张 毅,岳振峰,郭 文,2,吴绍精,沈金灿,肖陈贵,林 黎,华红慧,侯乐锡,易冰清
动物源性食品中药物多残留分析的研究进展
张 毅1,岳振峰1,郭 文1,2,吴绍精1,沈金灿1,肖陈贵1,林 黎1,华红慧1,侯乐锡1,易冰清1
(1.深圳出入境检验检疫局食品检验检疫技术中心,深圳市食品安全检测技术研发重点实验室,深圳 518045;2.深圳大学化学与环境工程学院,深圳 518060)
近年来食品安全检测领域的多残留分析方法在分析通量、成本和适用性方面显示了突出优势。动物源性样品基质复杂、兽药和迁移的农药残留的浓度很低,以多残留方式分析需要发展高效的样品前处理方法和高选择性的检测技术。由于色谱-质谱联用技术在多残留分析中有超过90%的应用,本文综述了近5 a来色谱-质谱检测的动物源性食品的多残留分析。
动物源性食品;农药;兽药;多残留;色谱-质谱联用技术
随着社会发展、人口增加和生活质量的提高,人类对高质量动物蛋白的需求日益增长。动物源食品在数量上满足消费者需求的同时其安全性却面临着诸多问题和挑战,例如规模化养殖提高了非治疗用药的比例、工业化增加了来自环境污染的隐患、现有检测技术无法应对层出不穷的药物和非法添加物等[1-2]。兽药、农药多残留分析(以下简称“多残留分析”)的任务是以一次分析过程同时获得多种(类)物质的化学组成和含量信息。尽管多残留分析在效率和成本方面十分具吸引力,但是需要解决不同理化性质物质的同时提取、净化、富集,确保灵敏度与单一残留分析没有显著降低,以及操作简便易行等问题。本文对近年来动物源性食品中药物残留样品前处理技术和检测手段方面开展的研究进行综述。
1.1 固相萃取(solid phase extraction,SPE)
多残留分析发展初期多以两种不同萃取机理的SPE串联以吸附多类目标化合物。例如C18和NH2柱顺序串联用于22 种合成激素的净化[3],但该方法的线性不佳,难以准确定量。Shimelis等[4]发现石墨化碳黑(graphite carbon black,GCB)/N-丙基乙二胺复合SPE柱比单用PSA柱去除基质中脂肪酸类杂质的效果更好。但由于两种填料净化机理不同却要在同一条件下萃取目标化合物,包括上样液、洗脱溶剂等实验条件都受到限制。传统的硅胶基反相C18柱适用于低极性和中等极性化合物的分离富集,如非甾体抗炎药、激素、氯霉素和杀虫剂[5-7]。近年发展起来的聚合物材料如聚苯二乙烯-N-吡咯烷酮(如亲水亲油平衡值(hydrophile-lipophile balance,HLB))、苯磺酸基键合阳离子交换树脂、季铵基键合阴离子交换树脂,兼有亲水-亲脂、反相萃取或离子交换作用,较C18柱有更宽的萃取化合物范围。例如猪肉中的四环素和喹诺酮仅需沉淀蛋白即可过HLB柱净化,比C18柱有更好的回收率和净化效果[8]。由于肝脏样品含有甘油三酯和脂肪酸,聚醚类和三嗪类结构的抗球虫类药物多残留检测采用碱性氧化铝除脂再用HLB萃取净化的效果要优于单用HLB[9]。禁用药物如β-受体激动剂、镇静剂最低执法限量(minimum required performance limits,MRPLs)小于1.0 μg/kg,采用反相萃取则氯丙嗪、地西泮、喷布特罗等弱极性药物在上样液中溶解不佳而回收率差,改用乙腈提取NH2柱正相萃取,净化效果和回收率得到改善[10]。然而为了使不同pKa的药物在SPE柱上保留和洗脱,上样液需要迁就最敏感的分析物,例如同时检测虾肉中土霉素、磺胺、喹诺酮、三苯甲烷类染料和妥曲珠利砜等18 种药物,要将pH值调节至3.2才能使染料和土霉素药物在SPE上同时保留,即使如此,孔雀石绿和妥曲珠利亚砜的回收率只有约10%[11]。尽管具有复合功能的SPE可用于近百种兽药多残留的样品前处理[12],但受到化合物理化性质差异影响,回收率差异较大,且通过优化条件提高回收率的空间有限。表1列出了SPE用于动物源食品中有机化学危害物多残留的样品前处理的主要文献。由于SPE的净化机理较为单一,难以满足理化性质差异较大的药物的同时净化、富集的需求。
表1 SPE在动物源食品药物多残留的样品前处理中的应用Table 1 Application of SPE as sample pretreatment procedure in multiresidue drug analysis of animal-derived foods
1.2 基质分散固相萃取(matrix solid phase dispersion,MSPD)
MSPD是一种通过研磨使样品在填料表面充分分散和固载,将混合物填装成柱,再以溶剂洗脱目标物的净化技术。MSPD技术关键在于样品经过研磨分散在吸附剂表面形成新的“层析层”,再以适当的溶剂洗脱目标化合物。对于多数弱极性化合物通常选择C18、C8或GCB吸附剂。Shao Bing等[21]比较了GCB、C18用于蛋、牛奶中双酚A(bisphenol A,BPA)、壬基酚(nonylphenol,NP)和辛基酚(octylphenol,OP)的萃取结果,发现GCB对于强极性的BPA吸附性强难以洗脱,导致GCB对于BPA的萃取效果比C18要差。对于弱 极性化合物如有机氯和多氯联苯类化合物,可采用弗罗里硅土研磨吸附再以二氯甲烷-正己烷(1∶1,V/V)洗脱,但后续需以离心进一步去除杂质[22]。以热水洗脱是MSPD的另一个发展趋势。Bogialli等[23]分别以不同温度热水洗脱氨基糖苷类和四环素类药物,发现水温高有利于大部分药物的洗脱回收,但是过高水温也导致部分分析物水解,需要在温度和回收率之间选择适当的平衡点。当分析物可在100 ℃水环境下稳定存在,MSPD的回收率和萃取效率常优于C18和液-液萃取净化法,且通过控制热水温度可减少内源性干扰物的共萃取[24]。MSPD仅需研磨、装柱和洗脱步骤即可同时分离多种分析物[25-28],但是对于动物源性样品中痕量药物多残留分析而言主要是初级净化作用,后续需增加凝胶渗透色谱(gel permeation chromatography,GPC)、体积排阻色谱(size exclusion chromat ography,SEC)等进一步净化。
1.3 分散固相萃取(dispersive solid phase extraction,d-SPE)与QuEChERS(Quick、Easy、Cheap、Effective、Rugged、Safe)
