明文勇 ,段 琦,亢建平,韩 升,张 伟,吕 剑
(1.山东华安新材料有限公司, 山东 淄博 255300;2. 西安近代化学研究所, 陕西 西安 710065)
1,4-丁二醇反应研究进展
明文勇1,段 琦1,亢建平2,韩 升2,张 伟2,吕 剑2
(1.山东华安新材料有限公司, 山东 淄博 255300;2. 西安近代化学研究所, 陕西 西安 710065)
本文对1,4-丁二醇的概况、可参与的反应及其下游产品进行了详细综述。
1,4-丁二醇 反应 应用
1,4-丁二醇是一种重要的的有机和精细化工原料,其衍生物更是附加价值高的精细化工产品,广泛应用于医药、化工、纺织、造纸、汽车和日用化工等领域。由于1,4-丁二醇结构中含有两个活泼羟基,决定了其化学性质较活泼,可参与多种反应,本文对1,4-丁二醇参与的各类反应进行综述。
1,4-丁二醇(简称BDO)是一种重要的有机和精细化工原料,英文名为1,4-butanediol,CAS号为110-63-4,无色粘稠状液体。我国BDO产能的增加速度远超过市场需求的增长速度,BDO产能过剩问题严重。近年来,由于对它的下游产品需求量增长很快,且它的衍生物新用途也正在不断地延伸和拓展,需求量也在不断扩大,因此加强它的下游产品的开发迫在眉睫。
1,4-丁二醇是典型的二元醇,结构中含有两个活泼羟基,决定了其化学性质较活泼,可参与多种反应。根据其参与反应的类型可分为氧化反应、取代反应、硝基化反应、脱水反应、脱氢反应、聚合反应等,如图1所示。
2.1 氧化反应
Shahriar等[1-2]等采用R3NH[CrO3F]、R3NH[CrO3Cl]为氧化剂实现了微波室温条件下选择性氧化1,4-丁二醇中的一个醇基为醛基。Thomas等[3]采用COCl2为氧化剂, DMSO为溶剂将1,4-丁二醇中的两个醇基同时氧化为醛基,收率为80%。Svetlakov等[4]采用HNO3为氧化剂, 在25~30℃条件下将1,4-丁二醇氧化为1,4-丁二酸,收率90%。Atsushi等[5]在光照条件下使1,4-丁二醇发生需氧氧化生成乳醇,收率86%。Huang等[6]采用Au/γ-AlOOH 和 Au/γ-Al2O3为催化剂,氧气为氧化剂,将1,4-丁二醇氧化为γ-丁内酯,重点考察了载体表面酸性、金离子尺寸对催化活性的影响。
2.2 取代反应
1,4-丁二醇末端羟基可被卤原子[7](氟、氯、溴、碘、叠氮)等基团取代,生成相应的氯代烷烃。Swati等[8-9]报道在HBr、 H2O存在下100℃, 48 h条件下, 以88%的收率得到1,4-二溴丁烷。Schunck等[10]报道在HBr、 H2O存在下苯为溶剂回流12h得到单取代产物4-溴丁醇,收率68%。Dzhemilev等[11]报道在高压釜中以1,4-丁二醇为原料,Mo(CO)6为催化剂, CCl4为溶剂, 140℃,3 h条件下得到含氯单取代产物4-氯丁醇,收率为98%。Ding等[12]以1,4-丁二醇为原料经溴代、叠氮化两步反应得到4-叠氮丁醇。Wolfgang等[13]采用光气在HCl、DMF存在下以98%的收率获得双取代产物1,4-二氯丁烷。Berridge,等[14]报道以1,4-丁二醇为原料经四步反应得含氟单取代产物4-氟丁醇。Ferreri等[15]以1,4-丁二醇、碘甲烷为原料,PdCl2为催化剂以96%的收率获得1,4-二碘丁烷。
2.3 硝基化反应
Sarlauskas等[16]报道以N2O5为硝基化试剂, CH2Cl2为溶剂, 温度为-15 ~15℃条件下1,4-丁二醇发生硝基化反应。Braune等[17]报道以1,4-丁二醇为原料,二氯甲烷为溶剂,85%HNO3与尿素作为硝基化试剂,温度控制在10~ 25℃间生成了1,4-丁二醇的单硝基化产物与双硝基化产物混合物。
图1 1,4-丁二醇衍生反应
2.4 脱水反应
2.5 脱氢反应
Chaudhari等[22]报道在催化剂为Pt,添加剂为CaCO3经三步反应生成1,4-丁-2-烯二醇。Pillai
等[23]报道以1,4-丁二醇为原料在催化剂为Cr、Cu存在下经气相脱氢生成1,4-丁二烯。Zhao、Ishii, 等[24-25]报道1,4-丁二醇在Ru催化剂存在下205℃,10h脱氢生成γ一丁内酯。
2.6 聚合反应
Diaz等[26]以1,4-丁二醇与乙炔为原料经七步反应以85%的收率合成多环醚。Mukai等[27]报道1,4-丁二醇发生分子间脱水后经聚合反应生成丙酸酯聚合物。
2.7 成环反应
Lan等[28]以1,4-丁二醇与丁醛为原料在甲苯溶剂中130℃、2h生成七元环二缩醛。Lee等[29]报道以1,4-丁二醇与甲胺为原料在250℃条件下成环生成N-甲基吡咯啉。Bogatskii[30]报道1,4-丁二醇与甲醛关环生成1.3-二氧环戊烷。Segawa等[31]报道以1,4-丁二醇为原料,In2O3为催化剂,固定床反应器上375℃反应5 h,生成60.8%的3-丁醇和20.4%的γ一丁内酯。Reddy等[32]以Co-Cu/MgO为催化剂,250℃条件下1,4-丁二醇发生脱氢、脱水反应关环生成四氢呋喃与γ一丁内酯的混合物,催化剂的制备方法对反应路径有很大的影响。Klinger等[33]以1,4-丁二醇与氨气为原料在Fe催化剂存在下250℃条件下生成氮氧六元杂环。
