常祖峰,常 昊,臧 阳,代博洋
(1.云南省地震局,昆明 650041;2.中国地震台网中心,北京 100086)
维西—乔后断裂新活动特征及其与红河断裂的关系
常祖峰1,常 昊1,臧 阳2,代博洋1
(1.云南省地震局,昆明 650041;2.中国地震台网中心,北京 100086)
根据野外调查结果,重点阐述了维西—乔后断裂晚第四纪活动特征,并对其与红河断裂之间的关系进行了探讨分析。维西—乔后断裂对晚新生代盆地具有明显的控制作用,右旋走滑特征明显,沿线山脊和河流表现为同步右旋位错。德胜和长邑南探槽揭示其断错了晚更新世晚期—全新世堆积。岩曲—石岩村一带Ⅱ级河流阶地和后缘洪积扇上发育长约3 km、高2.5 m左右的断层陡坎。根据洪积扇、冲沟和河流阶地位错量估算,该断裂晚更新世晚期以来右旋水平滑动速率为1.8~2.4 mm/a,垂直滑动速率为0.30~0.35 mm/a。它南与红河断裂相连,北与金沙江断裂相接,新生代以来具有与红河断裂和金沙江断裂相似的运动学特征、相同的地质演化历史和构造变形机制,是红河活动断裂的北延部分。维西—乔后断裂与红河、金沙江以及德钦—中甸—大具等断裂一起,共同构成了川滇活动块体的西部边界。
维西—乔后断裂;川滇块体;晚第四纪;右旋走滑运动;滑动速率
新生代早期以来,青藏高原向东挤出导致了川滇菱形块体的形成[1~5]。受到华南块体的阻挡,川滇菱形块体向南南东逃逸,并围绕喜马拉雅东构造结顺时针旋转[6~12]。川滇块体是青藏高原东缘侧向挤出最强也是最具代表性的活动块体(见图1),地震频繁,是活动构造和地震监测预报重点关注的地区,也是研究块体运动和构造变形的热点地区之一。川滇块体的东北和东侧边界受甘孜—玉树、鲜水河、安宁河、则木河、小江等断裂带控制。受块体强烈的南南东向滑移的影响,该带以左旋走滑为特征,具有较高的滑动速率,中外学者对它们的全新世活动特征和活动习性有较广泛的研究[13~20]。川滇块体的西南边界——红河断裂,是一条大型走滑剪切带,在中国乃至东南亚大陆地壳演化与陆内构造变形中都具有显著地位,长期以来被诸多地球科学家所关注[21~28]。新近纪以来,该断裂主要表现为右旋走滑运动,晚第四纪滑动速率约5 mm/a,沿断裂发生多次7级左右地震[24~35]。川滇块体的西北边界——金沙江断裂曾是一条多期活动的缝合线构造,具有明显的挤压性质[36],后期因受到青藏高原向东挤出运动的影响又表现出右旋走滑兼逆冲性质[3,36],断裂中北段被认为属晚更新世—全新世活动段,第四纪右旋走滑速率3.5~7 mm/a[37~38]。然而,德钦—中甸—大具断裂以南,金沙江断裂晚更新世以来活动迹象不明显,甚至认为基本不活动[12]。
图1 区域构造格架与动力学背景Fig.1 Regional tectonic framework and dynamic background
总体而言,川滇菱形块体东边界构造清晰,地震频繁,块体东边界断裂带的研究程度较高;而西边界地震相对稀少,除红河断裂外,西部边界构造研究程度较低,而且块体西边界结构样式复杂[39]。
维西—乔后断裂位于川滇块体西部边缘,北起雪龙山东麓白济汛一带,经维西、通甸、乔后,止于点苍山西南,走向北北西,长约280 km(见图2)。它南与红河断裂相连,北与金沙江断裂相接,是连接川滇块体西缘南、北两条活动断裂的枢纽(见图1)。从区域地质意义上讲,维西—乔后断裂在活动地块边界划分乃至大地构造上具有重要的影响。问题是:此断裂是否具有与红河断裂、金沙江断裂同样的晚第四纪活动特征?是否具有类似的构造运动和变形过程?是否属于川滇菱形块体边界的重要组成部分?加强这些问题的研究,无疑对深入理解块体边界构造变形机制和变形样式,对认识青藏高原周边地壳变形的运动学与动力学特征等具有重要的理论和实际意义。
①—维西—乔后—巍山断裂;②—金沙江断裂;③—龙蟠—乔后断裂;④—玉龙山西麓断裂;⑤—玉龙山东麓断裂;⑥—丽江断裂;⑦—鹤庆断裂;⑧—红河断裂;⑨—兰坪—云龙断裂;⑩—澜沧江断裂图2 维西—乔后—巍山断裂及邻区构造图Fig.2 A map of the structures in Weixi-Qiaohou-Weishan fault and its adjacent area
2.1 晚第四纪活动特征
