土体进行模拟注浆,其模型如图3所示。图3中隧道下方深色单元为注浆单元。
图3 计算模型局部图
结构名称单元类型主动土压力合力/(kN/m)泊松比竖向支撑杆单元8.65×1050.15横向支撑杆单元2.95×1050.15
由于宁波地区土体性质、注浆深度、浆液配比等与上海地区的试验较为接近[7],故参照上海地区比贯入阻力PS值与土体刚度和强度的经验关系,假定此次注浆每孔影响范围为0.6 m,土注浆后的土体压缩模量Es为注浆前的2倍,黏聚力c为注浆前的2倍,内摩擦角φ为注浆前的1.4倍。在此基础上,通过数值模拟,对这5个参数的选取进行敏感性分析。分析结果如表3所示。
根据表3中的计算结果,注浆加固后土体刚度及强度参数对注浆抬升过程和结构内力的影响不大。土体膨胀法模拟隧道注浆抬升,则隧道结构内力主要与下方注浆单元体应变有关。可见,根据上海地区试验和经验选取的注浆后土体刚度及强度参数基本合理。
3.2 可靠性验证
经计算,地表隆沉计算结果对比如图4所示。当隧道注浆抬升42 mm时,地层结构模型计算所得隧道正上方隆起量为12.3 mm,实测隧道正上方隆起量为11.7 mm,二者相差仅5.1%。
隧道内支撑轴力对比如表4所示。地层结构模型计算所得支撑轴力为198 kN,第168环实测轴力平均值为162 kN,二者相差22%。
表3 注浆加固土体刚度及强度参数敏感性分析
图4 地表隆沉量对比图
数值类型隧道抬升量/mm支撑轴力/kN数值模拟42.0198.0现场实测42.0162.0
由以上分析可以认为,有限元模拟较为可靠,所得结果与实测数据基本保持一致。
3.1 内部支撑体系对结构的影响
有限元模拟了隧道在无支撑情况和有支撑情况下注浆抬升量分别为10 mm、20 mm、30 mm、40 mm、50 mm时的工况,计算结果如图5所示。
在隧道抬升量为10~50 mm时,无支撑情况管片的最大弯矩大于有支撑情况管片的最大弯矩;当抬升量50 mm时,无支撑情况管片的最大弯矩比有支撑情况大132.9%。无支撑情况管片的水平收敛变形量约是有支撑情况的4~10倍。根据管片配筋,对最大弯矩处截面进行裂缝宽度验算发现,在有支撑情况下截面裂缝宽度发展缓慢,无支撑情况下截面裂缝宽度发展较迅速,当抬升量为50 mm时,无支撑情况的裂缝宽度已接近有支撑情况的 5.4 倍。
图5 有无支撑对比情况
通过对比发现,对隧道进行注浆抬升时,通过在隧道内架设支撑,能够提高隧道整体刚度,有效地减小隧道管片的附加内力和附加变形,结构安全性得以提高,因此在隧道目标抬升量较大且条件允许的情况下可在隧道内架设支撑以保证结构的安全性。
3.2 环向注浆范围对结构的影响
环向注浆范围示意图如图6所示,注浆深度为1.50 m,假定两边注浆时左右两侧注浆量相同。分别模拟单环管片在隧底不同范围注浆抬升10 mm、20 mm、30 mm、40 mm、50 mm。
图6 注浆孔位示意图
通过对比单孔注浆(K9)、3孔注浆(K8—K10)、5孔注浆(K7—K11)以及7孔注浆(K6—K12),研究单环管片横向注浆范围对隧道结构内力的影响。
隧道结构内力计算结果如图7所示。隧道注浆抬升相同高度时,3孔、5孔、7孔注浆在最大弯矩及最大弯矩处的裂缝宽度方面均小于单孔注浆。当抬升量为50 mm时,最大弯矩分别减小27.4%、61.4%、70.4%,裂缝宽度分别减小35.7%、83.0%、91.2%;当抬升量小于10 mm时,3孔注浆、5孔注浆、7孔注浆之间在最大弯矩和裂缝宽度方面的绝对值相差较小。
3.3 注浆顺序对隧道结构的影响
3.3.1 横向注浆顺序对隧道结构的影响
通过对比先中间(K9)后两边注浆(K8、K10)与先两边(K8、K10)后中间注浆(K9)两种注浆顺序,研究单环管片横向注浆顺序对隧道结构内力的影响。注浆深度均为1.50 m,假定3注浆孔注浆量相等,分别模拟隧道以横向不同顺序注浆来抬升10 mm、20 mm、30 mm、40 mm、50 mm的情况。模拟结果如图8所示。
