王芳芳 张 冰
胸部放射学
轻度认知障碍病人miRNA与脑DTI的相关性研究
王芳芳张冰*
轻度认知障碍(MCI)是正常老化与阿尔茨海默病(AD)之间的过渡状态,多数进展为AD。微小RNA (miRNA)可以通过影响Aβ生成、免疫炎症反应、突触可塑性等多种病理生理过程来影响AD的进程。但外周血miRNA反映的轻微病理改变是否与AD源性MCI脑内的特异性损伤有关目前尚不清楚。脑MR扩散张量成像(DTI)是检测神经纤维连接完整性损伤的敏感和特异的方法,有研究发现脑内特异性的纤维束损伤模式可以预测MCI向AD进展。也有研究证实认知障碍相关miRNA危险基因携带者脑中额叶-纹状体中的DTI-FA值下降。因此,结合DTI与miRNA相关的病理改变有可能成为早期诊断AD源性MCI的特异性方法。
轻度认知障碍;阿尔茨海默病;miRNA;扩散张量成像
Int J Med Radiol,2016,39(4):361-365
轻度认知障碍(mild cognitive impairment,MCI)是正常老化和痴呆的过渡阶段,其中以记忆损害为主的遗忘型MCI(amnestic MCI,aMCI)5年内有80%可转化为阿尔茨海默病(Alzheimer's disease,AD)[1],是AD源性MCI的主要类型,因此是早期诊断AD的重点。然而目前国际公认的简明智能状态量表(mini mental statue examination,MMSE)对诊断MCI的特异性和敏感性均不高,因此探寻AD前驱阶段MCI的神经生物标志物成为近年神经科学研究的热点。
AD的发病机制尚不清楚,其中淀粉样蛋白(Aβ42)在脑内沉积后形成老年斑被公认为AD的主要病理特征。新的AD诊断标准将Aβ作为核心的生物学靶标,目前可应用于临床的Aβ检测方法有两种:脑脊液Aβ42和淀粉样蛋白成像(PiB-PET),可以间接反映Aβ在脑内沉积的程度。但PET具有辐射损伤且费用昂贵,而脑脊液检测病人较难接受,因此寻找简单无创且易于接受的检测方法成为关注热点。微小RNA(microRNA,miRNA或miR)是Aβ的上游调控分子,可以通过多种途径影响AD的病理进程,在AD源性MCI的发生发展过程中起着重要作用。而且miRNA在外周血中即可检测,逐渐成为AD研究中有前景的生物标志物之一[2]。外周血miRNA反映的轻微病理改变是否与AD源性MCI脑内的特异性损伤有关还需深入探讨。
脑MR扩散张量成像 (diffusion tensor imaging,DTI)是检测神经纤维连接损伤的高度敏感和特异的方法。已经有研究发现脑内特异性的纤维束损伤模式可以预测MCI向AD进展。有研究证实认知障碍相关miRNA危险基因携带者脑中额叶-纹状体中的DTI上的各向异性分数 (fractional anisotropy,FA)值下降。因此,结合DTI与miRNA相关的病理改变有可能成为早期诊断AD源性MCI的方法。
miRNA是一大家族小分子非编码单链RNA,长度20~25个碱基,由一段具有发夹环结构,长度为70~90个碱基的单链RNA前体经Dicer酶剪切以后形成。在转录水平或转录后水平调节基因表达。miRNA与靶信使RNA(message RNA,mRNA)的3'非翻译区配对来发挥功能,导致转录抑制、mRNA不稳定或降解,从而影响疾病的病理生理过程。在AD病理生理过程中,miRNA可以通过影响Aβ生成、免疫炎症反应、突触可塑性等多种病理生理过程来影响AD的进程(表1)。
表1 参与AD的病理进程的miRNA
1.1miR-29家族调控Aβ42生成Aβ为AD的主要病理特征,AD病人脑内存在高水平的Aβ42甚至沉积形成老年斑,是由于Aβ42生成速度明显大于其降解的速度,存在降解障碍,或者外周与脑内的运输功能障碍,即外周进入脑内多于脑内向外周的清除[10]。Aβ42的生成和代谢与相关酶的活性有关。有研究发现,在AD小鼠模型脑中,Aβ42沉积形成斑块前,调控Aβ42生成的限速酶淀粉蛋白前体β位分解酶1(β-site APP-cleaving enzyme-1,BACE1)就明显高于正常小鼠,而且BACE1改变的时间明显早于Aβ含量的升高和行为学异常出现的时间[11]。BACE1在转录水平和转录后水平受多种因素调控。其中miR-29可结合BACE1 mRNA的3′端非编码序列,降解其RNA,抑制RNA转录成蛋白,从而影响Aβ水平[12-13]。miR-29家族包括miR-29a、miR-29b 和miR-29c。尸体解剖证实,在脑灰质中miR-29与淀粉样斑块的程度明显相关[14]。在AD病人脑中miR-29a显著下调[15]。miR-29b被证实是神经细胞调亡的抑制剂,比其他miRNA更加具有AD特异性的改变[13]。在miR-29c的转基因鼠中,BACE1水平明显下调[12]。