维西—乔后断裂是兰坪—思茅褶皱带与昌都—云岭褶皱带两个大地构造单元分界断裂,因此,其在大地构造演化中具有重要作用。该断裂具有长期的发育历史,形成于加里东运动期,在海西—印支期有过强烈活动,沿断裂火山活动和岩浆作用强烈,喜马拉雅期也有过强烈活动。新构造运动期主要表现为右旋走滑运动,南段(巍山盆地段)表现为张性运动。因篇幅所限,本文重点讨论玉狮场—平坡段的最新活动时代、运动学特征。
沿维西—乔后断裂分布有一系列晚新生代盆地,较大的盆地主要有维西、通甸、马登、弥沙、乔后、炼铁等,断裂对盆地发育有着显著的控制作用。以马登盆地为例,盆地基底由中生界红层构成,盆地上部发育有三级河流阶地。Ⅰ级阶地由全新世河流冲积相砂砾石层构成,厚约20 m;Ⅱ级阶地由晚更新世河流冲积相砂砾石层及黏土构成,上层厚10~40 m,下层厚100~200 m;Ⅲ级阶地为冲、洪积砂砾石、黏土层。整体呈现出西高东低的地势。受维西—乔后断裂活动影响,在断裂两侧阶地明显地不对称发育,一侧发育有三级阶地,另一侧则基本不发育(见图3)。
图3 马登盆地横剖面Fig.3 Cross section of the Madeng basin
构造地貌方面,沿断裂表现为定向排列的断层三角面、断层陡崖、断层垭口、断层陡坎等断层地貌,山脊、水系呈现同步右旋位错现象。如在弥沙一带,多条山脊和冲沟同步右旋位错30 m左右(见图4a);玉水坪有3条山脊右旋位错15~20 m(见图4b),同时多条小溪同步右旋位错26~40 m(见图5)。
图4 山脊位错地貌Fig.4 Ridge displacing landforms
图5 玉水坪小溪同步右旋位错地貌Fig.5 Synchronous right-lateral displacing landforms of rivers at Yushuiping
在上述玉水坪小溪同步位错的附近,通甸河Ⅱ级阶地上见5条第四纪断层出露,其产状分别为F1:345°/NE∠54°;F2:0°/N∠55°;F3:340°/NE∠55°;F4:345°/NE∠45°;F5:350°/NE∠42°,这些断层错断了上新世和晚更新世地层,沿断层面发育片理化带及黏土透镜体(见图6)。在此Ⅱ级河流阶地上部开挖探槽,揭露出断裂晚更新世—全新世活动迹象(另文论述)。
1—灰褐色壤土;②—褐黄色含砂砾石(磨圆度较好);③—灰黄色粉砂;④—深灰色半固结黏土;⑤深灰色砾石层图6 玉水坪Ⅱ级阶地断层素描图Fig.6 The sketch map of the faults on the second terrace at Yushuiping
下甸—玉狮场一带,沿断裂有箭干场、稗子沟、德胜、杏花村、箐口、玉狮场等一系列第四纪小盆地呈串珠状展布,盆地多呈长条状,受断裂控制明显(见图7)。
图7 下甸—玉狮场串珠状第四纪盆地Fig.7 Beaded Quaternary basins developed from Xiadian to Yushichang
①—褐红色含砾石细砂;②—灰白色含砾石、粉砂黏土;③—灰白色砂质黏土;④—褐红色黏土;⑤—片理化带图8 德胜村探槽SE壁剖面素描图Fig.8 The SE wall profile of the exploratory trench at Desheng village
德胜盆地为串珠状小盆地之一。在其南东方向,地貌上表现为一狭长的断层槽地,宽30~50 m,长数千米。此槽地内小河阶地上发育平直的高0.5~2.0 m的断层陡坎(见图8a,8b)。横跨断层陡坎的探槽揭示出断层的存在。探槽揭露有3条断层(见图8c),断层的产状如下:F1:310°/NE∠56°;F2:310°/NE∠52°;F3:310°/NE∠45°。断面上发育片理化带,褐红色黏土沿断面发生构造变形,沿断面延展拉长。被错阶地堆积顶部14C测年结果为距今200±30 a(14C-22),下部1.2 m、1.5 m及4.5 m处14C测年结果分别为1780±20 a(14C-23)、2045±20 a(14C-24)、1905±20 a(14C-25,图中未标出)和2040±20 a(14C-26,图中未能标出),表明断层在全新世有明显活动。
长邑一带,卫星影像上断层线性特征清晰。长邑南普坪村发育一平直的走向320°的断层槽地,槽地两侧发育高约1.5 m的陡坎(见图9a)。横跨断层槽地的探槽揭露断层正位于陡坎下方(见图9b),F1断层产状:290°/NE∠65°,F2断层产状:300°/NE∠45°,错断了Qp3-3灰黑色含砂黏土层及粉砂层。被错地层14C测年结果为距今13600±50 a,错距明显,表明断裂在晚更新世晚期以来有过活动(见图9c)。需要补充说明的是,此处断层显示有逆冲性质,它应该是断层右旋走滑运动的伴生效应。