由图8可见,隧道注浆抬升相同高度时,先两边后中间注浆在最大弯矩及管片裂缝宽度方面均大于采用先中间后两边注浆的隧道内支撑轴力,其差值随着隧道注浆抬升量的增大而增大。当隧道抬升50 mm时,先两边后中间注浆的隧道最大弯矩大32.1%,最大弯矩处裂缝宽度大100%。因此,需要对隧道底部3个注浆孔注浆时,采用先中间后两边的顺序注浆,对隧道结构内力的影响更小。
图7 横向注浆范围对隧道结构的影响
图8 横向注浆顺序对结构的影响
3.3.2 径向注浆顺序对隧道结构的影响
通过对比K8、K10两注浆孔采用由远及近与由近及远两种注浆顺序,研究单环管片径向不同注浆顺序对隧道结构内力的影响。注浆顺序如图9所示。注浆深度为1.50 m,分10层(每层0.15 m)逐层等量注浆。模拟计算结果如图10所示。
由隧道注浆抬升相同高度时,由远及近的注浆顺序在管片最大弯矩方面大于由近及远的注浆顺序,其差值随着隧道注浆抬升量的增大而增大。当隧道抬升50 mm时,由远及近注浆比采用由近及远注浆的最大弯矩大8.5%。两者在最大弯矩处裂缝宽度方面差别不大。
图9 径向注浆顺序示意图
图10 径向注浆顺序对隧道结构的影响
根据计算结果,在相同抬升量情况下,由远及近的注浆顺序所需的注浆量更小,注浆的反作用力更大,注浆效果更明显。为进一步说明深度方向上不同注浆顺序对隧道抬升的影响,将不同注浆顺序等抬升量模拟改为不同注浆顺序等注浆量(体应变)模拟,分别模拟径向不同注浆顺序,注浆单元体应变为8.5%、10.0%、11.5%时的隧道抬升情况。模拟计算结果如图11所示。
根据模拟结果,分析0.0~2.0 m范围内注浆时,两种注浆顺序对隧道抬升量的贡献。
采用由远及近注浆顺序时,因为下方1.8 m范围内凝固的浆液为上部注浆提供了更好的反力层,所以在注浆量相同的情况下,采用由远及近顺序注浆比采用由近及远顺序注浆,隧道抬升量更大。
采用由近及远的注浆顺序时,当注浆深度超过1.6 m时,上部浆液凝固对下部注浆的阻隔作用逐渐增大,注浆对隧道抬升的影响注浆逐渐减小,在图3中表现为曲线斜率逐渐降低,尤其当注浆量不大时,在1.8~2.0 m范围内注浆对隧道抬升已基本无影响。因此,需根据隧道所需抬升量,结合具体地层情况选择合适的注浆深度。
图11 隧道抬升量随注浆深度变化图
通过现场实测数据,对有限元计算结果进行了验证,并可得出以下结论:
(1) 在隧道抬升量小于5 cm的情况下,有限元中注浆加固后土体刚度及强度参数对注浆抬升过程和结构内力的影响不大,土体膨胀法模拟隧道注浆抬升,隧道结构内力主要与下方注浆单元体应变有关,与注浆单元本身参数选取关系不密切。
(2) 通过在隧道内架设支撑,能够提高隧道整体刚度,有效地减小隧道管片的附加内力和附加变形,结构安全性得以提高。
(3) 采用多孔注浆的方法可以有效减小管片的附加内力,控制管片变形,当单环注浆孔数量大于3个时,效果更为明显。
(4) 对隧道底部3个注浆孔注浆时,采用先中间后两边的顺序注浆,对隧道结构内力的影响更小。
(5) 隧道径向注浆顺序的不同对隧道内力影响较小,由近及远的注浆顺序在管片最大弯矩方面略小于由远及近的注浆顺序。
(6) 当采用由近及远的顺序时,上部浆液凝固对下部注浆的阻隔作用逐渐增大,注浆作用逐渐降低,故建议采用该种顺序注浆时注浆最大深度控制在1.8~2.0 m。
[1] 孙钧,侯学渊.上海地区圆形隧道设计的理论和实践[J].土木工程学报,1984(3):35.
[2] 陈惠芳,陈广峰,程千元,等.盾构穿越淤泥质软土含高压沼气地层的安全措施[J].施工技术,2012(13):75.
[3] 黄宏伟,臧小龙.盾构隧道纵向变形性态研究分析[J].地下空间,2002(3):244.
[4] 余占奎,黄宏伟,徐凌,等.软土盾构隧道纵向设计综述[J].地下空间与工程学报,2005(2):315.
[5] 韦凯,宫全美,周顺华.基于蚁群算法的地铁盾构隧道长期沉降预测[J].铁道学报,2008(4):79.