综上所述,1,4-丁二醇原料易得、具有一定的化学活性,能参与多种不同类型的反应生成相应的下游产品,已开发的下游产品主要有四氢呋喃(THF)、γ-丁内酯(GBL)、聚对苯二甲酸丁二醇酯(PBT)、聚氨酯(PU)、聚四亚甲基乙二醇醚(PTMEG)、N-甲基呲咯烷酮(NMP)虽由1,4-丁二醇为原料也可生成1,4-二氯丁烷、1,4-丁二酸(琥珀酸)、1,3-丁二烯等,但在经济上不可行。根据其可参与的反应,还可用于生产吡咯,国内生产吡咯厂家较少,且吡咯价格较高,利润空间较大。总之,1,4-丁二醇衍生物用途十分广泛,市场前景较好。因此,以1,4-丁二醇为原料对其下游产品的开发具有重要的意义。
[1] Shahriar, G. Oxidation of some organic diols with trialkylammonium fluorochromates(VI),R3NH[CrO3F],(R= CH3,C2H5,C3H7and C4H9) at room temperature and under microwave condition[J]. Journal of the Mexican Chemical Society, 2009,53(2):41-43.
[2] Shahriar G. Trialkylammonium chlorochromates (VI),R3NH[CrO3Cl], (R = R= CH3, C2H5,C3H7and C4H9): new reagents for oxidation of some organic diols under microwave condition[J]. Inorganic Chemistry: An Indian Journal, 2010,5(2), 51-54.
[3] Thomas T T. Oxidation of alcohols to carbonyl compounds via alkoxysulfonium ylides: the Moffat, Swern, and related oxidations[M]//Organic Reactions (Hoboken, N J,United States), 1990.
[4] Svetlakov N V.Oxidation of tetrahydrofuran and 1,4-butanediol with nitric acid[J].Russian Journal of Applied Chemistry, 2002,75(4): 669-671.
[5] Atsushi M. Catalytic aerobic oxidation of diols under photoirradiation: highly efficient synthesis of lactols[J].Tetrahedron Letters, 2002,43(19):3481-3484.
[6] Huang, J. Influence of support surface basicity and gold particle size on catalytic activity of Au/γ-AlOOH and Au/γ-Al2O3catalyst in aerobic oxidation of α,ω-diols to lactones[J].Applied Catalysis, B: Environmental, 2011, 103(3-4): 343-350.
[7] Maity D K. Reaction of hydroxyl radicals with 1-bromo-ω-iodoalkanes in aqueous solution: 2C-3E bonded radical cations[J].Radiation Physics and Chemistry, (1,Trombay Symposium on Radiation and Photochemistry, 1996), 1996:49 21-24.
[8] Swati D. Phenyl-ring-bearing cationic surfactants: effect of ring location on the micellar structure[J].Langmuir, 2010, 26(23):17882-17889.
[9] Bruce N. Synthesis of (14C6-3,4,7,8,11,12)-(1E,5E,9E)-cyclododeca-1,5,9-triene[J].Journal of Labelled Compounds and Radiopharmaceuticals, 2007,50(5-6):407-409.
[10] Schunck W H. Novel eicosanoid derivatives: PCT Int Appl, 2010081683[P].2010-07- 22 .
[11] Dzhemilev U M. Process for producing α,ω-chloroalkanols(chlorohydrins): Russ, 2287515[P].2006-11-20.