d-SPE与MSPD的区别是吸附剂分散于样品提取液而不是样品基质中进行净化。QuEChERS是一种由d-SPE发展来的新型样品前处理技术。QuECh ERS是以有机溶剂提取样品,再在含有药物的乙腈层中加入过量的盐和缓冲液进行液液萃取,有机相再以d-SPE方法净化。Dagnac等[29]以d-SPE方法实现了生鲜奶中44 种农药残留的提取净化,加标质量浓度为4 μg/L时,回收率为60%~113%,相对标准偏差为1%~15%。在对含脂肪样品(如蛋、奶等)的农药残留分析中,QuEChERS法比d-SPE法更高效,结果可信度更高[30]。Guo Bin等[31]采用d-SPE法净化农产品中的苯并咪唑类杀菌剂及其代谢产物,9 种不同基质中大部分目标化合物的回收率较好,平均回收率在70%~110%。QuEChERS技术在药物多残留分析中体现越来越多优势[32-34]。分别以SPE、MSPD和QuEChERS法提取和净化于花粉、蜂蜜中极性差异较大的多种药物残留,结果表明以SPE法的极性(如甲胺磷)和非极性(如六氯苯)化合物回收率较低,MSPD法的非极性化合物的回收率较差,而QuEChERS几乎可实现所有化合物都有较好的回收率[35]。Aguilera-Luiz等[36]用QuEChERS技术处理了以肉食为主的婴幼儿食品和婴幼儿配方奶粉中兽药多残留的检测。QuEChERS方法具有准确度高、分析速度快、操作 简便的优点,但存在低浓度的化合物分析回收较差的问题。本课题组以QuEChERS方法提取净化了包括硝基咪唑、β-受体激动剂、合成激素、氯霉素等五类40 种禁用药物,通过浓缩提取液提高方法灵敏度,与选择性强的液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)联用,方法性能满足欧盟残留分析要求[37]。
1.4 加速溶剂萃取(accelerated solvent extraction,ASE)
ASE是一种施加较高的温度和(或)压力来提高溶剂沸点、增加溶剂与样品接触面从而实现快速高效提取的技术。研究证明了ASE适用于提取动物肌肉、内脏中的β-内酰胺、大环内酯、喹诺酮、磺胺、四环素、硝基咪唑等31 种抗生素[38]。为使提取效率更高,通常需要借助干燥剂和分散剂来减少样品中残留的水分,促进提取溶剂在样品中的渗透和分散。中性(碱性)氧化铝、硅胶、弗罗里硅土、海砂是常用的固定相,Na2EDTA也被用于减少杂质金属离子对化合物的络合作用[39]。Herranz等[40]将匀浆的鸡蛋与硅藻土混合,以pH值为3.0的磷酸盐-乙腈(50∶50,V/V)作为提取溶剂,在1 500 psi和70 ℃条件下分别静态提取3 个5 min(平行提取5 min),恩诺沙星及其代谢物的提取回收率介于67%~90%之间,且无需进一步净化。提取溶剂对ASE的影响较大,分别比较了乙腈、正己烷-丙酮(2∶1,V/V)、环己烷-乙酸乙酯(1∶1,V/V)中萃取牛、猪、鸡和鱼肌肉109 种农药残留,结果表明3 种提取溶剂对目标化合物提取率总体差别不大,但乙腈提取液中的脂肪含量更低,共萃取杂质较少[41]。另一方面,以热水作为提取溶剂的加压萃取也引起人们的关注[38]。由于水的介电常数(极性)可以显著随温度升高而降低,因此在一定压力条件下热水(100~2 00 ℃)可以像有机溶剂一样对中等极性化合物的进行选择性提取。但该方法不适用于热不稳定型的化合物,如大环内酯[42]。Gentili等[43]将均质样品与C18吸附剂充分混合,在160 ℃、1 400 psi条件下以10 mL水静态提取5 min。将提取液在-18 ℃条件下冷却1 h以沉淀除去脂类杂质,无需进一步净化即可以LC-MS/MS检测。该方法实现了生肉和婴儿食品中14 种磺胺类药物的同时测定。尽管ASE技术在提取效率和环境友好方面具有明显的优势,但是其离线性、非批量处理和设备昂贵等因素也制约了它在多残留分析中的应用。
1.5 微波辅助萃取(microwave assistance extraction,MAE)
MAE是以微波透过样品内部使细胞从内部破裂,样品与溶剂充分接触,同时溶剂吸收微波能快速升温使得分析物快速进入到提取相的一种样品提取技术。当以极性较低的溶剂提取药物残留,如甲苯、醚类、乙酸乙酯、丙酮和乙腈等,进行微波萃取时微波能穿透样品基质而不发生任何耗散(萃取体系不被加热)。Akhtar[44]比较了乙醇-异丙醇(88∶12,V/V)的MAE和丙酮的常规提取对鸡蛋、鸡肉中的抗球虫药物的萃取效果。结果证明MAE提取效率更高、有机溶剂用量和耗时更少。Hermo等[15]以0.3%磷酸-乙腈(75∶25,V/V)为提取溶剂、施加4 min的微波,实现了猪肉中9 种喹诺酮的同时萃取,且与采用SPE提取净化的回收率无明显差距,但效率却大大提高。尽管MAE可实现在分子层面对样品基质进行高效萃取,但受到样品细胞被微波能爆破从而导致基质更复杂的影响和提取溶剂选择的限制,MAE未能在动物源性食品药物多残留分析方面有更多应用。
1.6 超临界流体萃取(supercritical fluid extraction,SFE)
SFE是一种以处于临界状态下的流体为提取溶剂,利用流体在临界点附近体系温度和压力的微小变化,使物质溶剂度发生几个数量级的突变性来实现对某些物质的 选择性提取和分离的技术。Pensabene等[45]采用SFE技术对鸡蛋中的氯霉素残留进行提取与净化,回收率为77.4%~86.6%。Dost等[46]通过填充塔超临界流体萃取-常压化学电离质谱法检测了牛奶中磺胺类药物残留。SFE技术具有处理样品速度快、效率高、无溶剂等优点,其缺点是实验条件的选 择和优化比较困难,可选 择的萃取体系较少。
样品前处理是有效减少杂质干扰,提高检测灵敏度和选择性,提高分析测定效率、改善和优化分析的重要环节。迄今为止,SFE技术因其稳定性、通用性和成本优势,占 据了同类药物多残留分析的主导地位;基质分散固相萃取和QuEChERS技术在多类药物多残留分析方面的应用逐渐扩大。超滤膜分离、ASE、MAE、SFE、分子印迹聚合物、固相微萃取、液相微萃取等技术在提升样品前处理效率、改善提取率和环境友好等方面均有各自优势,在多残留分析领域也有一定应用。研究者们需要根据关注的药物残留种类、样品基质复杂程度和检测手段的选择性来选择适合的样品前处理方法。
20世纪90年代,大气压电离技术(atmosphere pressure ionization,API)的出现成功解决了液相色谱与质谱间的接口问题,LC-MS在有机化合物定性定量分析方面一展 身手。迄今为止,运用经典的气相色谱-质谱(gas chromatography-mass spectrometry,GC-MS)和LC-MS技术能检测包括药物、毒素、添加剂、环境污染物等在内的90%以上的有机化合物,已成为食品安全领域的主流检测技术。
2.1 LC-MS/MS
