王文锋, 李春花, 黄绍文*, 高 伟, 唐继伟
(1中国农业科学院农业资源与农业区划研究所/农业部植物营养与肥料重点实验室, 北京 100081;2天津市农业资源与环境研究所, 天津 300192)
不同施肥模式对设施秋冬茬芹菜生育期间土壤酶活性的影响
王文锋1, 李春花1, 黄绍文1*, 高 伟2*, 唐继伟1
(1中国农业科学院农业资源与农业区划研究所/农业部植物营养与肥料重点实验室, 北京 100081;2天津市农业资源与环境研究所, 天津 300192)
【目的】利用在天津的日光温室蔬菜不同施肥模式定位试验,研究了不同施肥模式对设施菜田土壤酶活性的影响,为设施蔬菜高效施肥和菜田土壤可持续利用提供依据。【方法】取样调查在第9茬蔬菜(秋冬茬芹菜)进行。定位试验设6个处理,在等氮磷钾条件下,分别为1)全部施用化肥氮(4/4CN),2)3/4化肥氮+1/4猪粪氮(3/4CN+1/4PN),3)2/4化肥氮+2/4猪粪氮(2/4CN+2/4PN),4)1/4化肥氮+3/4猪粪氮(1/4CN+3/4PN),5)2/4化肥氮+1/4猪粪氮+1/4秸秆氮(2/4CN+1/4PN+1/4SN),6)2/4化肥氮+2/4秸秆氮(2/4CN+2/4SN)。在芹菜基肥施用前和定植后30、60、90、110天,采取0—20 cm土壤样品,测定土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶、磷酸酶和脲酶的活性,分析其与土壤微生物量碳氮及土壤可溶性有机碳氮含量之间的关系。【结果】芹菜生育期间不同施肥模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶和磷酸酶的活性总体上先增后降,较高土壤酶活性均出现在芹菜定植后6090 d; 土壤脲酶活性总体上呈逐渐升高的趋势。芹菜季有机无机肥料配施模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶、磷酸酶和脲酶的活性较4/4CN模式平均分别增加22.9%92.0%、20.1%152.4%、23.1%145.1%、28.7%273.8%、9.2%207.8%、13.7%86.8%和6.5%56.5%,其中以配施秸秆模式土壤酶活性相对较高,较4/4CN模式平均分别增加59.9%92.0%、98.9%152.4%、90.3%145.1%、171.6%273.8%、106.4%207.8%、68.8%86.8%和30.7%56.5%。土壤酶活性与土壤微生物量碳氮、可溶性有机碳氮含量及芹菜产量之间总体上呈显著或极显著正相关关系。【结论】同等养分投入量下,设施菜田土壤酶活性表现为有机无机肥料配合显著高于单施化肥,又以配施秸秆效果更佳; 土壤酶活性与土壤微生物量碳氮、可溶性有机碳氮含量和蔬菜产量之间密切相关。说明有机无机肥配施,特别是配施一定的秸秆可有效提高土壤酶活性,维持较高的菜田土壤肥力,有利于设施蔬菜的可持续和高效生产。
施肥模式; 设施菜田; 土壤酶活性
我国设施蔬菜生产历史悠久,发展快,经济效益好,已成为农民增收的重要途径之一。在经济利益的驱动下,菜农往往通过大量施肥来追求蔬菜高产,因而设施蔬菜过量施肥现象非常普遍[1-2],导致土壤盐分积累、养分失衡、重金属污染等问题日益突出,已对设施蔬菜生产和设施内生态环境构成严重威胁。有机无机肥料配合施用既能协调养分平衡供应,满足作物生育期内对养分的需求,又可以减少化肥的用量[3],还能改善土壤理化性质和微生物活性,提高土壤质量[4-6],已成为设施菜田较为常见的施肥方式。但化肥肥效快而短促,有机肥分解缓慢而肥效持久,因而探究适合于设施菜田的合理配比的有机无机肥料配施模式已成为设施蔬菜安全高效生产的关键。