[12] Ding T J.A facile and green synthesis of sulforaphane[J]. Chinese Chemical Letters, 2006,17(9), 1152-1154.
[13] Ettl R, Reuther W. Preparation of alkyl chlorides from the corresponding alcohols: Eur Pat Appl: 645357, 1995-03-29.
[14] Berridge M S.Cyclic sulfates: useful substrates for selective nucleophilic substitution[J]. Journal of Organic Chemistry, 1990,55(4):1211-17.
[15] Ferreri C. The versatile behavior of the PdCl2/Et3SiH system conversion of alcohols to the corresponding halides and alkanes[J]. Journal of Organometallic Chemistry, 1998,554(2):135-137.
[16] Sarlauskas J. Organic nitrates and nitramines: synthesis, electrochemistry and cytotoxicity[C]//New Trends in Research of Energetic Materials, Proceedings of the Seminar, 13th, Pardubice, Czech Republic, 2010: 738-745.
[17] Braune S. Formation of nitrate esters in microreactors and millireactors using a continuous product extraction in a turbulent flow regime: PCT Int Appl, 2009080755[P].2009-07-02.
[19] 赵永祥,贺永艺,李奇飚,等. 一种由1,4-丁二醇合成3-丁烯-1-醇的方法:CN,101759529A[P]. 2010-06-30.
[21] Stonkus, V. Structure and catalytic properties of Co/porcelain in the synthesis of 2,3-dihydrofuran[J]. Journal of Chemical Technology and Biotechnology, 2001,76(1): 101-105.
[22] Chaudhari R V. Chemoselective catalytic hydrogenation process for the preparation of 1,4-butenediol from 1,4-butynediol:Indian Pat Appl: 2000DE00216[P].2006-12- 08.
[23] Pillai R B C. Synthesis of succinaldehyde by dehydrogenation of 1,4-butanediol using copper chromite catalyst in vapor phase[J]. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 1994,33B(11): 1087-1088.
[24] Zhao J, Hartwig J F. Acceptorless, neat, ruthenium-catalyzed dehydrogenative cyclization of diols toLactones[J]. Organometallics, 2005,24(10): 2441-2446.
[25] Ishii Y. Lactone synthesis of α,ω-diols with hydrogen peroxide catalyzed by heteropoly acids combined with cetylpyridinium chloride[J]. Journal of Organic Chemistry, 1988,53(23):5549-52.
[26] Diaz D. Double cationic propargylation: from linear to polycyclic ethers[J].Organic Letters, 2001,3(21): 3289-3291.
[27] Mukai K. Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases[J]. Biotechnology Letters, 1993,15(6):601-604.
[28] Lan P. Study on synthesis of novel seven-membered-ring acetals(ketals) over HZSM-5catalyst[J].Huaxue Shijie,2010, 51(9): 545-548.
[29] Lee S H. Methods for preparing γ-butyrolactone and N-methyl pyrrolidone from 1,4-butanediol Repub: Korean Kongkae Taeho Kongbo: 2011037895, 2011-04-13 .
[30] Bogatskii A V. Synthesis and properties of substituted 1,3-dioxepanes[J]. Acta Chimica Academiae Scientiarum Hungaricae, 1975,86(2):173-85.
[31] Segawa M.Vapor-phase catalytic reactions of alcohol over bixbyite indium oxide[J]. Journal of Molecular Catalysis A:Chemical,2009, 310(1-2): 166-173.
[32] Reddy K. Influence of method of preparation of Co-Cu/MgO catalyst on dehydrogenation/dehydration reaction pathway of 1,4-butanediol[J]. Catalysis Communications,2011, 12(10):866-869.
[33] Klinger G A. Synthesis of nitrogen-containing heterocycles on iron catalysts 2. Conversions of 1,4-butanediol and diethylene glycol in the presence of ammonia and hydrogen[J].Khimiya Geterotsiklicheskikh Soedinenii, 1987(2):195-8.
(本文文献格式:明文勇 ,段 琦,亢建平,等.1,4-丁二醇反应研究进展[J].山东化工,2016,45(14):37-39.)
Progress in Research of 1,4-Butanediol Reaction
MingWenyong1*,DuanQi1,KangJianping2,HanSheng2,ZhangWei2,LvJian2
(1.ShanDong Huaan new material Co., Ltd., Zibo 255300 China; 2.Xi'an Modern Chemistry Research Instiute, Xi'an 710065.China)
The property, related reaction, application fields of 1,4-butanediol were reviewed in this article.
1,4-butanediol;properties;reaction;application
2016-05-07
明文勇(1966—),山东淄博人,高级工程师,主要从事化工工艺技术开发。
TQ2231.6+4
A
1008-021X(2016)14-0037-03