由此推测,AD病人脑中miR-29的变化早于BACE1,更早于Aβ42的改变和行为学异常,即在MCI阶段miR-29就可能改变,miR-29家族 (miR-29a/b/c)可能作为诊断MCI特异性的一个指标,可预警Aβ42介导的AD早期病理变化。
1.2miR-146a和miR-125b参与AD中免疫炎症反应McGeer等[16]研究发现AD病人脑内会发生免疫炎症反应,miRNA可能介导这个过程。在人类和小鼠大脑中,miR-146a含量丰富,在调节固有免疫和特异性免疫炎症反应信号通路中发挥重要作用。在炎症因子和淀粉样蛋白刺激的原代培养的神经元中[17],发现多种miRNA的表达明显增加,miR-125b 和miR-146a是其最主要两个成员。它们均参与转录因子NF-κB的调控,从而影响免疫和炎症相关蛋白的表达过程。对NF-κB特异性敏感的miR-146a与脑内重要的免疫抑制分子——补体因子H(complement factor H,CFH)的3'非翻译区高度互补,在AD病人大脑中的炎症反应中发挥重要作用[5]。在AD大脑中miR-146a表达上调与CFH的表达下调相匹配,这种情况也出现在IL-1β、Aβ42、氧化应激的神经细胞培养中。
1.3miR-137等参与神经环路-突触可塑性调节
神经环路的形成依赖于不断的突触活动和重塑。突触是神经元与靶细胞传递信息的重要结构,因此它是神经系统执行各种功能的基本结构,如学习和记忆功能[18]。突触可塑性是学习记忆的神经生物学基础[19]。突触形态结构的变化是MCI/AD早期神经病理改变之一。多项研究证实miR-137通过突触调节与神经发生、神经成熟等密切相关[20]。其他研究也发现很多与突触调节密切相关的miRNA:如Edbauer等[21]利用单个miRNA基因敲除小鼠研究发现miR-125b和miR-132均能刺激突触生长,增加树突棘分支,增加突触数、密度,增强突触传递;Schratt等[22]发现miR-134、miR-137和miR-138具有负性调节突触可塑性的生物学特性,从而影响学习和记忆功能。
表2 AD病程中FA下降和MD升高的神经环路微结构
DTI是检测脑微结构改变的高度敏感的方法,是唯一能够同时显示神经元及其突触完整性和解剖连接病理改变的磁共振方法,明显早于脑萎缩出现的时间[23]。反映细胞外水分子扩散特性的DTI参数主要为平均扩散系数 (mean diffusivity,MD)和FA。MD的升高代表了无方向性扩散特征,即神经元及神经纤维髓鞘横向发展的破坏(如脱髓鞘),FA值的下降代表了神经纤维纵向发展的破坏(如华勒氏变性)[24-25]。与记忆功能密切相关的海马旁白质和后扣带回是认知神经环路的重要节点,在MCI中,其FA下降而MD升高[25-26],并且楔前叶的FA值降低可以作为正常认知(normal cognitive,NC)者向aMCI的转化标志之一[26]。此外,荟萃分析发现,在AD病人中,MD升高和FA降低广泛存在于脑内主要纤维束,累及除了顶叶白质、枕叶和内囊以外的所有脑区,与MCI中的这种纤维束损伤模式相似[D2],只是程度较轻[27],见表2。
3.1AD/MCI病人中miRNA与DTI参数变化的潜在联系如前所述,miRNA可以通过多种病理途径影响AD的进程,Aβ42寡聚体在细胞外沉积形成老年斑,并直接与神经元细胞膜结合而破坏细胞结构,进而导致脑微结构破坏。主要影响海马和皮质区域,造成神经元及其轴突早期的功能障碍,这也被多种影像检查结果证实[39-40]。MCI病人的认知水平衰退与脑内Aβ沉积程度也明显相关[10]。有研究证实MCI中Aβ沉积阳性者与阴性者相比,穹窿和胼胝体的FA下降,伴随MD升高,说明这些纤维束微结构破坏与淀粉样蛋白沉积有关[41]。更有研究[42]发现,在MCI病程中的更早期,即无症状的临床前期,匹兹堡复合物B(PiB)阳性但认知功能正常的老年人脑DTI上FA升高而MD降低,这一改变与MCI期改变相反,研究认为与认知代偿有关。由此可见,DTI可以反映Aβ介导的神经环路的微结构损伤。提示Aβ仅微量改变时,DTI就具有检测轻微病理异常的能力,即DTI可以检测出脑内尚未出现明显Aβ沉积的MCI病人脑内微结构改变,而miR-29调控Aβ代谢,因此,miR-29可能在疾病最早阶段出现变化。