土壤酶是土壤有机质分解与养分转化和循环的驱动力[7-8],其活性对土壤管理措施引起的土壤理化性质的改变非常敏感[9],是土壤质量和生态稳定性的重要指标[10-11]。关于栽培方式[12-13]、栽培制度[14-16]、种植年限[17-18]、作物残茬[19-20]、氮肥用量[21]等对土壤酶活性的影响已有一些报道,而不同施肥模式对设施菜田土壤酶活性影响的研究较少。本文利用设在天津的日光温室蔬菜不同施肥模式定位试验,研究了蔬菜生育周期内不同施肥模式土壤酶活性动态变化特征及其与土壤微生物量碳氮和可溶性有机碳氮之间的关系,以期寻求经济节约、高效合理的施肥模式,为实现设施蔬菜生产的可持续发展提供依据。
1.1试验地概况
定位试验位于天津市西青区辛口镇第六埠村,属暖温带半湿润大陆性气候,年平均温度为11.6℃,全年日照总量为2810 h,无霜期为203 d,自然降水总量为586 mm。供试日光温室东西走向,长80 m,宽6.5 m(含0.5 m通道),前部有通风口,白天适时敞开通风,夜间或降雨时关闭。供试土壤类型为中壤质潮土,试验开始前0—20 cm土壤容重为1.38 g/cm3,pH 7.9, 有机质含量25.4 g/kg,硝态氮、铵态氮、速效磷、速效钾含量分别为186.2、5.5、144.6和404 mg/kg。地下水埋深为1 m。定位试验于2009年10月开始(定位试验开始时棚龄为7年),种植制度为春茬番茄-秋冬茬芹菜轮作。供试芹菜(Apiumgraveolens)品种为文图拉,番茄(Lycopersiconesculentum)品种为朝研299。
1.2试验设计
定位试验共设6个处理,分别为: 1)全部施用化肥氮(4/4CN); 2)3/4化肥氮+1/4猪粪氮(3/4CN+1/4PN); 3)2/4化肥氮+2/4猪粪氮(2/4CN+2/4PN); 4)1/4化肥氮+3/4猪粪氮(1/4CN+3/4PN); 5)2/4化肥氮+1/4猪粪氮+1/4秸秆氮(2/4CN+1/4PN+ 1/4SN); 6)2/4化肥氮+2/4秸秆氮(2/4CN+2/4SN)。各处理等氮磷钾,番茄茬施用的N、P2O5和K2O总量分别为450.0、225.0和600.0 kg/hm2,芹菜茬N、P2O5和K2O总量分别为450.0、300.0和600.0 kg/hm2。春茬番茄和秋冬茬芹菜各处理的具体氮和碳投入量见表1。每个处理3次重复,随机排列。试验小区面积14.4 m2(宽2.4 m×长6.0 m),番茄株、行距分别为0.30 m和0.60 m,种植密度为25000株/hm2; 芹菜株、行距分别为0.20 m和0.15 m,种植密度为330570 株/hm2。小区间埋设PVC板(深度105 cm: 100 cm地下,5 cm地上; 厚度4 mm),防止小区之间养分和水分的横向迁移。
番茄和芹菜有机、无机养分施用量见表1。有机肥全部基施,化肥除部分基施外,其余部分作追肥施用。番茄季处理1)6)所用化肥中20%的氮肥、70%的磷肥和20%的钾肥基施,其余的氮肥和钾肥分4次追施(分别在番茄开花期、第一穗果膨大期、第二穗果膨大期和第三穗果膨大期),其中氮肥的追施比例分别为30%、30%、10%和10%,钾肥的追施比例分别为10%、30%、30%和10%,剩余的P2O5分别在第一次追肥和第二次追肥各施入15%。芹菜季处理1)6)所用化肥的20%的氮肥、70%的磷肥和20%的钾肥基施,其余氮肥和钾肥在芹菜56叶期、89叶期和1112叶期分3次追施,其中氮肥的追施比例分别为35%、35%和10%,钾肥的追施比例分别为10%、35%和35%,剩余的磷肥在第一次追肥时全部施入。
表1 试验处理及其氮和碳投入量(kg/hm2)
注(Note): CN—化肥氮 Nitrogen in chemical fertilizer; PN—猪粪氮 Nitrogen in pig manure; SN—玉米秸杆氮 Nitrogen in corn straw.