①—棕色含砂壤土;②—黄褐色含卵石砂土;③—深灰色含卵石黏土;④—黑色含卵石泥炭质土;⑤—灰黑色含卵石粘土;⑥—灰黄色含砾石粉砂;⑦—灰黑色含砂黏土及片理化带图9 长邑南探槽NW壁剖面素描图Fig.9 The NW wall profile of the exploratory trench south of Changyi
2.2 滑动速率
在岩曲—石岩村一线,弥沙河Ⅱ级阶地及其后缘洪积扇上断续发育高2.5 m左右的断层陡坎,总的延伸长度约3 km。
岩曲村弥沙河西侧见2个洪积扇右旋位错,位错量分别为15 m和20~25 m,并在洪积扇上发育高2~3 m的断层陡坎(见图10)。洪积扇边缘下部14C样品测年结果为距今13730±50 a,据此估算晚更新世晚期以来水平滑动速率为1.8 mm/a,垂直滑动速率为0.2 mm/a。
图10 岩曲村西断层陡坎及洪积扇右旋位错Fig.10 The fault scarp and right-lateral dislocation of alluvial fans at west of Yanqu village
在石岩村北西1 km处,弥沙河Ⅱ级阶地(拔河8~10 m)发育平直的断层陡坎(见图11),陡坎走向340°,坎高2.5~3.0 m(见图12a)。断层陡坎下方有基岩断层发育(见图12b、12c)。陡坎延长线上发育长15 m、宽8 m的断塞塘,经与当地村民核实,该断塞塘为天然形成,其长轴方向与断层陡坎方向一致。断塞塘下部为泥炭质黏土沉积,其14C测年结果为距今13090±50 a。断塞塘、阶地地层陡坎、基岩断层三点一线,充分说明活动断层存在的可靠性。断塞塘的形成时代表明断层在晚更新世末有过明显活动。阶地西侧山麓发育一条冲沟,冲沟因受断裂活动影响发生右旋位错,左侧形成废弃的断尾沟(见图11),冲沟右旋位错量达20 m。冲沟阶地14C测年结果为距今8490±40 a(美国BETA实验室),据此估算该断裂全新世以来右旋水平滑动速率为2.4 mm/a,垂直滑动速率为0.30~0.35 mm/a。
图11 石岩村北西1 km处阶地与冲沟位错图Fig.11 The displacing map of terraces and gullies at 1 km northwest of Shiyan village
a—断层陡坎与冲沟位错;b—断层陡坎与基岩断层;c—基岩断层角砾岩带;d—断塞塘地貌;e—断塞塘下部取样点图12 石岩村NW 1 km处断层陡坎、基岩断层、断塞塘地貌Fig.12 Landforms of fault scarp,solid rock fault and sag pond at 1 km northwest of Shiyan village
此外,在通甸盆地盖场北东1 km处,沿断层形成断层陡坎,附近一小溪右旋位错9 m,其Ⅰ级阶地也同步位错9 m。一级阶地堆积物14C测年结果为距今4920±30 a,由此估算水平滑动速率为1.8 mm/a。
马登盆地内城岗村附近,一小溪Ⅰ级阶地水平右旋位错了9~10 m,两侧阶地上发育高0.5~1.2 m断层陡坎,在河流位错位置正南方约500 m处发育一条第四纪断层,说明此阶地位错的可靠性。此处小溪Ⅰ级阶地与上述盖场小溪阶地地貌部位类似,形成时代应基本接近,阶地年龄如按4900~5000 a计算,据此估算得到水平滑动速率为1.8~2.0 mm/a。
在马登盆地西南文屏村西500 m处同样发现有河流Ⅱ级阶地的右旋位错现象,位错量为32~37 m,该级阶地14C测年结果为距今16960±70 a,据此推算晚更新世晚期以来水平滑动速率为2.0~2.3 mm/a。
