画法几何针对艺术类学生教学问题的探讨

2016-09-07 16:11张春柳
课程教育研究·学法教法研究 2016年19期
关键词:艺术类教学

张春柳

【摘要】画法几何是工程类学生必修的一门专业基础课,针对艺术类学生,到底还要不要讲这门难教又难学的课?要怎样才能讲好这门课?本文以多年教学经验为基础,作出了回答,并提出了几点教学建议。

【关键词】画法几何 艺术类 教学

【中图分类号】G633.95 【文献标识码】A 【文章编号】2095-3089(2016)19-0232-01

画法几何是数学中几何学的一个分支,它具有数学的共性:严密的逻辑推理、严谨的规则体系。而更有其独特的几何逻辑系统和复杂的空间架构。学生在学习的过程中须按照其法则进行逐步操作,使其逻辑推理能力和空间思维能力得以提升。画法几何的规范化操作性强而精准,是一种严密的思维技术。可以说,画法几何是一门教会人们如何推理演绎,如何思考,如何设计,继而如何将设计科学合理地表达在二维平面上的重要技术手段。如此学生难学又教师难教的一门学科在艺术类学生中的教学中应该如何定位呢?如何有效地实施教学过程以达到教学目的呢?现结合自身的学习经历和教学实践, 谈几点体会。

1.教学对象分析

需要学习画法几何的艺术类学生是指:建筑环境艺术专业、室内环境设计专业、风景园林设计专业、视觉传达艺术(平面设计)专业的学生。此类学生普遍文化课基础差,尤其是理科,作为一名决心参加艺考的学生,可能早在初中就开始放弃数理化的学习了。他们的逻辑思维能力和抽象思维能力弱,过于依赖形象思维,俗称“视觉化的孩子”。基于美术学习的特殊性,伴随着他们还有:懒散、随性、不严谨,遇到困难就失去信心止步不前的缺点。

2.画法几何在艺术生中讲授的必要性

画法几何这么难,到底有没有必要在本来就很有限的课时里讲授呢?有教师提出:艺术生的基础太差,同样的课程需要花费更多的时间讲解,效果甚微。更有教师提出:以后他们做设计,整天都要画图,这画法几何又用不上,干脆别讲了,就让他们多抄图,抄得多了自然就明白了。

我完全不同意这样的看法。不能因为学生的基础差就可以任意剥夺他们提升思维力的机会和权益。据多年的教学经验,即使面对的是艺术生,画法几何必须讲!而且还可以讲得很好,学生可以学得很棒!关键在于老师要从多个方面着手。

3.如何在画法几何中提升逻辑思维能力

本来学美术的学生对基本形体并不陌生,画起三视图来应该如鱼得水、游刃有余。可是教学实践表明事情并没有所想像的那么顺利。原因何在呢?这是由于画法几何有其自身的逻辑体系,关键是因为它是基于正投影的前提下进行投影的。所以才会有后面一系列的投影定理和投影规则。这就要求教师在详尽地讲解投影的分类。要让学生认识到“眼见不一定为实”, 在画法几何里甚至可以说“眼见为虚”。

下面就是进一步说明正投影的基本性质,可以让学生观察:把三角板垂直于投影面放置时,影会积聚成一直线;把三角板倾斜于投影面放置时,影会变形,但又总离不开三角形,称为“类似形”;把三角板完全放置在投影面上来代表平行于投影面,这时,影与实物尺寸完全相等。这三个基本性质就像一根线,贯穿于点、线、面、体的所有章节。每一次课都要强调这三个性质,让学生感受其中严密的逻辑关系。

4.如何在画法几何中提升空间思维能力

4.1点的投影很重要

很多老师都很怕讲点,觉得这实在是太简单了,都不知道该讲什么!我认为必须把点讲得非常透彻,它是打开后面所有章节的万能钥匙,这里要花很大力气去讲清楚一个又一个看似简单,实际上对学生来说很难理解的问题:两面投影体系,三面投影体系,点的投影规律,点的相对位置。

4.2强调建立形体,对部分画法几何知识点删减

虽说画法几何是提升逻辑推理能力的重要学科,但是为培养一名设计师,我认为其空间思维力能够让他在二维平面上表达出三维空间的东西就足够了。所以我建议在对艺术生的教学中,应该对过于强调逻辑推理的知识点进行删减。例如:求解一般位置直线实长与夹角问题的三角形法则;垂直问题;换面法等。而紧紧抓住建立形体的这条主线,点、线、面、基本体、复杂体,两个几何要素之间的从属和穿插关系,后再画正等轴测图,整个学习过程就连贯而清晰了。

4.3要求学生做动作,把抽象问题实体化

讲到直线的投影时,学生的方位感会出现混乱,这时候可以要求学生用笔跟着老师做动作,把视图所表达的空间直线摆出来。当学生摆到两条直线的位置关系时,学生就会惊呼:“我终于知道什么是投影,什么是空间啦!”而后,面的投影、直线和面的穿插、面和面的穿插,更是要求学生能用实物正确地表达出来。这样做,就能把沉闷的抽象问题实体化了。

4.4画正等轴测图

在教学中,我没有陷于如何设计制作复杂的教具,而是教会学生运用一副三角板和圆规,对应画出其形体轴测图的方式,进一步解读三视图。看着规整的轴测图,学生的信心倍增。

5.自编练习的重要性

前面提到,由于艺术生的特殊性,一些推理性太强的知识点需要跳过以保证教学连贯。而大多数教材的配套练习都不针对艺术类学生,过于偏向难题,忽略了简单题。而最好的学习方法是边学边练,课后还要有足够的练习巩固。因此,我自编了一套针对性强,题目难度由原理到应用,难度有梯度的练习册配合教学。编练习的时候做到了与教学进度相适应,每一个小知识点都配套至少有一个题目。而且整本练习册前后又有联系。通常学生都会做简单题,遇到困难题就想放弃。这时候就可以引导学生反复推敲简单题与复杂题的共同点,努力做到把复杂的问题简单化。此时,学生既能顺利完成作业,又有了攻破难题的成就感,增强学习的信心,更摸索出解决新问题源于对旧问题的深刻认识,移植成功经验的思维技术。

6.结语

经过多年的教学实践,学生的反馈良好,很认同这种严格的思维训练。画法几何的教学过程当中,老师和学生之间容易形成“你不懂我,我也不懂你”的僵局。但是如果连老师都知难而退,学生又怎么有信心学好呢?必须要有“明知山有虎,偏向虎山行”的气魄和决心,才能使学生有信心与老师一起攻克画法几何!

参考文献:

[1]马彩祝,谢坚.画法几何,何去何从[J].工程图学学报:2008, 6:144-148

[2]黄水生,李国生.画法几何及土建工程制图[M].广州:华南理工大学出版社,2008.12

猜你喜欢
艺术类教学
2019年艺术类招生采用我省统考(联考)成绩的院校名单
艺术类专访心得
2018年艺术类招生采用我省统考(联考)成绩的院校名单
“自我诊断表”在高中数学教学中的应用
艺术类声乐高考误区与思考
对外汉语教学中“想”和“要”的比较
数字艺术类专业三大构成课教学改革
跨越式跳高的教学绝招
初中50米迎面接力跑教学心得