定位试验所用化肥为尿素(N 46%)、过磷酸钙(P2O512%)、磷酸二铵(N 18%,P2O546%)、氯化钾(K2O 60%)、磷酸二氢钾(P2O552%,K2O 34%)。所用商品猪粪含N (2.17±0.13)%、 P2O5(1.39±0.14)%、 K2O (1.63±0.19)%、 C 218.0±5.0 g/kg(干基)、 水分含量为(28.9±4.6)%; 所用秸秆为玉米秸秆,含N (1.04±0.10)%、P2O5(0.32±0.08)%、K2O (1.69±0.17)%、 C 426.9±8.2 g/kg(干基),水分含量为(64.9±6.4)%。
基施方式为肥料撒施后旋耕入土,追施方式为肥料溶于水后随水冲施。处理1)6)是依据田间持水量进行灌溉,当田间持水量低于60%时进行灌溉。为保证灌水量的准确,每个小区均安装有单独的PVC进水管,并用水表记录灌水量。番茄季和芹菜季灌水总量分别为3889和3334 m3/hm2。
1.3土壤样品采集及测定方法
在第9茬蔬菜(秋冬茬芹菜)生育期间,分别于2013年9月18日(芹菜基肥施用前)、10月20日(芹菜定植后30 d,56叶期)、11月20日(芹菜定植后60 d,89叶期)、12月20日(芹菜定植后90 d,1112叶期)及2014年1月9日(芹菜定植后110 d,收获期)采集土壤样品。取样方法是在每个小区内按S形布设10个点,用不锈钢土钻采取0—20 cm土壤样品,立即剔除石砾和植物残根等杂物,混合均匀,过2 mm筛后,取一部分于-20℃冰箱内保存,用于土壤酶活性的测定; 另取一部分于4℃冰箱内保存,用于土壤微生物量碳、氮和可溶性有机碳、氮含量的测定。
土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶和磷酸酶活性采用荧光微型板检测技术(microplate fluorimetric assay)测定[7,22-23]: 将微型板编号,按顺序摆放,将准备好的缓冲液(调至土壤pH)依次加入微型板中,按顺序加入待测液,然后加入配好的标准溶液,迅速加入配好的底物溶液,黑板在25℃培养4 h后,所有孔加入10 μL 1mol/L氢氧化钠溶液,上机用酶标仪测定(激发波长为365 nm、 发射波长为450 nm)。
土壤田间持水量采用室内环刀法测定[27]。土壤基本化学性质采用常规分析方法测定[28]: 土壤有机质用重铬酸钾-浓硫酸氧化(外加热法),硫酸亚铁溶液滴定法测定; 土壤硝态氮采用2 mol/L氯化钾溶液浸提,双波长紫外分光光度法测定; 土壤速效磷采用0.5 mol/L NaHCO3浸提,钼锑抗比色法测定; 土壤速效钾采用NH4OAc溶液浸提,原子吸收分光光度计测定; 土壤pH采用2.5 ∶1水土比,酸度计测定。
这个想法得到了各位班委的认可,于是“先锋车站”的筹备工作就此开始了。小刘给每个小组画一辆不一样的车型,并在车上标出小组名字和组员名字;班级文化部着手画车轨和站牌。在每周的评比中,优秀小组被评为“先锋列车”,向终点前进一站,每个站都有相应等级的奖励,一个月总结一次。而小刘则是这个“车站”的管理员,为确保先锋车站的每一辆车都是崭新的,如果哪个小组的车有破损,或需要重新设计,都可以找小刘帮忙。
1.4数据处理
数据采用Microsoft Excel 2010和SAS 8.0统计软件进行分析。
2.1芹菜生育期间不同施肥模式土壤酶活性动态变化特征
图1 芹菜生育期间不同施肥模式土壤酶活性动态变化Fig.1 Change of soil enzyme activities under different fertilization patterns during different growth period of celery
随着猪粪用量的增加,所测定的7种土壤酶活性总体上均呈增加的趋势。与低量配施猪粪模式3/4CN+1/4PN相比,中量配施猪粪模式2/4CN+2/4PN和高量配施猪粪模式1/4CN+3/4PN土壤α-葡萄苷酶活性平均分别增加2.0%和14.2%,土壤β-木糖苷酶活性平均分别增加10.9%和29.9%,土壤β-葡萄苷酶活性平均分别增加5.6%和14.2%,土壤β-纤维二糖苷酶活性平均分别增加26.3%和50.0%,土壤几丁质酶活性平均分别增加19.4%和35.9%,土壤磷酸酶活性平均分别增加12.8%和27.4%,土壤脲酶活性平均分别增加3.1%和12.9%。
配施秸秆模式土壤7种酶活性均高于配施猪粪模式。与高量配施猪粪模式1/4CN+3/4PN相比,配施秸秆模式(2/4CN+1/4PN+1/4SN和2/4CN+2/4SN)土壤α-葡萄苷酶活性平均分别增加14.0%和36.9%,土壤β-木糖苷酶活性平均分别增加10.9%和29.9%,土壤β-葡萄苷酶活性平均分别增加35.3%和74.3%,土壤β-纤维二糖苷酶活性平均分别增加40.2%和93.0%,土壤几丁质酶活性平均分别增加38.8%和107.0%,土壤磷酸酶活性平均分别增加16.5%和28.8%,土壤脲酶活性平均分别增加14.5%和30.3%。
2.2土壤酶活性与微生物量碳氮及可溶性有机碳氮含量之间的关系
芹菜生育期间各取样时间不同土壤酶活性与土壤可溶性有机碳氮含量之间总体上均呈显著或极显著正相关关系。其中,土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶、磷酸酶、 脲酶等酶活性与土壤可溶性有机碳含量之间的相关系数分别在0.720.90、0.740.93、0.750.92、0.730.96、0.750.95、0.730.91和0.650.92之间,与土壤可溶性有机氮含量之间的相关系数分别在0.450.82、0.420.84、0.430.84、0.440.84、0.410.80、0.500.77和0.400.77之间。