地质构造的发展、演化既有继承性又有新生性,与地壳长期的构造变动过程密切相关。青藏高原自形成以来始终受到近南北向的挤压作用,发生在块体边界和内部的构造变形主要表现为向北推移、缩短加厚和向东挤出3种形式[40~42]。新生代早期以来,青藏高原向东挤出导致了川滇菱形块体的形成,它是高原物质沿大型韧性走滑剪切带[21~22,24~26,43~45]向东南运移时物质与能量交换、传递的重要部位。红河断裂是规模宏大的全新世活动断裂,同时它作为川滇块体的西南边界,是一条经历长期演化(陆-陆碰撞、陆核增生、挤压剪切)的块间构造变形带和大型韧性剪切带。新构造时期以来,它作为印支地块与华南地块间的边界断裂经历了早期(古近纪)的大型左旋剪切运动[21~26]和后期(新近纪以来)的右旋走滑运动,从中新世经第四纪至今,总体上仍继续其右旋走滑运动特征[30~32]。
维西—乔后断裂南与红河断裂相连,北与金沙江断裂相接。大地构造上,它是兰坪—思茅褶皱带与昌都—云岭褶皱带两个大地构造单元分界断裂,对昌都—云岭和兰坪—思茅地区的岩浆作用、沉积建造、变质作用有着明显控制作用[46]。且据Leloup等[26]研究,维西—乔后断裂北段发育的雪龙山韧性剪切带,与哀牢山、点苍山以及越南的Day Nui Con Voi韧性剪切带一起,共同构成长达1000 km的大型韧性剪切带,是新生代早期印支板块向南东运动的边界。糜棱岩S-C结构和温-压条件等研究[26]表明,在早新生代,雪龙山韧性剪切带与哀牢山—红河断裂带一起表现为大规模的左旋走滑运动。因此,从区域地质意义上讲,维西—乔后断裂与红河断裂带一脉相承,早期曾是红河断裂的重要组成部分;后期,维西—乔后断裂整体上表现出右旋走滑运动,且在晚第四纪活动特征明显,与红河断裂以及金沙江断裂具有相似的运动学特征。从这种意义上说,维西—乔后断裂应该是红河活动断裂的北延部分。
汪一鹏等[39]认为,喀喇昆仑—嘉黎断裂带与红河断裂并不相连,青藏高原侧向挤出的南边界并非是由一条单一的、高走滑速率的喀喇昆仑—嘉黎断裂带来承担的,它可能具有复杂得多的结构样式,由一组断续、分散的右旋走滑断裂承担,且滑动速率较低。作为川滇块体西北边界的金沙江断裂在德钦—中甸—大具断裂以南并无活动迹象,红河活动断裂与活动的金沙江断裂段之间就出现了断档。既然川滇活动块体持续向南逃逸,西边界金沙江断裂中北段和红河断裂均表现出明显的活动特征,那么它们之间的段落川滇块体运动的能量该由哪些断裂承担?据常祖峰等[47]的最新研究,晚第四纪德钦—中甸—大具断裂表现出明显的右旋走滑活动特征,水平滑动速率1.7~2.0 mm/a。由此推测,金沙江断裂南段的滑动变形或许部分地转移到德钦—中甸—大具断裂;而同处于川滇块体西缘的维西—乔后断裂,作为红河活动断裂北部延伸段的重要组分,是块体运动变形的主要载体,同样承担和吸收了川滇北侧块体传递过来的运动能量和应变。因此,维西—乔后断裂与红河断裂、金沙江断裂以及德钦—中甸—大具等断裂一起,共同构成了川滇活动块体的西部边界。
维西—乔后断裂在晚第四纪有着明显的活动特征,运动性质以右旋走滑为主,山脊和河流表现为同步右旋位错。沿线发育多个晚新生代盆地,表现为平直的断层槽地、清晰的断层三角面、断层陡坎等新活动地貌。德胜、长邑南探槽揭示出断错了晚更新世晚期—全新世堆积,岩曲—石岩村一带Ⅱ级河流阶地和洪积扇上发育长约3 km、高2.5 m左右的断层陡坎。晚更新世晚期以来,该断裂平均右旋水平滑动速率1.8~2.4 mm/a,垂直滑动速率0.30~0.35 mm/a。
维西—乔后断裂与红河断裂以及金沙江断裂具有相似的运动学特征,与红河断裂带一脉相承,是红河活动断裂的北延部分。新生代以来,它们具有共同的地质演化历史和构造变形机制,是川滇块体西缘一条重要的大型剪切带,在川滇活动块体形成、演化和运移过程中扮演着重要的角色。维西—乔后断裂与红河、金沙江以及德钦—中甸—大具等断裂一起,共同构成川滇活动块体的西部边界。
[1] 李玶,汪良谋.云南川西地区地震地质基本特征的探讨[J].地质科学,1975,10(4):308~326.
LI Ping,Wang Liang-mou. Discuss on the basic characteristics of seismotectonics inYunnan-Sichuan region[J].Chinese Journal of Geology,1975,10(4):308~326.
[2] 阚荣举,张四昌,晏凤桐.我国西南地区现代构造应力场与现代构造活动特征的探讨[J].地球物理学报,1977,20(2):96~109.