LC-MS/MS技术已在动物源性食品,如肌肉[3,19,40,47-51]、内脏[8,10,18,25,35,39,52-53]、血液[5,54]、蛋[21,55]、奶[14,29,56-61]、海产品[62-64]、蜂蜜[65-66]等中多残留分析中有了较好的应用。已报道LC-MS/MS技术已在动物源食品中磺胺类、喹诺酮类、大环内酯类、β-内酰胺类、四环素类[7,38,48-49,63-65]抗生素、激素(合成激素、糖皮质激素、非甾体类激素等)[3,14,19,21,51,58-59]、农药类[7,29,61,66]、抗球虫和驱虫类药物[18,35,53,55]、β-受体阻断剂和镇静剂[62,65]、阿维菌素类[25,51]、硝基呋喃类[47]、非甾体类抗炎药[5,56]等药物多残留分析中有较好的应用。例如邓龙等[67]采用LC-MS/MS正负电离模式切换测定了鸡肉、牛肉和猪肉中的16 种氨基甲酸酯杀虫剂及其代谢物。Zhang Jing等[10]利用LC-MS/MS测定动物组织中β-受体阻断剂和镇静剂的多残留。该方法的优势在于能一次同时对猪肝、猪肾、猪肉和牛肉样品中的19 种β-受体阻断剂和11 种镇静剂进行筛查和确证,回收率在76.4%~118.6%之间。黎文茵等[20]使用LC-MS法检测鸡肝中全氟烷基酸(perfluoroalkyl acids,PFAs)的残留,定量极限(limit of quantification,LOQ)为0.014~0.213 μg/kg,该方法灵敏度高,且重现性好。Kaufmann等[68]使用LC-MS/MS检测多种基质(猪肉、鱼肉和牛肝脏及肾脏)中氨基糖苷类抗生素的残留。各个基质中的大部分化合物具有良好的回收率和相关系数。Deceuninck等[69]利用LC-MS/MS 对牛奶中20 种糖皮质激素进行测定。Meng Zhe等[70]同样也用LC-MS/MS法对牛奶中8 种氟喹诺酮、5 种磺胺类药和4 种乙酰基代谢产物进行检测。Hu Ting等[71]也采用LC-MS/MS正负电离模式同时检测了猪肉中30 种非甾体抗炎药的残留。Kung等[72]用LC-MS/MS对水产品中磺酰胺类多残留药物进行检测,CCα为1.49~ 10.90 μg/kg,CCβ为1.71~11.40 μg/kg。
2.2 液相色谱-四极杆线性离子阱质谱(liquid chromatography coupled to quadrupole linea r ion trap mass spectrometry,LC-Qtrap/MS)
Qtrap是一种选择性蓄积一定质量范围内的离子,再通过碰撞诱导裂解电压获得碎片的质谱技术。采用Qtrap技术可获得二级、三级甚至MSn的质谱碎片,大大增强质谱确证的准确性和选择性,且背景噪音很低,有利于提高多残留筛查的灵敏度和准确性。早期的半定量多残留方法采用“目标契合度(fit-to-purpose)”的理念,即比较未知样品与最低浓度质控样的峰面积(峰高)以及二级质谱匹配度。如Cepurnieks等[73]成功利用超高液相色谱法耦合的混合四极-高分辨率轨道阱质谱分析(ultra performance liquid chromatography coupled to hybrid quadrupole-high resolution orbitrap mass spectrometry,UPLC-Qtrap/MS)技术检测牛奶和肉类中26 种抗生素多残留药物,回收率为83%~112%。Li Hui等[11]采用LC-ACPI-Qtrap/MS技术同时半定量分析了虾肉中土霉素、磺胺、喹诺酮、三苯甲烷类染料和妥曲珠利砜等18 种药物。张鸿伟等[74]采用LC-Qtrap/MS测定了蜂蜜中7 种痕量硝基咪唑类药物及其代谢物,在5 min色谱分离后能检测痕量水平(0.1 μg/kg)的目标化合物。张鸿伟等[75]采用LC-Qtrap/MS同样方法测定了肌肉中16 种同化甾体激素的残留,一次进样就完成确证分析,方法快速、高效。与MS3相比,从QTrap-MS获得的离子更稳定,定量分析的偏差更小。但是这种高通量的验证手段得出的数据量较大,后续数据分析工作量很大。但对于复杂基质样品,在特征离子选择中,一方面需要排除基质干扰大的离子,另一方面离子阱在一定分辨率需求下,其扫描速率较慢,因此在相同的时间和扫描质量范围内,它的定量精度要比串联四极杆差。
2.3 液相色谱-飞行时间质谱(liquid chromatographytime-of- flight mass spectrometry,LC-TOF/MS)
TOF/MS的质量分析器是一个离子漂移管,利用离子加速后质量越大,到达接收 器所用时间越长,从而把不同质量的离子按m/z值大小进行分离[76]。早期的TOF因分辨率和 灵敏度低而较少应用于食品中危害物的分析中,随着LC-TOF/MS、液相色谱-四级杆/飞行时间质谱(liquid chromatography-quadrupole-time-of-flight mass spectrometry,LC-Q-TOF/MS)、LC-IT-TOF/MS技术的不断发展,在动物源性食品中有机化学危害物多残留的筛查分析中已有广泛应用[12-13,15,76-81]。例如Peters等[12]采用LC-TOF/MS检测了蛋、鱼和肉中的兽药残留。该方法的优势在于适用于多种复杂基质样品,能同时筛选12 类(苯并咪唑类、大环内酯类、青霉素类、喹诺酮类、磺胺类、四环素类、硝基咪唑类、镇静剂类、非甾体抗炎药、抗球虫类、离子载体类和氯霉素类),共100多种兽药残留。张洁等[82]建立了超高效液相色谱/高分辨飞行时间质谱法(ultra-performance liquid chromatography coupled with high resolution time-of-flight mass spectrometry,UPLC-HRTOF/MS)结合数据库检测乳制品中19 种抗生素的方法,该方法质量偏差小于5 mD。通过较窄的提取离子窗口降低了基质效应,避免假阴性检测结果,且同位素峰形匹配度高,使鉴定更准确,能同时对4 类(磺胺类、青霉素类、四环素类和大环内酯类)抗生素进行高通量筛查。虞锐鹏等[83]采用UPLC-Q-TOF/MS检测太湖水域鲤鱼、鲫鱼、河蚌、白虾、蛳螺等水产品中的微囊藻毒素和节球藻毒素,该方法分离时间短、相对标准偏差小,检出限(limit of detection,LOD)为5.0~10.0 μg/kg。张东雷等[84]建立LC-IT-TOF/MS检测肉制品中的10 种碱性染料。该方法通过离子阱飞行时间质谱进行多级质谱图分析,既可排除基质干扰、提高灵敏度达到准确定量,又可准确判断结果避免假阳性误判情况。LC-TOF/MS技术通过高分辨来去除基质干扰,能有效鉴别质量数非常接近的化合物,可以快速、高通量筛查目标或未知化合物超标的样品,但由于线性范围的局限性,TOF/MS技术的定量效果不如串联质谱。
LC-MS体现了色谱和质谱优势的互补,且由于大部分药物都适合以液-质联用进行分析具有选择性强、效率高和检测通量大等优点,在多残留分析的应用最为广泛。
2.4 气相色谱-质谱联用(gas chromatography-mass spectrometer,GC-MS/MS)
气相色谱-质谱联用仪是最早实现商品化的色谱联用仪器。包括GC-MS、GC-MS/MS、气相色谱-离子阱质谱(gas chromatography-ion trap mass spectrometry,GC-ITMS)、GC-TOF/MS在动物源性食品农药多残留分析中有着重要应用[32,42,85-86]。郑锋等[87]采用GC-MS法对河豚鱼、鳗鱼和虾中的191 种农药多残留进行测定,回收率为50.2%~120%。该方法操作简便,自动化程度高,重复性好,适用于水产品中上百种农药多残留的检测。Azzouz等[88]以GC-MS检测鸡蛋和蜂蜜中22 种药物。该方法可检测到鸡蛋和鹌鹑蛋中水平为0.095~2.7 μg/kg的氟苯尼考、乙嘧啶、雌激素酮和17β-雌二醇。Munaretto等[89]采用GC-MS/MS技术检测鱼肉样品中的农药多残留物质。汪洋等[90]采用GC×GC-TOF-MS对鱼肉中的含卤有机污染物进行定性和定量的筛查,该方法能定性分析到GC-MS法难以辨识的化合物,准确性高,但该方法的前处理操作耗时。由于GC-MS 分析样品时必须经过气化,对于热不稳定、极性和大分子化合物检测受到限制。
