许素忠
河北省元氏县北褚中心小学
素质教育下的数学教学要培养学生的创新能力
许素忠
河北省元氏县北褚中心小学
素质教育要求我们充分尊重学生的主体性,注重开发学生的潜能,对于数学这门学科来说,其中创新能力是素质教育的核心,关键是培养学生的创造性思维能力,这是培养新世纪新型建设人才的时代要求,也是教学的重任。在教学的实践中,我从以下几方面抓了学生创新能力的培养。
素质教育在方法上强调把外部的教育影响内化为学生个体素质,重视内化过程和内化机制的研究,使学生在学习活动的实践中形成各种能力。苏霍姆林斯基有句名言:“儿童的智慧在他的手指尖上”。当学生动手训练时,能使大脑皮质的很大区域都得到训练,同时,这种操作往往又都有高级中枢的其他部位,如视中枢、小脑平衡中枢及第二信号系统参与活动和调节,因而对大脑机能的训练就带有综合性,从而对学生智力发展起促进作用。所以,我们在教学中,要注意运用各种媒体,多种直观手段,设计形式新颖灵活多样的练习,采用实验、操作、游戏等办法,促使学生多种感官协同活动。教学中的重点、难点知识,通过设计一些问题让学生“想一想”、“议一议”、“算一算”,在动脑、动手中充分发表自己的见解,展示自己的认识过程。在数学教学中,如能引导学生进行归纳和发现,也能培养和提高学生的创新能力。
如在教学完了平面图形的面积计算公式后,我要求学生归纳出一个能概括各个平面图形面积计算的公式,我让学生进行讨论,经过讨论,学生们归纳出,在小学阶段学过的面积公式都可以用梯形的面积计算公式来进行概括,因为梯形的面积计算公式是:(上底+下底)×高÷2。因为长方形、正方形、平行四边形的上底和下底相等,即可将这公式变成:底(长、边长)×高(宽、边长)×2÷2=底(长、边长)×高(宽、边长);又因为将圆面积公式是根据长方形的面积公式推导出来的,因此,梯形的面积公式对圆也同样适用;当梯形的上底是零时,即梯形成了一个三角形,这时梯形的面积公式成了:底×高÷2。这即成了三角形的面积公式。这样,不仅使学生能熟练掌握已学过的平面图形的面积公式,同时,也培养和提高了学生的创新能力。
又如在教学了圆柱体的表面积公式后,学生掌握了圆柱体的表面积是侧面积加上两个底面积,我启发学生能否将圆面积的推导公式和圆柱体的侧面积推导公式的过程进行联想和联系,概括出求圆柱体表面积的公式。学生经过讨论并用学具操作,很快想出,因为将一个圆平均分成若干份,拼成一个近似长方形,这近似长方形的长即是圆柱体的底面周长,宽即是圆柱体的底面圆的半径,因此,圆柱体的表面积公式即可为:S=2π×(Υ+H)。
在教学实践中,如让学生能针对某一问题,通过类比思维去解决,不仅能提高教学效果,还能培养学生的创新思维能力。
例如在教学了比的知识后,我出示了这样一句数量关系句:“某工厂男工人的人数比女工人的人数多1/4”,我要求学生根据这一句数量关系句进行联想,改变成内容不变但叙述方法不同的数量关系句,学生经过讨论,很快说出:(1)、男工人的人数是女工人的人数的1+1/4=5/4;(2)、某工厂男工人的人数与女工人的人数的比是5∶4;(3)、某工厂女工人的人数与男工人的人数的比是4∶5;(4)、某工厂女工人的人数是男工人的人数的4/5,(5)、某工厂男工人的人数占全厂工人的人数的5/9;(6)、某工厂女工人的人数占全厂工人的人数的4/9;(7)、某工厂女工人的人数比男工人的人数少1/5。这样学生很快能将比与分数进行融会贯通,增强了学生的创新意识。
又如在教学了数的整除的知识后,我出示了这样一题:“一个数被6除余4,被8除余2,被9除余1,这个最小是几?”应该说这道题是有一定的难度的,学生求解会感到无从下手,这时,我出示了这样一题比较题:“一个数被6除余10,被8除余10,被9除余10,这个数最小是几?”这道题学生很快能求出答案:这个数即是6、8和9的最小公倍数多10,6、8和9的最小公倍数为72,因此这个数为:72+10=82;然后我引导学生将上道题与这道比较题进行想象和比较,学生很快知道,上道题只要假设被6除少商1余数即为10,被8除少商1余数也为10、被9除时少商1余数也为10,因此可迅速求得这个数只有减去10,就同时能被6、8和9整除,而6、8和9的最小公倍数为72,因此这个数为:72+10=82。这样通过让学生展开联想和比较,不但可以提高学生的想象能力,也能提高学生的创新思维能力。
数学教师要在课堂教学中培养学生的创造力,教师首先应创设一种民主、宽松、和谐的教学环境和教学气氛。有意识的培养学生的创新意识;善于激发学生的创造动机;发展学生的创造思维;树立学生具有创造力的个性品质。同时教师还要注意自身的知识和能力储备。教师自己能够打破传统定势,提高自身的认知水平,才能更加灵活的去引导学生的发展。