2.3土壤酶活性与芹菜产量之间的关系
由图2可知,六种施肥模式(CN、3/4CN+1/4PN、2/4CN+2/4PN、1/4CN+3/4PN、2/4CN+1/4PN+1/4SN和2/4CN+2/4SN)第九茬蔬菜(设施秋冬茬芹菜)产量依次为103.5、106.5、107.5、109.7、114.0、114.9 t/hm2。与单施化肥模式相比,有机无机肥料配施模式芹菜产量提高2.9%11.0%,其中配施猪粪模式提高芹菜产量2.9%6.0%,配施秸秆模式提高芹菜产量10.1%11.0%。
经相关性分析发现,芹菜产量与七种土壤酶活性之间均呈极显著正相关关系,相关系数在0.830.88之间(P<0.01)。表明土壤酶在促进蔬菜产量提高方面具有重要作用。
3.1不同施肥模式对设施菜田土壤酶活性的影响
化肥与有机物料配合施用,尤其是配施秸秆模式,可以显著提高设施菜田土壤酶活性。本研究中,芹菜生育期间,5个有机无机肥料配施模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶、磷酸酶和脲酶的活性均较全化肥模式有不同程度的增加,以配施秸秆模式土壤酶活性相对较高。因为有机物料不仅本身含有大量的胞内和胞外酶[8],施入土壤后可迅速增加土壤酶的数量,而且含有大量不同形态的活性有机碳氮[5, 29],是土壤微生物养分和能量的直接来源,促进土壤酶的产生。大量研究表明,与单施化肥相比,施用有机物料(无论是单施有机肥还是有机无机肥料配施)能显著提高土壤有机质及其各组分的含量[5-6,30-32],而土壤有机质作为土壤碳源、氮源及其他各种养分的储存库,分解后能够为土壤微生物生命活动提供各种各样的基质,提高土壤微生物丰富度[33],增加土壤酶的分泌量和活性。同时,土壤有机质还是土壤水分的吸附剂和土壤pH的调节器[33],并能促进土壤微团聚体的形成[34],为土壤酶提供相对稳定和适宜的外部环境。此外,有机无机肥料配施还能促进作物生长,增加作物根系生物量,根系分泌物增多,促进土壤微生物的生长和酶活性的增强[6]。而施用无机肥,尤其是氮肥,则会导致土壤酸化[21, 35],长期施用还可能导致土壤板结、容重增加和盐渍化等土壤问题[36-38],使土壤酶活性降低。所以,有机无机肥料配施模式土壤酶活性显著高于单施化肥模式。
表2 不同取样时间土壤酶活性与土壤微生物量碳、氮及可溶性有机碳、氮含量之间的相关系数
注(Note): MBC—土壤微生物量碳 Soil microbial biomass carbon; MBN—土壤微生物量氮 Soil microbial biomass nitrogen; DOC—可溶性有机碳Dissolved organic carbon; DON—可溶性有机氮 Dissolved organic nitrogen; α-GLU—土壤α-葡萄苷酶 Soil α-glucosidase; β-XYL—土壤β-木糖苷酶 Soil β-xylosidase; β-GLU—土壤β-葡萄苷酶 Soil β-glucosidase; β-CEL—土壤β-纤维二糖苷酶 Soil β-cellobiosidase; CHI—土壤几丁质酶 Soil chitinase; PHOS—土壤磷酸酶 Soil phosphatase; URE—土壤脲酶 Soil urease. *和**分别表示P<0.05和P<0.01水平显著Indicate significance at theP<0.05 andP<0.01 levels, respectively (n=18,r0.01=0.59,r0.05=0.47)
图2 不同施肥模式下芹菜产量Fig.2 Celery yield under different fertilization patterns
本研究中,化肥配施秸秆模式较化肥配施猪粪模式对设施菜田土壤酶活性的提高作用更显著。可能是由于配施秸秆模式碳投入量远高于配施猪粪模式(表1),较高的碳投入使土壤中碳含量迅速提升,而土壤酶活性与土壤碳含量显著正相关[39-41],因此,配施秸秆模式土壤酶活性相对较高。本试验中,五种有机无机肥料配施模式土壤酶活性由低到高的变化顺序总体上与碳投入量由小到大变化顺序一致(3/4CN+1/4PN<2/4CN+2/4PN<1/4CN+3/4PN <2/4CN+1/4PN+1/4SN<2/4CN +2/4SN),说明土壤酶活性与土壤碳投入量密切相关。
3.2设施蔬菜不同生育期土壤酶活性的差异
植物可以通过改变根系残体和分泌物的数量和质量以及土壤pH、湿度、温度等影响土壤酶活性[33],植物不同生育期土壤酶活性往往不同。本研究中,芹菜生育期间不同施肥模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶和磷酸酶活性的活性总体上均呈先增后降的趋势,且较高土壤酶活性均出现在芹菜长势旺盛时(芹菜定植后6090 d,812叶期)。这可能是由于作物不同生育阶段,其根系分泌物的数量和种类不同所致[42]。当作物生长旺盛时,根系代谢活动较快,分泌增多,而根系分泌物中不仅包含大量的土壤酶类[43-44],还含有土壤微生物生长所需要的糖类、氨基酸等养料,促进了土壤微生物的生长繁殖,从而间接增强了土壤酶的活性[45]。同时,作物生长旺盛时,对养分需求强烈,导致土壤养分减少,会刺激土壤生物产生更多的土壤酶类来保证土壤养分的供应[46],因而此时土壤酶活性较高。此外,作物生育期间,土壤温度、水分、空气、团聚体、矿质元素、pH等土壤理化性质的变化也会影响土壤酶活性[47],或通过影响土壤微生物区系而对土壤酶活性产生间接影响[44,47,49]。本试验中,芹菜生育期间不同施肥模式土壤脲酶活性总体上呈逐渐升高的趋势,与其他土壤酶和芹菜长势均不一致,可能是由于不同土壤酶对作物生育期间理化和生物学性质变化的反应不同引起的。可见,设施蔬菜生育期间土壤酶活性动态变化是作物、土壤微生物、土壤理化性质等综合作用的结果,但关于设施蔬菜作物、土壤理化性质和微生物区系对不同酶活性的影响程度还有待进一步研究。