[6] 汪小兵.盾构穿越引起运营隧道沉降的注浆控制研究[J].地下空间与工程学报,2011(5):1035.
[7] 邓指军.双液微扰动加固注浆试验研究[J].地下空间与工程学报,2011(S1):1344.
[8] 杨江朋,苗兰弟.广州地铁3号线盾构施工同步注浆技术的应用[J].城市轨道交通研究,2014(6):111.
(Continued from Special Commentary)
In the case of the construction conditions’ permission, the rail transit composite corridor is often an effective way of “integrating” the line networks at different levels.The so-called “rail transit composite corridor” refers to that there are 2 or more levels of rail transit lines in the same rail transit corridor.If the rail transit lines of different levels can be “integrated” into a composite corridor,not only the transfer of passengers is facilitated,but also its land use and the total area of noise impact would be reduced exponentially than those in the condition of each line individually set up.Although the design speeds and the average station spacing of rail transit lines at different levels are of great difference,with the help of the rail transit corridor,a number of small and medium scale stations could still be set within the city limits,so that rail transit of different levels could form multiple “transferring points” in one corridor,and the transferring distance could be controlled within 200m.
Rail transit composite corridors usually have the following several cases:
(1) City railways and intercity railways,or high-speed railways coexist in one corridor.When intercity railway lines or high-speed railway lines get into urban area,city railways could be laid in parallel with these lines.But trains of city railways and intercity railways or high-speed railways operate independently on the respective lines.For example,in Berlin downtown of Germany,there is an elevated composite corridor of rail transit in the east-west direction,in which the national railway line and the city railway line are laid in parallel.On the national railway line (2 tracks,power supply AC 15 kV) run high-speed railway trains and regional railway trains,and on the city railway line (2 tracks,power supply DC 800V) run city railway trains.On this corridor,the passenger stations,such as Lehr,Ostbahnhof,Zoo,Alexander,and Spandau etc.,are set up for each other's transferring.And the passengers that come from high-speed trains or intercity railway trains could be easily evacuated by city railways to all over the city.
(2) City railways or intercity railways with metro coexist in one corridor.For example,in the same corridor between Tokyo Station to Yokohama Station in Japan,Tokaido Main Line,Keihin-Tohoku Line and Keikyu Main Line each operate independently,but could be transferred to each other.There are some similar cases in the corridors of Tokyo to Chiba,Kyoto-Osaka and etc.
(3) Two lines of urban rail transit (4 tracks),or more coexist in one corridor.For example,A,C and E Lines in New York Metro are laid in the same corridor in the West Central Avenue (from the 14th Street to the 145th Street).This corridor has 4 tracks,on which run the trains of 5 kinds of routing,and at the same time express trains and local trains could also run.
(4) City railways and intercity railways or high-speed railways operate by common-rail.As the trains adopted by the urban area railways could be compatibility with intercity railways' and high-speed railways' trains in the respects of railway clearance,power supply system,and train operation control system,so the trains of these three levels could run in the same line (2 tracks).In General,when trains run into the downtown area,the necessary speed limit would be made,so as to reduce the construction costs and the impact on the surrounding environment.
(5) The lines of city railways and urban rail transit operate by common-rail.It is conditional for the trains coming from the line networks of city railways and urban rail transit to run on the same line (2 tracks).It is needed to make the compatible design or transformation for the respects of train clearance,power supply system,and train operation control etc.in common-rail sections.In planning for rail transport networks,in general,this pattern should not be adopted,so as to avoid increasing the costs of constructions and operations and reducing operational efficiency.
It should be noted that the rail transit composite corridor planning must be established under the premise of the great necessity of the integration demand and the good feasibility of engineering constructions.For those lines whose integration advantages are not great and whose integration engineering construction costs are greater than the independent lines' construction costs,their planning and constructing should not implemented according to the rail transit composite corridor mode.
(Translated by SUN Zheng)
Impact of Grouting Lifting on the Structural Inner Stress of Shield Tunnel
ZHANG Jipeng, CHENG Naiji, DONG Zibo
Grouting for shield tunnel lifting for the solution to shield tunnel uneven settlement increases the inner stress of shield tunnel lining, directly affecting the long-term performance of shield tunnel. Based on the regulating engineering of uneven settlement in a tunnel section of Ningbo metro, the FEM (finite element method) calculation result and the data measured from Ningbo metro are compared, the variation of lining inner stress with or without internal bracing system, the variation in different ranges and orders of grouting are analyzed. The simulation results show that when the grouting changes from distal to proximal, and the range of grouting is expanded, the additional inner stress of shield lining will be decreased.
shield tunnel; structural inner stress; grouting lifting
U 457
10.16037/j.1007-869x.2016.09.020
2015-04-12)