KAN Rong-ju,ZHANG Si-chuang,YAN Feng-tong.1977. Discuss on modern tectonic stress field and the tectonic activity features in southern region,China[J]. Chinese Journal of Geophysics,1977,20(2):96~109.
[3] 邓起东, 张培震, 冉勇康,等. 中国活动构造基本特征[J].中国科学(D辑),2002,32(12):1020~1030.
DENG Qidong, ZHANG Peizhen, RAN Yongkang,et al. Basic characteristics of active tectonics in China[J]. Science in China (Series D),2002,32(12): 1020~1030.
[4] 徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造样式及动力学来源[J].中国科学(D 辑),2003,33(增刊): 151~162.
XU Xi-wei,WEN Xue-ze,ZHENG Rong-zhang,et al. Pattern of latest tectonic motion and dynamics of faulted blocks in Yunnan and Sichuan[J]. Science in China (Series D),2003,33 (Suppl): 151~162.
[5] 张家声,李燕,韩竹均.青藏高原向东挤出的变形响应及南北地震带构造组成[J].地学前缘,2003,10(特刊):168~175.
ZHANG Jia-sheng, LI Yan,HAN Zhu-jun. Deformation responses to eastwards escaping of the Qinghai Tibet plateau and tectonics of the South-North seismic zone in China[J]. Earth Science Frontiers,2003,10(suppl): 168~175.
[6] 张培震,王敏,甘卫军,等. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,2003a,10 (增刊):81~92.
ZHANG Pei-Zhen,WANG Min,GAN Wei-jun,et al.Slip rates along major active faults from GPS measurements and constrains on contemporary continental tectonics[J].Earth Science Frontiers,2003a,10(Suppl): 81~92.
[7] 张培震,邓起东,张国民,等.中国大陆的强震活动与活动地块[J].中国科学(D辑),2003b,33(增刊):12~20.
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min,et al..Active tectonic blocks and strong earthquakes in continental China[J]. Science in China(Series D), 2003b,33(Suppl):12~20.
[8] 吕江宁,沈正康,王敏.川滇地区现代地壳运动速度场和活动块体模型研究[J]. 地震地质,2003,25 (4): 543~554.
LU Jiang-ning,SHEN Zheng-kang,WANG Min.Velocity field and tectonic block division of crustal movement obtained by GPS measurements in Sichuan-Yunnan region[J]. Seismology and Geology,2003,25(4): 543~554.
[9] SHEN Z K, LU J N, WANG M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal Geophysical Research,2005,110: B11409.