3.3土壤酶活性与土壤微生物量碳氮、可溶性有机碳氮含量及蔬菜产量之间的关系
不同土壤酶活性在蔬菜生育期间变化不尽一致,土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶和磷酸酶活性的活性均呈先增后降的趋势,土壤脲酶活性呈逐渐升高的趋势。土壤酶活性与土壤微生物量碳氮、可溶性有机碳氮含量及蔬菜产量之间密切相关。同等养分投入量下,有机无机肥料配施模式,尤其是配施秸秆模式,较单施化肥模式能显著提高设施菜田土壤酶活性,是维持设施菜田较高土壤肥力及促进设施菜田土壤可持续利用的高效施肥模式。
[1]Ju X T, Kou C L, Christie P,etal. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2007, 145(2): 497-506.
[2]黄绍文, 王玉军, 金继运, 等. 我国主要菜区土壤盐分,酸碱性和肥力状况[J]. 植物营养与肥料学报, 2011, 17(4): 906-918.
Huang S W, Wang Y J, Jin J Y,etal., Status of salinity, pH and nutrients in soils in main vegetable production regions in China[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 906-918.
[3]郝小雨, 高伟, 王玉军, 等. 有机无机肥料配合施用对设施菜田土壤 N2O 排放的影响[J]. 植物营养与肥料学报, 2012, 18(5): 1075-1088.
Hao X Y, Gao W, Wang Y J,etal. Effects of combined application of organic manure and chemical fertilizers on N2O emission from greenhouse vegetable soil[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1075-1088.
[4]Eivazi F, Bayan M R, Schmidt K. Select soil enzyme activities in the historic Sanborn Field as affected by long-term cropping systems[J]. Communications in Soil Science and Plant Analysis, 2003, 34(15-16): 2259-2275.
[5]Gong W, Yan X, Wang J,etal. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China[J]. Geoderma, 2009, 149(3): 318-324.
[6]Liu E, Yan C, Mei X,etal. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China[J]. Geoderma, 2010, 158(3): 173-180.
[7]DeForest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA[J]. Soil Biology and Biochemistry, 2009, 41(6): 1180-1186.
[8]Tejada M, Gonzalez J L, García-Martínez A M,etal. Effects of different green manures on soil biological properties and maize yield[J]. Bioresource Technology, 2008, 99(6): 1758-1767.
[9]Tian L, Dell E, Shi W. Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization[J]. Applied Soil Ecology, 2010, 46(3): 426-435.
[10]Roldán A, Salinas-García J R, Alguacil M M,etal. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions[J]. Geoderma, 2005, 129(3): 178-185.
[11]Lagomarsino A, Moscatelli M C, Di Tizio A,etal. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment[J]. Ecological Indicators, 2009, 9(3): 518-527.