目前,动 物源性食品有机化学危害物多残留分析方法仍不能完全同时兼顾化合物范围大、灵敏度高和操作简便。发展高效、通用型样品前处理技术与高通量、高选择检测方法是这一领域的发展趋势。在样品前处理技术中发展以化合物的物理化学共性进行“门槛式”的选择,例如可选择某个范围分子质量的超滤膜技术,可富集特定官能团化合物的分散液-液微萃取技术以及基于新型吸附材料的QuChERS技术等。在扩大检测化合物范围方面,色谱-质谱联用 技术、高分辨-串联质谱技术作为多残留检测的主流分析方法有以下发展趋势:新型填料技术的色谱柱和分离方法的应用使得检测的目标化合物范围更宽,研发混合离子源以扩大可离子化的化合物范围,发展直接电离技术无需色谱分离而直接离子化后进行质谱分析。研发适用于高分辨质谱筛查检测技术高效的分析软件,从海量的基础数据中快速、准确地得出检测结果,将使得多残留分析在质量和效率上达到新的层次。动物源性食品有机化学危害物多残留检测技术的发展很快,相关法规、标准也不断完善,其应用范围和层次也不断提升,对维护食品安全和人类健康有着重要的意义。
[1] GROS M, PETROVIC M, BARCELO D. Multi-residue analytical methods using LC-tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: a review[J]. Analytical B ioanalytical Chemistry, 2006, 386(4): 941-952. DOI:10.1007/s00216-006-0586-z.
[2] MARAZUELA M D, BOGIALLI S. A review of novel strategies of sample preparation for the determination of antibacterial residues in foodstuffs using liquid chromatography-based analytical methods[J]. Analytica Chimica Acta, 2009, 645(1/2): 5-17. DOI:10.1016/ j.aca.2009.04.031.
[3] BLASCO C, POUCKE C V, PETEGHEM C V. Analysis of meat samples for anabolic steroids residues by liquid chromatography/ tandem mass spectrometry[J]. Journal of Chromatography A, 2007, 1154(1/2): 230-239. DOI:10.1016/j.chroma.2007.03.090.
[4] SHIMELIS O, YANG Y H, STENERSON K, et al. Evaluation of a solid-p hase ext raction dual-layer carbon/primary secondary amine for clean-up of fatty acid matrix components from food extracts in multiresidue pesticide analysis[J]. Journal of Chromatography A, 2007, 1165(1/2): 18-25. DOI:10.1016/j.chroma.2007.07.037.
[5] VINCI F, FABBROCINO S, FIORI M, et al. Determination of fourteen non-steroidal anti-inflammatory drugs in animal serum and plasma by liquid chromatography/mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2006, 20(22): 3412-3420. DOI:10.1002/rcm.2748.
[6] XU C L, CHU X G, PENG C F, et al. Development of a faster determination of 10 anabolic steroids residues in animal muscle tissues by liquid chromatography tandem mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(2): 616-621. DOI:10.1016/j.jpba.2005.11.033.
[7] TIAN H Z. Determination of chloramphenicol, enrofloxacin and 29 pesticides residues in bovine milk by liquid chromatographytandem mass spectrometry[J]. Chemosphere, 2011, 83(3): 349-355. DOI:10.1016/j.chemosphere.2010.12.016.
[8] SHAO B, JI A X F, WU Y N, et al. Multi-class confirmatory method for analyzing trace levels of tetracyline and quinolone antibiotics in pig tissues by ultra-performance liquid chromatography coupled with tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(21): 3487-3496. DOI:10.1002/rcm.3236.
[9] OLEJNIK M, SZPRENGIER-JUSZKIEWICZ T, JEDZINIAK P. Multi-residue confirmatory method for the determination of twelve coccidiostats in chicken liver using liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2 009, 1216(46): 8141-8148. DOI:10.1016/j.chroma.2009.04.097.