3.2外周血miRNA通过其调控基因与DTI建立直接关系外周血miRNA有直接检测浓度和其调控基因表达两种检测方法。有研究证实在MCI病人血清中AD特异性miRNA是非常早期的生物标志物,研究也发现miRNA的遗传变异型与AD病理过程相关,但研究结果尚未统一。Bettens等[43]发现BACE1 mRNA 3'端非编码序列和miR-29基因簇所有常见的突变位点与AD发病风险无关。但也有研究证实miR-146a的启动子区域的rs57095239位点的基因多态性与AD发病风险和认知功能下降的速度相关,参与AD的遗传易感性,并且AA等位基因型能够增加miR-146a的表达,影响AD发病机制中重要的促炎细胞因子[44]。由此推测miRNA突变基因可能会影响其携带者脑内的纤维束微结构,即DTI 上FA值和MD值都可能变化。这种推测在精神分裂症中得到了证实,有文献报道 miR-137的rs1625579突变位点与精神分裂症病人的认知障碍密切相关[45-46],其携带者全脑DTI-FA值弥漫下降,而在保护性基因携带者脑内FA值则与正常对照组没有差别[47]。另外,miR-137的TT等位基因比GA等位基因在额叶-纹状体中的FA值下降的更为明显,并且比GG等位基因者有更差的记忆力与处理事情的速度,因此认为额叶-纹状体白质完整性下降可能是精神分裂症病人注意力、处理速度及精神分裂症状变差的结构基础[48]。
目前的研究显示,miRNA和脑微结构改变存在着潜在联系。而MCI病人的基因影像表型研究还属于空白领域,根据研究推测MCI病人中miRNA的改变可能与特定脑结构和功能改变有关。miRNA可以通过多种途径参与AD的发病过程,因此用miRNA和DTI的相关性来研究AD源性MCI的转化是一项非常新颖和实用的技术,并有可能成为AD早期诊断的一种新型生物标志物。
[1] Petersen RC,Roberts RO,Knopman DS,et al.Mild cognitive impairment:ten years later[J].Arch Neurol,2009,66:1447-1455.
[2] Buckholtz NS.Perspective:in search of biomarkers[J].Nature,2011,475:S8.
[3]Yelamanchili SV,Fox HS.Defining larger roles for“Tiny”RNA molecules:role of miRNAs in neurodegeneration research[J].J Neuroimmune Pharmacol,2010,5:63-69.
[4]Hebert SS,Horre K,Nicolai L,et al.Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression[J].Proc Natl Acad Sci U S A,2008,105:6415-6420.
[5] Lukiw WJ,Zhao Y,Cui JG.An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells[J].J Biol Chem,2008,283:31315-31322.
[6]Li YY,Cui JG,Hill JM,et al.Increased expression of miRNA-146a in Alzheimer's disease transgenic mouse models[J].Neurosci Lett,2011,487:94-98.
[7]Vo N,Klein ME,Varlamova O,et al.A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis[J].Proc Natl Acad Sci USA,2005,102:16426-16431.
[8]Bekris LM,Lutz F,Montine TJ,et al.MicroRNA in Alzheimer's disease:an exploratory study in brain,cerebrospinal fluid and plasma[J].Biomarkers,2013,18:455-466.
[9]Hebert SS,Papadopoulou AS,Smith P,et al.Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration[J].Hum Mol Genet,2010,19:3959-3969.