[12]孙彩菊, 程智慧, 孟焕文, 等. 大棚番茄连续定位套蒜第3年度土壤微生物数量和酶活性的变化[J]. 西北农林科技大学学报 (自然科学版), 2012, 40(12): 97-105.
Sun C J, Cheng Z H, Meng H W,etal. Variation of soil microorganism quantities and enzyme activities at the third year cultivation of continuous positional intercropping of tomato with garlic under plastic tunnel[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(12): 97-105.
[13]李敏, 吴凤芝. 不同填闲模式对黄瓜根际土壤酶活性及细菌群落的影响[J]. 应用生态学报, 2014, 25(12): 3556-3562.
Li M, Wu F Z. Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3556-3562.
[14]贺丽娜, 梁银丽, 高静, 等. 连作对设施黄瓜产量和品质及土壤酶活性的影响[J]. 西北农林科技大学学报 (自然科学版), 2008, 36(5): 155-159.
He L N, Liang Y L, Gao J,etal. The effect of continuous cropping on yield, quality of cucumber and soil enzymes activities in solar greenhouse[J]. Journal of Northwest A & F University (Natural Science Edition), 2008, 36(5): 155-159.
[15]贺丽娜, 梁银丽, 熊亚梅, 等. 不同前茬对设施黄瓜产量和品质及土壤酶活性的影响[J]. 中国生态农业学报, 2009, 17(1): 24-28.
He L N, Liang Y L, Xiong Y M,etal. Effect of different proceeding crops on yield, quality of cucumber and soil enzyme activity in solar greenhouse[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 24-28
[16]马彦霞, 郁继华, 张晶, 等. 设施蔬菜栽培茬口对生态型无土栽培基质性状变化的影响[J]. 生态学报, 2014, 34(14): 4071-4079.
Ma Y X, Yu J H, Zhang J,etal. Effect of different rotation systems on the characteristic change of ecotype soilless culture media for vegetables in greenhouse environments[J]. Acta Ecologica Sinica, 2014, 34(14): 4071-4079.
[17]吴忠红, 杜新民, 张永清, 等. 晋南日光温室土壤微生物及土壤酶活性变化规律研究[J]. 中国农学通报, 2007, 23(1): 296-298.
Wu Z H, Du X M, Zhang Y Q,etal. The microbe amount and enzymes activities of soil in greenhouse in Jinnan area[J]. Chinese Agricultural Science Bulletin, 2007, 23(1): 296 -298.
[18]赵秋, 高贤彪, 宁晓光, 等. 天津地区不同年限设施土壤 pH 及酶活性变化[J]. 华北农学报, 2012, 27(1): 215-217.
Zhao Q, Gao X B, Ning X G,etal. Changes of pH and enzyme activities in greenhouse soils of different planting years in Tianjin[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(1): 215-217.
[19]孙艺文, 吴凤芝. 小麦, 燕麦残茬对连作黄瓜生长及土壤酶活性的影响[J]. 中国蔬菜, 2013, 4: 12.
Sun Y W, Wu F Z. Effects of wheat and oat residues on growth of continuous cucumber cropping and soil enzymatic activity[J]. China Vegetables, 2013, 4: 12.
[20]张浩, 赵九洲, 张丽, 等. 不同大豆根茬比对连作番茄生长发育及根际土壤环境的影响[J]. 西北农业学报, 2014, 7: 025.
Zhang H, Zhao J Z, Zhang L,etal. Effects of different proportion of soybean stubble and continuous cropping soil on tomato grow development and rhizosphere soil environment[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 7: 025.
[21]Shen W, Lin X, Shi W,etal. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land[J]. Plant and Soil, 2010, 337(1-2): 137-150.
[22]Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology and Biochemistry, 2001, 33(12): 1633-1640.
[23]Stemmer M. Multiple-substrate enzyme assays: a useful approach for profiling enzyme activity in soils[J]. Soil Biology and Biochemistry, 2004, 36(3): 519-527.
[24]林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010.
Lin X G. Principles and methods of soil microbiology research[M]. Beijing: Higher Education Press, 2010.
[25]吴金水, 林启美, 黄巧云, 肖和艾. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006.
Wu J S, Lin Q M, Huang Q Y, Xiao H A. Soil microbial biomass determination methods and application[M]. Beijing: China Meteorological Press, 2006.
[26]Zhong Z, Makeschin F. Soluble organic nitrogen in temperate forest soils[J]. Soil Biology and Biochemistry, 2003, 35(2): 333-338.
[27]袁娜娜. 室内环刀法测定土壤田间含水量[J]. 中国新技术新产品, 2014, (5): 184.
Yuan N N. Indoor cutting-ring method to determine field capacity[J]. China New Technologies and Products, 2014, (5): 184.