[10] ZHANG J, SHAO B, YIN J, et al. Simultaneous detection of residues of beta-adrenergic receptor blockers and sedatives in animal tissues by high-performance liquid chromatography/tandem mass spectrometry[J]. Journal of Chromatography B, 2009, 877(20/21): 1915-1922. DOI:10.1016/j.jchromb.2009.05.025.
[11] LI H, KIJAK P J, SHERRI B, et al. Analysis of veterinary drug residues in shrimp: a multi-class method by liquid chromatographyquadrupole ion trap mass spectrometry[J]. Journal of Chromatography B, 2006, 836(1/2): 22-38. DOI:10.1016/j.jchromb.2006.03.025.
[12] PETERS R J B, BOLCK Y J C, RUTGERS P, et al. Multi-residue screening of veterinary drugs in egg, fish and meat using highresolution liquid chromatography accurate mass time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(46): 8206-8216. DOI:10.1016/j.chroma.2009.04.027.
[13] MARCHESINI G R, HAASNOOT W, DELAHAUT P, et al. Dual biosensor immunoassay-directed identification of fluoroquinolones in chicken m uscle b y liquid chromatography electrospray time-of-flight mass spectrometry[J]. Analytica Chimica Acta, 2007, 586(1/2): 259-268. DOI:10.1016/j.aca.2006.11.013.
[14] MCDONALD M, GRANELLI K, SJOBERG P. Rapid multiresidue method for the quantitative determination and confirmation of glucocorticosteroids in bovine milk using liquid chromatographyelectrospray ionization-tandem mass spectrometry[J]. Analytica Chimica Acta, 2007, 588(1): 20-25. DOI:10.1016/j.aca.2007.01.075.
[15] HERMO M P, BARRON D, BARBOSA J. Determination of multiresidue quinolones regulated by the European Union in pig liver samples high-resolution time-of-flight mass spectrometry versus tandem mass spectrometry detection[J]. Journal of Chromatography A, 2008, 1201(1): 1-14. DOI:10.1016/j.chroma.2008.05.090.
[16] LI C, JIANG H Y, ZHAO S J, et al. Simultaneous determination of fluoroquinolones and sulfonamides in chicken muscle by LC with fluorescence and UV detection[J]. Chromatographia, 2008, 68(1/2): 117-121. DOI:10.1365/s10337-008-0664-9.
[17] TURNIPSEED S B, ANDERSEN W C, KARBYWNYK C M, et al. Multi-class, multi-residue liquid chromatography/tandem mass spectrometry screening and confirmation methods for drug residues in milk[J]. Rapid Communications Mass Spectrometry, 2008, 22(10): 1467-1480. DOI:10.1002/rcm.3532.
[18] BOHM D A, STACHEL C S, GOWIK P. Multi-method for the determination of antibiotics of different substance groups in milk and validation in accordance with commission decision 2002/657/EC[J]. Journal of Chromatography A, 2009, 1216(46): 8217-8223. DOI:10.1016/j.chroma.2009.06.058.
[19] VANHAECKE L, BUSSCHE J V, WILLE K, et al. Ultra-high performance liquid chromatography-tandem mass spectrometrometry in high-throughput confirmation and quantification of 34 anabolic steroids in bovine muscle[J]. Analytica Chimica Acta, 2011, 700(1/2): 70-77. DOI:10.1016/j.aca.2010.10.006.
[20] 黎文茵, 岳振峰, 郑宗坤, 等. 鸡肝中15种全氟烷基酸的液相色谱-串联质谱法分析[J]. 食品安全质量检测学报, 2014(1): 210-218.
[21] SHAO B, HAN H, TU X M, et al. Analysis of alkylphenol and bisphenol A in eggs and milk by matrix solid phase dispersion extraction and liquid chromatography with tandem mass spectrometry[J]. Journal of Chromatography B, 2007, 850(1/2): 412-416. DOI:10.1016/j.jchromb.2006.12.033.
[22] AKSOY A, DAS Y K, YAVUZ O, et al. Organoc hlorine pesticide and polychlorinated biphenyls levels in fish and mussel in van region, Turkey[J]. Bull Environmental Contamination and Toxicology, 2011, 87(1): 65-69. DOI:10.1007/s00128-011-0286-z.
[23] BOGIALLI S, CURINI R, CORCIA A D, et al. Simple confirmatory assay for analyzing residues of aminoglycoside antibiotics in bovine milk: hot water extraction followed by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2005, 1067(1/2): 93-100. DOI:10.1016/j.chroma.2004.10.033.
[24] BOGIALLI S, BRUNO M, CURINI R, et al. Simple assay for analyzing five microcystins and nodularin in fish muscle tissue: hot water extraction followed by liquid chromatography: tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2005, 53(17): 6586-6592. DOI:10.1021/jf050257m.
[25] BARKER S. Matrix solid phase dispersion(MSPD)[J]. Journal of Biochemistry and Biophysical Methods, 2007, 38(26): 151-162. DOI:10.1016/j.jbbm.2006.06.005.
[26] BOGIALLI S, CORCIA A D. Matrix solid-phase dispersion as a valuable tool for extracting contaminants from food stuffs[J]. Journal of Biochemistry and Biophysical Methods, 2007, 70(2): 163-179. DOI:10.1016/j.jbbm.2006.07.007.
[27] KINSELLA B, O’MAHONY J, MALONE E, et al. Current trends in sample preparation for growth promoter and veterinary drug residue analy sis[J]. Journal of Chromatography A, 2009, 1216(46): 7977-8015. DOI:10.1016/j.chroma.2009.09.005.
[28] VALSAMAKI V I, BOTI V I, SAKKAS V A, et al. Determination of organochlorine pesticides and polychlorinated biphenyls in chicken eggs by matrix solid phase dispersion[J]. Analytica Chimica Acta, 2006, 573(1): 195-201. DOI:10.1016/j.aca.2006.03.050.
[29] DAGNAC T, GARCIA-CHAO M, PULLEIRO P, et al. Dispersive solid-phase extraction followed by liquid chromatography-tandem mass spectrometry for the multi-residue analysis of pesticides in raw bovine milk[J]. Journal of Chromatography A, 2009, 1216(18): 3702-3709. D OI:10.1016/j.chroma.2009.02.048.
[30] CHOI S, KIM S, SHIN J Y, et al. Development and verification for analysis of pesticides in eggs and egg products using QuEChERS and LC-MS/MS[J]. Food Chemistry, 20015, 173(173): 1236-1242. DOI:10.1016/j.foodchem.2014.10.143.
[31] GUO B, HUANG Z Q, WANG M L, et al. Simultaneous direct analysis of benzimidazole fungicides and relevant metabolites in agricultural products based on multifunction dispersive solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(29): 4796-4807. DOI:10.1016/ j.chroma.2010.05.025.