[10] WANG Q, ZHANG P Z., FREYMUELLER J T, et al. Present-day crustal deformation in China constrained by Global Positioning System measurements[J].Science,2001,294: 574~577.
[11] ZHANG P Z, SHEN Z.K, WANG M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology,2004,32: 809~812.
[12] 王阎昭,王恩宁,沈正康,等. 基于GPS资料约束反演川滇地区主要断裂现今活动速率[J].中国科学(D辑): 地球科学,2008,38(5): 582~597.
WANG Yan-zhao,WANG En-ning,SHEN Zheng-kang,et al.GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region,China[J].Science in China (Series D): Earth Sciences,2008,51(9): 582~597.
[13] ALLEN C R, LUO Z,QIAN H,et al. Field study of a highly active fault zone: The Xianshuihe fault of southern China[J]. Geological Society of America Bulletin,1989,103: 1178~1199.
[14] 闻学泽.鲜水河断裂带未来三十年地震复发的条件概率[J].中国地震,1990,6(4):8~16.
WEN Xue-ze. The earthquake recurrence condition probability in next 30 years along Xianshuihe faults[J].Earthquake research in China,1990,6(4):8~16.
[15] 郭晓虎,魏东平,张克亮.GPS 约束下川滇地区主要断裂现今活动速率的估算方法[ J ]. 中国科学院研究生院学报,2013,30(1):74~82.
GUO Xiao-hu,WEI Dong-ping,ZHANG Ke-liang. GPS-constrained estimate method of present-day slip rate along major faults of Sichuan-Yunnan region in China. Journal of Graduate University of Chinese Academy of Sciences,2013,30(1):74~82.
[16] 潘懋,梁海华,蔡永恩,等. 中国川西地区鲜水河断裂和则木河断裂几何学、运动学特征及地震活动性对比研究[J]. 中国地震,1994,10 (1): 28~37.
PAN Mao,LIANG Haihua,CAI Yongen,et al. Comparision between the Xianshuihe fault zone and Zemuhe fult zone [J]. Earthquake research in China,1994,10 (1): 28~37.
[17] 冉勇康,陈立春,程建武,等.安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J].中国科学(D辑), 2008,38(5):543~554.
RAN Yong-kang,CHEN Li-chun,CHENG Jian-wu,et a l.2008.Late Quaternary surface deformation and rupture behavior of strong earthquake on the segment north of Mianning of the Anninghe Fault[J].Science in China(Series D),38(5):543~554.
[18] 李玶.鲜水河-小江断裂带[M].北京:地震出版社,1993.
LI Ping. The Xianshuihe-Xiaojiang fault zone[M]. Earthquake Press,Beijing,1993.
[19] 唐文清,刘宇平,陈智梁,等.鲜水河断裂及两侧地块的GPS 监测[J]. 西南交通大学学报,2005,40(3): 13~317.
TANG Wen-qing,LIU Yu-ping,CHEN Zhi-liang,et al.GPS monitoring of Xianshuihe fault and blocks on Its both sides[J].Journal of Southwest Jiaotong University,2005,40(3): 13~317.
[20] 熊探宇,姚鑫,张永双.鲜水河断裂带全新世活动性研究进展综述[J].地质力学学报,2010,16(2):176~188.
XIONG Tan-yu,YAO Xin,ZHANG Yong-shuang. A review on study of activity of Xianshuihe fault zone since the Holocene[J].Journal of Geomechanics,2010,16(2):176~188.
[21] TAPPONNIER P,ZHIQIN X,ROGER F,et al. Oblique stepwise rise and growth of Tibet plateau[J].Science, 2001,294,No.5547,1671~1677.
[22] TAPPONNIER P,PELTZER G,DAIN A Le, et al. Propogation extrution tectonics in Aisa: New insights from simple experiments with plasticine[J].Geology,1982,10:61~616.
[23] TAPPONNIER P,PELTZER G,ARMIJO R. On the mechanics of the collision between India and Asia, in Coward, M. P., and Ries, A. C., eds., Collision Tectonics[M].Geological Society London Special Publication,1986,19:115~157.
[24] TAPPONNIER P, LACASSIN R, LELOUP P H, et al. The Ailao shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and south China[J]. Nature,1990,343:431~437.
[25] LELOUP P H,KIENAST J R. High temperature metamorphism in a major strike-slip shear zone: the Ailao Shan-Red River (P.R.C)[J]. Earth Planetary Science Letters,1993, 188: 213~234.