[28]鲁如坤. 土壤农业化学分析法[M]. 北京: 中国农业科技出版社, 1999.
Lu R K. Soil and agro-chemistry analysis[M]. Beijing: China Agricultural Science and Technology Press, 1999.
[29]Sleutel S, De Neve S, Németh T,etal. Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments[J]. European Journal of Agronomy, 2006, 25(3): 280-288.
[30]Rudrappa L, Purakayastha T J, Singh D,etal. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India[J]. Soil and Tillage Research, 2006, 88(1): 180-192.
[31]Purakayastha T J, Rudrappa L, Singh D,etal. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system[J]. Geoderma, 2008, 144(1): 370-378.
[32]Banger K, Kukal S S, Toor G,etal. Impact of long-term additions of chemical fertilizers and farm yard manure on carbon and nitrogen sequestration under rice-cowpea cropping system in semi-arid tropics[J]. Plant and Soil, 2009, 318(1-2): 27-35.
[33]Wallenius K, Rita H, Mikkonen A,etal. Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities[J]. Soil Biology and Biochemistry, 2011, 43(7): 1464-1473.
[34]Aoyama M, Angers D A, N'Dayegamiye A. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications[J]. Canadian Journal of Soil Science, 1999, 79(2): 295-302.
[35]Liu Y, Dell E, Yao H,etal. Microbial and soil properties in bentgrass putting greens: Impacts of nitrogen fertilization rates[J]. Geoderma, 2011, 162(1): 215-221.
[36]Shen W, Lin X, Gao N,etal. Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta[J]. Plant and Soil, 2008, 306(1-2): 117-127.
[37]孙建, 刘苗, 李立军, 等. 不同施肥处理对土壤理化性质的影响[J]. 华北农学报, 2010, 25(4): 221-225.
Sun J, Liu M, Li L J,etal. The effect of different fertilization treatments on soil physical and chemical property[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(4): 221-225.
[38]张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响[J]. 中国农学通报, 2010, 26(11): 182-187.
Zhang B Y, Chen T L, Wang B. Effects of long-term uses of chemical fertilizers on soil quality[J]. Chinese Agricultural Science Bulletin, 2010, 26(11): 182-187.
[39]Marx M C, Kandeler E, Wood M,etal. Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions[J]. Soil Biology and Biochemistry, 2005, 37(1): 35-48.
[40]Allison S D, Jastrow J D. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils[J]. Soil Biology and Biochemistry, 2006, 38(11): 3245-3256.
[41]Saha S, Prakash V, Kundu S,etal. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean-wheat system in NW Himalaya[J]. European Journal of Soil Biology, 2008, 44(3): 309-315.
[42]Wichern F, Mayer J, Joergensen R G,etal. Release of C and N from roots of peas and oats and their availability to soil microorganisms[J]. Soil Biology and Biochemistry, 2007, 39(11): 2829-2839.
[43]张咏梅, 周国逸, 吴宁. 土壤酶学的研究进展[J]. 热带亚热带植物学报, 2004, 12(1): 83-90.
Zhang Y M, Zhou G Y, Wu N. A review of studies on soil enzymology[J]. Journal of Tropical and Subtropical Botany, 2004, 12(1): 83-90.
[44]万忠梅, 吴景贵. 土壤酶活性影响因子研究进展[J]. 西北农林科技大学学报 (自然科学版), 2005, 33(6): 87-92.
Wan Z M, Wu J G. Study progress on factors affecting soil enzyme activity[J]. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(6): 87-92.
[45]Garcia-Gil J C, Plaza C, Soler-Rovira P,etal. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass[J]. Soil Biology and Biochemistry, 2000, 32(13): 1907-1913.
[46]Olander L P, Vitousek P M. Regulation of soil phosphatase and chitinase activity by N and P availability[J]. Biogeochemistry, 2000, 49(2): 175-191.
[47]Aon M A, Colaneri A C. II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil[J]. Applied Soil Ecology, 2001, 18(3): 255-270.
[48]Aon M A, Sarena D E, Burgos J L,etal. Microbiological, chemical and physical properties of soils subjected to conventional or no-till management: an assessment of their quality status[J]. Soil and Tillage Research, 2001, 60(3): 173-186.
[49]曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9(1): 105-109.
Cao H, Sun H, Yang H,etal. A review: soil enzyme activity and its indication for soil quality[J]. Chinese Journal of Applied & Environmental Biology, 2003, 9(1): 105-109.
[50]Ajwa H A, Dell C J, Rice C W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization[J]. Soil Biology and Biochemistry, 1999, 31(5): 769-777.