[32] RAWN D F K, JUDGE J, ROSCOE V. Application of the QuEChERS method for the analysis of pyrethrins and pyrethroids in fish tissues[J]. Analytical and Bioanalytical Chemistry, 397(6): 2525-2531. DOI:10.1007/s00216-010-3786-5.
[33] GEORGAKOPOULOS P, ZACHARI R, MATARAGAS M, et al. Optimisation of octadecyl (C18) sorbent amount in QuEChERS analytical method for the accurate organophosphorus pesticide residues determination in low-fatty baby foods with response surface methodology[J]. Food Chemistry, 2011, 128(2): 536-542. DOI:10.1016/j.foodchem.2011.03.042.
[34] KEEGAN J, WHELAN M, DANAHER M, et al. Benzimidazole carbamate residues in milk: detection by surface plasmon resonancebiosensor, using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method for extraction[J]. Analytica Chimica Acta, 2009, 654(2): 111-119. DOI:10.1016/j.aca.2009.09.028. [35] WIEST L, BULETE A, GIROUD B, et al. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatogr aphy coupled with mass spectrometric detection[J]. Journal of Chromatography A, 2011, 121 8(34): 5743-5756. DOI:10.1016/j. chroma.2011.06.079.
[36] AGUILERA-LUIZ M M, VIDAL J L M, ROMERO-GONZALEZ R, et al. Multiclass method for fast determination of veterinary drug residues in baby food by ultra-high-performance liquid chromatography-andem mass spectrometry[J]. Food Chemistry, 2012, 132(4): 2171-2180. DOI:10.1016/j.foodchem.2011.12.042.
[37] 张毅, 岳振峰, 蓝芳, 等. 分析化学,分散固相萃取净化与液相色谱-串联质谱法测定牛奶中的8类禁用药物残留[J]. 分析化学, 2012, 40(5): 724-729. DOI:10.3724/SP.J.1096.2012.11093.
[38] CARRETERO V, BLASCO C, PICO Y. Multi-class determination of antimicrobials in meat by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1209(1/2): 162-173. DOI:10.1016/ j.chroma.2008.09.011.
[39] AGUILERA-LUIZ M M, VIDAL J L M, ROMERO-GONZALEZ R, et al. Multi-residue determination of veterinary drugs in milk by ultrahigh-pressure liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1205(1/2): 10-16. DOI:10.1016/ j.chroma.2008.07.066.
[40] HERRANZ S, MORENO-BONDI M C, MARAZUELA M D. Development of a new sample pretreatment procedure based on pressurized liquid extraction for the determination of fluoroquinolone residues in table eggs[J]. Journal of Chromatography A, 2007, 1140(1/2): 63-70. DOI:10.1016/j.chroma.2006.11.058.
[41] WU G, BAO X X, ZHAO S H, et al. Analysis of multi-pesticide residues in the foods of animal origin by GC-MS coupled with accelerated solvent extraction and gel permeation chromatography cleanup[J]. Food Chemistry, 2011, 126(2): 646-654. DOI:10.1016/ j.foodchem.2010.10.105.
[42] HUEBRA M J G, BORDIN U V G, RODRIGUEZ A R. Determination of macrolide antibiotics in porcine and bovine urine by high-performance liquid chromatography coupled to coulometric detection[J]. Analytical and Bioanalytical Chemistry, 2005, 382(2): 433-439. DOI:10.1007/s00216-004-2951-0.
[43] GENTILI A. LC-MS methods for analyzing anti-inflammatory drugs in animal-food products[J]. Trends in Analytical Chemistry, 2007, 26(6): 595-608. DOI:10.1016/j.trac.2007.01.013.
[44] AKHTAR H. Comparison of microwave assisted extraction with conventional (homogenization, vortexing) for the determination of incurred salinomycin in chicken eggs and tissues[J]. Journal of Environmental Science and Health: Part B, 2005, 39(5/6): 835-844. DOI:10.1081/LESB-200030890.
[45] PENSABENE J W, FIDDLER W, DONOGHUE D J. Isolation of chloramphenicol from whole eggs by supercritical fluid extraction with in-line collection[J]. Journal of AOAC International, 1999, 82(6): 1334-1339.
[46] DOST K, JONES D C, DAVIDSON G. Determination of sulfonamides by packed column supercritical fluid chromatography with atmospheric pressure chemical ionization mass spectrometric detection[J]. Analyst, 2000, 125(7): 1243-1247. DOI:10.1039/B002823L.
[47] VERDON E, COUEDOR P, SANDERS P. Multi-residue monitoring for the simultaneous determination of five nitrofurans (furazolidone, furaltadone, nitrofurazone, nitrofurantoine, nifursol) in poultry muscle tissue through the detection of their five major metabolites (AOZ, AMOZ, SEM, AHD, DNSAH) by liquid chromatography coupled to electrospray tandem mass spectrometry-In-house validation in line with Commission Decision 657/2002/EC[J]. Analytica Chimica Acta, 2007, 586(1/2): 336-347. DOI:10.1016/j.aca.2007.01.024.
[48] GRANELLI K, BRANZELL C. Rapid multi-residue screening of antibiotics in muscle and kidney by liquid chromatography-electrospray ionization-tandem mass spectrometry[J]. Analytica Chimica Acta, 2007, 586(1/2): 289-295. DOI:10.1016/j.aca.2006.12.014.
[49] BLASCO C, CORCIA A D, PICO Y. Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry[J]. Food Chemistry, 2009, 116(4): 1005-1012. DOI:10.1016/j.foodchem.2009.03.055.
[50] GRANELLI K, ELGERUD C, LUNDSTROM A, et al. Rapid multiresidue analysis of antibiotics in muscle by liquid chromatographytandem mass spectrometry[J]. Analyica Chimica Acta, 2009, 637(1/2): 87-91. DOI:10.1016/j.aca.2008.08.025.
[51] KAUFMANN A, BUTCHER P, MADEN K, et al. Quantification of anthelmintic drug residues in milk and muscle tissues by liquid chromatography coupled to orbitrap and liquid chromatography coupled to tandem mass spectrometry[J]. Talanta, 2011, 85(2): 991-1000. DOI:10.1016/j.talanta.2011.05.009.
[52] BOGIALLI S, D’ASCENZO G, CORCIA A D, et al. Monitoring quinolone antibacterial residues in bovine tissues: extraction with hot water and liquid chromatography coupled to a single- or triplequadrupole mass spectrometer[J]. Rapid Communications in Mass Spectrometry, 2007, 21(17): 2833-2842. DOI:10.1002/rcm.3155.