[10]Querfurth HW,Laferla FW.Alzheimer's disease[J].N Engl J Med,2010,362:329-344.
[11]Luo Y,Niu F,Sun Z,et al.Altered expression of A beta metabolism-associated molecules from D-galactose/AlCl3induced mouse brain[J].Mech Ageing Dev,2009,130:248-252.
[12]Zong Y,Wang H,Dong W,et al.miR-29c regulates BACE1 protein expression[J].Brain Res,2011,1395:108-115.
[13]Delay C,Mandemakers W,Hebert SS.MicroRNAs in Alzheimer's disease[J].Neurobiol Dis,2012,46:285-290.
[14]Wang WX,Huang Q,Hu Y,et al.Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex:white matter versus gray matter[J].Acta Neuropathol,2011,121:193-205.
[15]Shioya M,Obayashi S,Tabunoki H,et al.Aberrant microRNA expression in the brains of neurodegenerative diseases:miR-29a decreased in Alzheimer disease brains targets neurone navigator 3[J].Neuropathol Appl Neurobiol,2010,36:320-330.
[16]McGeer PL,Rogers J,McGeer EG.Inflammation,anti-inflammatory agents and Alzheimer disease:the last 12 years[J].J Alzheimers Dis,2006,9:271-276.
[17]Lukiw WJ,Alexandrov PN.Regulation of complement factor H(CFH)by multiple miRNAs in Alzheimer's disease(AD)brain[J].Mol Neurobiol,2012,46:11-19.
[18]Luo Z.Synapse formation and remodeling[J].Sci China Life Sci,2010,53:315-321.
[19]Pliássova A,Lopes JP,Lemos C,et al.The association of amyloid-beta protein precursor with alpha-and beta-secretases in mouse cerebral cortex synapses is altered in early Alzheimer's disease[J].Mol Neurobiol,2015.DOI:10.1007/s12035-015-9491-9.
[20]Smrt RD,Szulwach KE,Pfeiffer RL,et al.MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1 [J].Stem Cells,2010,28:1060-1070.
[21]Edbauer D,Neilson JR,Foster KA,et al.Regulation of synapticstructure and function by FMRP-associated microRNAs miR-125b and miR-132[J].Neuron,2010,65:373-384.
[22]Schratt GM,Tuebing F,Nigh EA,et al.A brain-specific microRNA regulates dendritic spine development[J].Nature,2006,439:283-289.
[23]Canu E,McLaren DG,Fitzgerald ME,et al.Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer's disease[J].J Alzheimers Dis,2010,19:963-976.
[24]Fellgiebel A,Dellani PR,Greverus D,et al.Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus[J].Psychiatry Res,2006,146:283-287.
[25]Kantarci K,Avula R,Senjem ML,et al.Dementia with Lewy bodies and Alzheimer disease Neurodegenerative patterns characterized by DTI[J].Neurology,2010,74:1814-1821.
[26]Zhuang L,Sachdev PS,Trollor JN,et al.Microstructural white matter changes in cognitively normal individuals at risk of amnestic MCI[J]. Neurology,2012,79:748-754.
[27]Sexton CE,Kalu UG,Filippini N,et al.A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease[J].Neurobiol Aging,2011,32:e5-18
[28]Bosch B,Arenaza-Urquijo EM,Rami L,et al.Multiple DTI index analysis in normal aging,amnestic MCI and AD.Relationship with neuropsychological performance[J].Neurobiol Aging,2012,33:61-74.
[29]Douaud G,Jbabdi S,Behrens TE,et al.DTI measures in crossingfibre areas:increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease[J].Neuroimage,2011,55:880-890.
[30]Acosta-Cabronero J,Williams GB,Pengas G,et al.Absolute diffusivities define the landscape of white matter degeneration in Alzheimer's disease[J].Brain,2010,133:529-539.
[31]Serra L,Cercignani M,Lenzi D,et al.Grey and white matter changes at different stages of Alzheimer's disease[J].J Alzheimers Dis,2010,19:147-159.
[32]Canu E,McLaren DG,Fitzgerald ME,et al.Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer's disease[J].J Alzheimers Dis,2010,19:963-976.
[33]Salat DH,Tuch DS,van der Kouwe AJ,et al.White matter pathology isolates the hippocampal formation in Alzheimer's disease[J].Neurobiol Aging,2010,31:244-256.