[51]Caldwell B A. Enzyme activities as a component of soil biodiversity: a review[J]. Pedobiologia, 2005, 49(6): 637-644.
[52]梁斌, 周建斌, 杨学云, 等. 栽培和施肥模式对黄土区旱地土壤微生物量及可溶性有机碳、 氮的影响[J]. 水土保持学报, 2009, 23(2): 132-137.
Liang B, Zhou J B, Yang X Y,etal. Effects of different cultivation and fertilization models on soil microbial biomass and soluble organic carbon and nitrogen in dryland farming[J]. Journal of Soil and Water Conservation, 2009, 23(2): 132-137.
[53]韩琳, 张玉龙, 金烁, 等. 灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J]. 中国农业科学, 2010, 43(8): 1625-1633.
Han L, Zhang Y L, Jin S,etal. Effect of different irrigation patterns on soil dissolved organic carbon and microbial biomass carbon in protected field[J]. Scientia Agricultura Sinica, 2010, 43(8): 1625-1633.
Effects of different fertilization patterns on soil enzyme activities during growing period of autumn-winter season celery in greenhouse
WANG Wen-feng1, LI Chun-hua1, HUANG Shao-wen1*, GAO Wei2*, TANG Ji-wei1
(1KeyLaboratoryofPlantNutritionandFertilizer,MinistryofAgriculture/InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing100081,China;2TianjinInstituteofAgriculturalResourcesandEnvironment,Tianjin300192,China)
【Objectives】 The fixed-site greenhouse vegetable fertilization experiment is in Tianjin, where the rotation of tomato in spring season and celery in autumn-winter season has been set up. The effect of different fertilization patterns on soil enzymes activities was investigated to provide a scientific fertilization basis for sustainable and high-efficient vegetable production in greenhouse. 【Methods】 The experiment was carried out on celery in autumn-winter season, including 6 treatments depending on the proportion of nitrogen from different types of fertilizers: 1) Complete chemical nitrogen fertilizer (4/4CN); 2) 3/4 N from chemical fertilizer, 1/4 from pig manure (3/4CN+1/4PN); 3) 2/4 N from chemical fertilizer, 2/4 from pig manure (2/4CN+2/4PN); 4) 1/4 N from chemical fertilizer, 3/4 from pig manure (1/4CN+3/4PN); 5) 2/4 N from chemical fertilizer, 1/4 from pig manure and 1/4 from straw (2/4CN+1/4PN+1/4SN); 6) 2/4 N from chemical fertilizer, 2/4 from straw (2/4CN+2/4SN). This investigation was conducted in the ninth harvest of celery. All the treatments were applied with the same amounts of N, P2O5and K2O nutrients. 0-20 cm surface soil samples were collected. Soil enzyme activities, includiung soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase, phosphatase and urease were measured at different growing stages of celery, and their correlations with contents of MBC, MBN, DOC and DON were calculated.【Results】 Activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase and phosphatase in different treatments all increased initially and then decreased, with relatively higher activity at 60-90 days after transplanting of celery. Soil urease activities increased gradually during the celery growing season. Compared with the 4/4CN treatment, activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase, phosphatase and urease were increased by 22.9%-92.0%, 20.1%-152.4%, 23.1%-145.1%, 28.7%-273.8%, 9.2%-207.8%, 13.7%-86.8% and 6.5%-56.5%, respectively in treatments with combined application of manure and straw with chemical fertilizers, and by 59.9%-92.0%, 98.9%-152.4%, 90.3%-145.1%, 171.6%-273.8%, 106.4%-207.8%, 68.8%-86.8% and 30.7%-56.5%, respectively in straw-amended treatments. Significant positive correlation relationships were found between enzymes activities and contents of MBC, MBN, DOC and DON and celery yield. 【Conclusions】 Compared with the 4/4CN, combined application of chemical fertilizers with organic materials, especially corn straw, can greatly enhance soil enzymes activities in greenhouse vegetable field. Soil enzymes activities are significantly correlated with MBC, MBN, DOC and DON contents and vegetable yield. Therefore, the combined utilization of organic and inorganic fertilizers can significantly increase soil enzymes activities, and maintain soil fertility in greenhouse vegetable production.
fertilization patterns; greenhouse vegetable soil; soil enzyme activities
2015-05-05接受日期: 2015-11-22
现代农业产业技术体系建设专项(CARS-25-C-11); 公益性行业(农业)科研专项(201203095)资助。
王文锋(1988—),男,山东日照人,硕士研究生,主要从事肥料资源利用研究。
Tel: 010-82108662, E-mail: huangshaowen@caas.cn; Tel: 022-27950893, E-mail: vivigao2002@163.com
S636.3; S606+.2
A
1008-505X(2016)03-0676-11