[53] CALDOW M, SHARMAN M, KELLY M. Multi-residue determination of phenolic and salicylanilide anthel mintics and related compounds in bovine kidney by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(46): 8200-8205. DOI:10.1016/j.chroma.2009.04.008.
[54] VANDENBROUCKE V, DESMET N, BACKER P D, et al. Multiresidue analysis of eight anticoagulant rodenticides in animal plasma and liver using liquid chromatography combined with heated electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography B, 2008, 869(1/2): 101-110. DOI:10.1016/ j.jchromb.2008.05.011.
[55] DUBREIL-CHENEAU E, BESSIRAL M, ROUDAUT B, et al. Validation of a multi-residue liquid chromatography-tandem mass spectrometry confirmatory method for 10 anticoccidials in eggs according to Commission Decision 2002/657/EC[J]. Journal of Chromatography A, 2009, 1216(46): 8149-8157. DOI:10.1016/ j.chroma.2009.04.048.
[56] GALLO P, FABBROCINO S, VINCI F, et al. Confirmatory identification of sixteen non-steroidal anti-inflammatory drug residues in raw milk by liquid chromatography coupled with ion trap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2008, 22(6): 841-854. DOI:10.1002/rcm.3430.
[57] SHAO B, ZHANG J, YANG Y, et al. Simultaneous analysis of thirteen diuretics residues in bovine milk by ultra-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2008, 22(21): 3427-3433. DOI:10.1002/ rcm.3740.
[58] MALONE E M, DOWLING G, ELLIOTT C T, et al. Development of a rapid, multi-class method for the confirmatory analysis of antiinflammatory drugs in bovine milk using liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(46): 8132-8140. DOI:10.1016/j.chroma.2009.04.078.
[59] XIA X, LI X W, DING S Y, et al. Ultra-high-pressure liquid chromatography-tandem mass spectrometry for the analysis of six resorcylic acid lactones in bovine milk[J]. Journal of Chromatography A, 2009, 1216(12): 2587-2591. DOI:10.1016/j.chroma.2009.01.033.
[60] MALONE E M, ELLIOTT C T, KENNEDY D G, et al. Rapid confirmatory method for the determination of sixteen synthetic growth promoters and bisphenol A in bovine milk using dispersive solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B, 2010, 878(15/16): 1077-1084. DOI:10.1016/j.jchromb.2010.03.012.
[61] AGUILERA-LUIZ M M, PLAZA-BOLANOS P, ROMEROGONZALEZ R, et al. Comparison of the efficiency of different extraction methods for the simultaneous determination of mycotoxins and pesticides in milk samples by ultra high-performance liquid chromatography-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2011, 399(8): 2863-2875. DOI:10.1007/ s00216-011-4670-7.
[62] WANG M L, GUO B, HUANG Z Q, et al. Improved compatibility of liquid chromatography with electrospray tandem mass spectrometry for tracing occurrence of barbital homologous residues in animal tissues[J]. Journal of Chromatography A, 2010, 1217(17): 2821-2831. DOI:10.1016/j.chroma.2010.02.042.
[63] DASENAKI M E, THOMAIDIS N S. Multi-residue determination of seventeen sulfonamides and five tetracyclines in fish tissue using a multi-stage LC-ESI-MS/MS approach based on advanced mass spectrometric techniques[J]. Analytica Chimica Acta, 2010, 672(1/2): 93-102. DOI:10.1016/j.aca.2010.04.034.
[64] JO M R, JUNG L H, LEE T S, et al. Simultaneous determination of macrolide residues in fish and shrimp by liquid chromatographytandem mass spectrometry[J]. Food Science Biotechnology, 2011, 20(3): 823-827. DOI:10.1007/s10068-011-0114-6.
[65] YVES-ALEXIS H, RAYANE M, ERIC G, et al. Multi-screening approach to monitor and quantify 42 antibioticresidues in honey by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1177(1): 58-76. DOI:10.1016/ j.chroma.2007.10.112.
[66] KUJAWSKI M W, NAMIESNIK J. Levels of 13 multi-class pesticide residues in Polish honeys determined by LC-ESI-MS/MS[J]. Food Control, 2011, 22(6): 914-919. DOI:10.1016/j.foodcont.2010.11.024.
[67] 邓龙, 郭新东, 何强, 等. 高效液相色谱-串联质谱法测定动物肌肉组织中氨基甲酸酯类杀虫剂及其代谢物残留[J]. 食品科学, 2012, 33(4): 209-213. DOI:1002-6630(2012)04-0209-05.
[68] KAUFMANN A, BUTCHER P, MADEN K. Determination of aminoglycoside residues by liquid chromatography and tandem mass spectrometry in a variety of matrices[J]. Analytica Chimica Acta, 2012, 711(2): 46-53. DOI:10.1016/j.aca.2011.10.042.
[69] DECEUNINCK Y, BICHON E, MONTEAU F, et al. Fast and multiresidue determination of twenty glucocorticoids in bovine milk using ultra high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1294(11): 76-86. DOI:10.1016/j.chroma.2013.04.019.
[70] MENG Z, SHI Z H, LIANG S X, et al. Residues investigation of fluoroquinolones and sulphonamides and their metabolites in bovine milk by quantification and confirmation using ultra-performance liquid chromatography-tandem mass spectrometry[J]. Food Chemistry, 2015, 174: 597-605. DOI:10.1016/j.foodchem.2014.11.067.
[71] HU T, PENG T, LI X J, et al. Simultaneous determination of thirty non-steroidal anti-inflammatory drug residues in swine muscle by ultra-high-performance liquid chromatography with tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1219(1): 104-113. DOI:10.1016/j.chroma.2011.11.009.
[72] KUNG T A, TSAI C W, KU B C, et al. A generic and rapid strategy for determining trace multiresidues of sulfonamides in aquatic products by using an improved QuEChERS method and liquid chromatography-electrospray quadrupole tandem mass spectrometry[J]. Food Chemistry, 2015, 175: 189-196. DOI:10.1016/ j.foodchem.2014.11.133.
[73] CEPURNIEKS G, RJABOVA J, ZACS D, et al. The development and validation of a rapid method for the determination of antimicrobial agent residues in milk and meat using ultra performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102: 184-192. DOI:10.1016/j.jpba.2014.09.005.
[74] 张鸿伟, 简慧敏, 林黎明, 等. 液相色谱-四极杆/离子阱质谱快速测定蜂蜜中痕量硝基咪唑类药物及其代谢物残留[J]. 分析测试学报, 2012(7): 763-770. DOI:10.3969/j.issn. 1004-4957.2012.07.002.