[26] LELOUP P H, LACASSIN R, TAPPONNIER P, et al. The Ailao Shan-Red River shear zone (Yunnan China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995,251: 3~84.
[27] SCHOENBOHM L M, BURCHFIEL B C, CHEN L, et al. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow[J]. Geological Society of America Bulletin,2006,118(5/6): 672~688.
[28] SOCQUET A, PUBELLIER M. Cenozoic deformation in western Yunnan (China-Myanmar border) [J]. Journal of Asian Earth Science, 2005,24: 495~515.
[29] 陈文寄,李齐,汪一鹏.哀牢山-红河左旋走滑剪切带中新世抬升的时间序列[J].地质论评,1996,42(5):385~390.
CHEN Wen-ji, LI Qi, WANG Yi-peng. Miocene diachronic uplift Ailao mountains-Red River left lateral strike-slip shear zone[J]. Geological Review,1996,42(5):385~390.
[30] 虢顺民,计凤洁,向宏发,等.红河活动断裂带[M].北京:海洋出版社,2001.
GUO Shun-min,Ji Feng-ju,XIANG Hong-fa,et al. The Honghe active fault zone[M]. Marine Press,Beijing,2001.
[31] 向宏发,虢顺民,张晚霞,等.红河断裂带南段中新世以来大型右旋位错量的定量研究[J].地震地质,2007,29(1):52~65.
XIANG Hong-fa,GUO Shun-min, Zhang Wan-xia,et al. Quantitative study on the large scale dextral strike slip offset in the southern segment of the Red River Fault since Miocene[J]. seismology and geology,2007,29(1):52~65.
[32] 向宏发,韩竹军,虢顺民,等.红河断裂带大型右旋走滑运动与伴生构造地貌变形[J].地震地质,2004,26(4):43~56.
XIANG Hong-fa, HAN Zhu-jun, GUO Shun-min, et al. Large-scale dextral strike-slip movement and associated tectonic deformation along the red-river fault zone[J].Seismology and geology,2004,26(4):43~56.
[32] 王绍晋,张建国,余庆坤,等.红河断裂带的震源机制与现代构造应力场[J].地震研究,2010,33(2):200~207.
WANG Shao-jin, ZHANG Jian-guo, YU Qing-kun, et al. Focal Mechanism of Strong and Medium small Earthquakes and Modern Tectonic Stress Field of the Red River Fault Zone[J].Journal of seismological research,2010,33(2):200~207.
[33] 乔学军,王琪,杜瑞林.川滇地区活动地块现今地壳形变特征[J].地球物理学报,2004,(5): 805~811.
QIAO Xue-jun,WANG Qi,DU Rui-lin. Characteristics of current crustal deformation of active blocks in the sichuan-yunnan region[J]. Chinese Journal of Geophysics,2004,(5):805~811.
[34] WANG E, BURCHFIEL B C, ROYDEN L H, et al. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China[J]. Special Paper of the Geological Society of American,1998,327:1~108.
[35] ALLEN C R, GILLESPIE A R, HAN Y, et al. Red River and associated faults, Yunnan province, China: Quaternary geology, slip rate and Seismic hazard[J]. Geological Society of America Bulletin,1984,95:686~700.
[36] 许志琴,侯立玮,王综秀,等.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社,1992.
XU Zhi-qin, HOU Li-wei, WANG Zong-xiu. et al. The Songpan Ganzi Orogeny process in China[M]. Geological Publishing House, Beijing,1992.
[37] 唐荣昌,韩渭滨.四川活动断裂与地震[M].北京:地震出版社,1993.
TANG Rong-chang, HAN Wei-bin. Active faults and earthquakes in Sichuan[M]. Seismology Press,Beijing,1993.
[38] 常祖峰,2013年云南奔子栏M5.9级地震发生的地震地质背景,地震地质,2015,37(1):192~207.
CHANG Zu-feng,The seismotectonic background of the 2013 Benzilan M5.9 earthquake, Yunan Province[J].Seismology and geology,2015,37(1):192~207.
[39] 汪一鹏,沈军,王琪,等.川滇块体的侧向挤出问题[J].2003,地学前缘,10(特刊):187~192.
WANG Yi-peng,SHEN Jun, WANG Qi, et al. On The Lateral Extrusion Ofs Ichuan-Yunnan Block (Chuandian Block) [J]. Earth Science Frontiers,2003,10(Suppl.):187~192.