[34]Fayed N,Davila J,Oliveros A,et al.Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia[J].Acad Radiol,2008,15:1089-1098.
[35]Arenaza-Urquijo EM,Bosch B,Sala-Llonch R,et al.Specific anatomic associations between white matter integrity and cognitive reserve in normal and cognitively impaired elders[J].Am J Geriatr Psychiatry,2011,19:33-42.
[36]van Bruggen T,Stieltjes B,Thomann PA,et al.Do Alzheimer-specific microstructural changes in mild cognitive impairment predict conversion[J].Psychiatry Res,2012,203:184-193.
[37]Douaud G,Menke RA,Gass A,et al.Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer's disease[J].J Neurosci,2013,33:2147-2155.
[38]Kantarci K,Petersen RC,Boeve BF,et al.DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment[J].Neurology,2005,64:902-904.
[39]张冰,张鑫,李茗,等.额颞叶变性亚型与阿尔茨海默病的脑灰质萎缩模式的结构MRI研究[J].中华放射学杂志,2012,46:586-592.
[40]Jack CR,Knopman DS,Jagust WJ,et al.Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade[J]. Lancet Neurol,2010,9:119-128.
[41]Chao LL,Decarli C,Kriger S,et al.Associations between white matter hyperintensities and beta amyloid on integrity of projection,association,and limbic fiber tracts measured with diffusion tensor MRI [J].PLoS One,2013,8:e65175.
[42]Racine AM,Adluru N,Alexander AL,et al.Associations between white matter microstructure and amyloid burden in preclinical Alzheimer's disease:a multimodal imaging investigation[J].Neuroimage Clin,2014,4:604-614.
[43]Bettens K,Brouwers N,Engelborghs S,et al.APP and BACE1 miRNA genetic variability has no major role in risk for Alzheimer disease[J].Hum Mutat,2009,30:1207-1213.
[44]Cui L,Li Y,Ma G,et al.A functional polymorphism in the promoter region of microRNA-146a is associated with the risk of Alzheimer disease and the rate of cognitive decline in patients[J].PLoS One,2014,9:e89019.
[45]Green MJ,Cairns MJ,Wu J,et al.Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia[J].Mol Psychiatry,2013,18:774-780.
[46]Cummings E,Donohoe G,Hargreaves A,et al.Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137[J].Neurosci Lett,2013,532:33-38.
[47]Lett TA,Chakravarty MM,Felsky D,et al.The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia[J].Mol Psychiatry,2013,18:443-450.
[48]Kuswanto CN,Sum MY,Qiu A,et al.The impact of genome wide supported microRNA-137(MIR137)risk variants on frontal and striatal white matter integrity,neurocognitive functioning,and negative symptoms in schizophrenia[J].Am J Med Genet B Neuropsychiatr Genet,2015,168:317-326.
(收稿2015-09-23)
The research progress of the correlation between miRNA and cerebral DTI in patients with mild cognitiveimpairment
WANG Fangfang,ZHANG Bing.Department of Radiology,The Affiliated Drum Tower Hospital of Nanjing University Medical School,Nanjing 210008,China
Mild cognitive impairment(MCI)is a transitional state between normal aging and Alzheimer's disease (AD),and most MCI will progress to AD.The miRNA can influence the progress of the AD through a variety of pathological processes,including Aβ generation,immune inflammatory response and synaptic plasticity.However,it is still unknown whether the mild alteration of miRNA in peripheral blood is related to the specificity damage in the brain with MCI due to AD.The magnetic resonance diffusion tensor imaging(DTI)is a sensitive and specific method to detect the integrity of the neuronal fibers.It has been reported that the unique disrupted mode of neuronal fibers integrity could predict the MCI progress to AD.Further,it has been demonstrated that the DTI-FA value decreased in the frontal-striatum in miRNA gene carriers with cognitive impairment,which was associated with the level of cognitive impairment.Therefore,combining miRNA associated pathological changes with brain magnetic resonance DTI may become a specific method for early diagnosis of MCI due to AD.
Mild cognitive impairment;Alzheimer's disease;miRNA;Diffusion tensor imaging
国家自然科学基金(81300925)
10.19300/j.2016.Z3703
R734.2,R445
A
南京大学医学院附属鼓楼医院医学影像科,南京210008
张冰,E-mail:zhangbing_nanjing@vip.163.com
*审校者