[75] 张鸿伟, 蔡雪, 林黎明, 等. 液相色谱-四极杆/离子阱质谱同时确证和测定肌肉中16种同化甾体激素残留[J]. 色谱, 2012(10): 991-1001. DOI:10.3724/SP.J.1123.2012.08017.
[76] BOCXLAER J F, CASTEELE S R, POUCKE C J, et al. Confirmation of the identity of residues using quadrupole time-of-flight mass spectrometry[J]. Analytica Chimica Acta, 2005, 529(1): 65-73. DOI:10.1016/j.aca.2004.07.018.
[77] SU A K, LIU J T, LIN C H. Rapid drug-screening and quantitation of 3,4-methylenedioxymethamphetamine in urine by MALDI-TOF mass spectrometry[J]. Analytica Chimica Acta, 2005, 546(2): 193-198. DOI:10.1016/j.aca.2005.05.017.
[78] KAUFMANN A, BUTCHER P, MADEN K, et al. Development of an improved high resolution mass spectrometry based multi-residue method for veterinary drugs in various food matrices[J]. Analy tica Chimica Acta, 2011, 700(1/2): 86-94. DOI:10.1016/j.aca.2010.11.034.
[79] THURMAN E M, FERRER I, ZWEIGENBAUM J A. LC/TOF MS分子特征数据库检索方法进行食品中600种农药的自动筛选[J]. 食品安全质量检测学报, 2010(3):140-148.
[80] 陈德莹, 徐继林, 严小军. 膨化食品中三聚氰胺及其类似物的UPLCQ-TOF-MS分析[J]. 宁波大学学报(理工版), 2010, 23(1): 23-28. DOI:10.3969/j.issn.1001-5132.2010.01.005.
[81] NOTARI S, MANCONE C, TRIPODI M, et al. Determination of anti-HIV drug concentration in human plasma by MALDI-TOF/TOF[J]. Journal of Chromatography B, 2006, 833(1): 109-116. DOI:10.1016/ j.jchromb.2006.02.010.
[82] 张洁, 严丽娟, 潘晨松, 等. 超高效液相色谱/高分辨飞行时间质谱法同时检测 乳制品中19种抗生素[J]. 色谱, 2012(10): 1031-1036. DOI:10.3724/SP.J.1123.2012.06026.
[83] 虞锐鹏, 陶冠军, 杨健, 等. 超高效液相色谱-四极杆-飞行时间质谱法快速测定水产品中微囊藻毒素和节球藻毒素[J]. 分析试验室, 2012(1): 80-83. DOI:10.3969/j.issn.1000-0720.2012.01.019.
[84] 张东雷, 汪丽娜, 陈小珍, 等. 超快速液相色谱-离子阱飞行时间质谱法测定肉制品中10种碱性染料[J]. 色谱, 2012(8): 770-776. DOI:10.3724/SP.J.1123.2012.04001.
[85] SANTOS T F S, AQUINO A, DOREA H S, et al. MSPD procedure for determining buprofezin, tetradifon, vinclozolin, and bifenthrin residues in propolis by gas chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2008, 390(5): 1425-1430. DOI:10.1007/ s00216-007-1813-y.
[86] WIEST L, BULETE A, GIROUD B, et al. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection[J]. Journal of Chromatography A, 2011, 1218(34): 5743-5756. DOI:10.1016/ j.chroma.2011.06.079.
[87] 郑锋, 庞国芳, 李岩, 等. 凝胶渗透色谱净化气相色谱-质谱法检测河豚鱼、鳗鱼和对虾中191种农药残留[J]. 色谱, 2009(5): 700-710. DOI:10.3321/j.issn:1000-8713.2009.05.023.
[88] AZZOUZ A, BALLESTEROS E. Multiresidue method for the determination of pharmacologically active substances in egg and honey using a continuous solid-phase extraction system and gas chromatography-mass spectrometry[J]. Food Chemistry, 2015, 178(1): 63-69. DOI:10.1016/j.foodchem.2015.01.044.
[89] MUNARETTO J S, FERRONATO G, RIBEIRO L C, et al. Development of a multiresidue method for the determination of endocrine disrupters in fish fillet using gas chromatography-triple quadrupole tandem mass spectrometry[J]. Talanta, 2013, 116(22): 827-834. DOI:10.1016/j.talanta.2013.07.047.
[90] 汪洋, 于志强, 罗湘凡, 等. 全二维气相色谱/飞行时间质谱法定性筛查鱼肉组织中含卤有机污染物[J]. 分析化学, 2012, 40(8): 1187-1193. DOI:10.3724/SP.J.1096.2012.11315.
Progress in Multiresidue Analysis of Veterinary Drugs in Foods of Animal Origin
ZHANG Yi1, YUE Zhenfeng1, GUO Wen1,2, WU Shaojing1, SHEN Jincan1, XIAO Chengui1, LIN Li1, HUA Honghui1, HOU Lexi1, YI Bingqing1
(1. Shenzhen Key Laboratory of Detection Technology R&D on Food Safety, Food Inspection Cente r of Shenzhen Enter-Exit Inspection and Quarantine Bureau, Shenzhen 518045, China; 2. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China)
In recent years, multiresidue drug analysis in the field of food safety shows outstanding advantages such as highthroughput detection, low cost and wide applicability. Animal-derived matrices are complicated, in which the concentration of residual veterinary drugs and migrating pesticides is very low. The development of efficient sample processing and high-sensitivity detection methods is highly necessary for the application of multiresidue drug analysis. Chromatography combined with mass spectrometry has been utilized for 90% of multiresidue drug analysis. In this article, we summarize the progress made in the development of sample pretreatment and analytical methods used for multi-residual drug analysis in foods of animal original by chromatography-mass spectrometry over the last five years.
animal-derived foods; pesticides; veterinary drug; multiresidues; chromatography-mass spectrometry
10.7506/spkx1002-6630-201601038
O656.22
A
1002-6630(2016)01-0213-09
张毅, 岳振峰, 郭文, 等. 动物源性食品中药物多残留分析的研究进展[J]. 食品科学, 2016, 37(1): 213-221. DOI:10.7506/ spkx1002-6630-201601038. http://www.spkx.net.cn
ZHANG Yi, YUE Zhenfeng, GUO Wen, et al. Progress in multiresidue analysis of veterinary drugs in foods of animal origin[J]. Food Science, 2016, 37(1): 213-221. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201601038. http://www.spkx.net.cn
2015-02-27
国家自然科学基金青年科学基金项目(21107074);深圳市基础研究项目(JCYJ2012061872144497)
张毅(1980—),女,高级工程师,博士,研究方向为色谱质谱分析、样品前处理和食品理化检测。E-mail:sparkzy@163.com