[40] 马宗晋,张家声,汪一鹏.青藏高原三维变形运动随时间的变化[A]. 见:现代地壳运动与地球动力学研究[M].北京:地震出版社,2001.
MA Zong-jin, ZHANG Jia-sheng, WANG Yi-peng. The 3-D deformation movement episodes of the Qinghai-Xizang plateau[A]. In: Study on the recent deformation and dynamics of the Lithosphere of Qinghai-Xizang plateau[M]. Seismology Press, Beijing,2001.
[41] 钟大赉,丁林.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑),1996,26(4):289~295.
ZHONG Da-lai,DING Lin.1996. Rising process of the Qinghai-Xizang(Tibet) Plateau and its mechanism[J].Science in China(Series D), 26(4):289—295.
[42] TAPPONNIER P, MOLNAR P. Active faulting and tectonics of China[J]. Journal Geophysical Research,1977,82(20):2905~2930.
[43] MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science,1975,189: 419~426.
[44] PELTZER G, TAPPONNIER P. Formation and evolution of strike-slip faults, rifts, and basins during India-Asia collision:an experiment approach [J]. Journal Geophysical Research,1988,93:15085~15117.
[45] ARMIJO R P,TAPPONNIER J,MERCIER,et al. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal Geophysical Research1989,94, No.B3, 2787~2838.
[46] 云南省地质矿产局.云南省区域地质志[M].北京:地质出版社,1990.
Bureau of Geology and Mineral Resources of Yunnan Province. Regional geology of Yunnan Province [M]. Geological Publishing House, Beijing,1990.
[47] 常祖峰,张艳凤,李鉴林,等.德钦-中甸-大具断裂晚第四纪活动的地质与地貌表现[J].地震研究,2014,37(1):46~52.
CHANG Zu-feng,ZHANG Yan-feng,LI Jian-lin,et al. The geological and geomorphic characteristic of late Quaternary activity of the Deqin-Zhongdian-Daju fault[J].Journal of Seismological Research,2014,37(1):46~52.
RECENT ACTIVE FEATURES OF WEIXI-QIAOHOU FAULT AND ITS RELATIONSHIP WITH THE HONGHE FAULT
CHANG Zu-feng1, CHANG Hao1, ZANG Yang2, DAI Bo-yang1
(1.Earthquake Administration of Yunnan Province,Kunming, 650041,China;2.ChinaEarthquakeNetworksCenter,Beijing100045,China)
According to geological and geomorphic field observations, in this paper, we mainly elaborate the late Quaternary active features of the Weixi-Qiaohou fault, and discuss its relationship with the Honghe fault. The fault have apparently dominated many late Cenozoic basins’ development, showing dextral strike slip motion features as being documented by synchronous right-lateral dislocation of mountain ridges and rivers along it. It has displaced late Pleistocene to Holocene accumulations revealed by the exploratory trenches at Desheng and the site south of Changyi. Nearby Yanqu and Shiyan, there is a 3 km long,~2.5 m high fault scarp on the river terraces and the alluvial fans. It is estimated the fault has a average rate of 1.8~2.4 mm/yr. horizontally and 0.3~0.35 mm/yr. vertically since late Pleistocene, based on displaced magnitude of the alluvial fans, gullies and river terraces. It is a significant link which connects with the Honghe fault in the south and with the Jingshajiang fault in the north. Since late Cenozoic, the Weixi-Qiaohou fault in kinematics is similar to the Honghe fault and the Jinshajiang fault, they having identical geological evolutionary history and tectonic deformation mechanism, accordingly,indicating that the Weixi-Qiaohou fault should be the northern segment of the Honghe fault. The Weixi-Qiaohou, Honghe, Jinshajiang as well as Deqin-Zhongdian fault composed of the western boundary of Sichuan-Yunnan active block all together.
Weixi-Qiaohou fault; Sichuan-Yunnan block; Late Quaternary; dextral strike slip; slip rate
1006-6616(2016)03-0517-14
2016-04-09
国家自然科学基金项目(41472204);地震行业专项(201108001);中水顾问集团科技项目(GW-KJ-2011-10)
常祖峰(1966-),男,正研级高级工程师,主要从事地震地质和活动构造研究。E-mail:zufch@163.com
P546
A