董康
摘 要:氧化反应器是过氧化二异丙苯(DCP)生产工艺中至关重要的设备。因此,氧化反应器的液位监控显得尤为重要。如采用传统差压法测量氧化反应器的液位,通过计算分析发现:传统差压液位测量法的误差偏大,不能满足工艺要求。该项目采用了电子远传液位变送器对氧化反应器的液位进行测量。不但解决了测量精度问题,且安装、维护方便。
关键词:氧化反应器 液位监控 电子远传液位变送器
中图分类号:TH81 文献标识码:A 文章编号:1674-098X(2016)01(c)-0059-02
Abstract: Oxidation reactor is an important equipment in DCP production process. So the monitoring of the level of the oxidation reactor is particularly important. If we measure the level of oxidation reactor by the traditional differential pressure method, By calculating and analyzing, well find that the traditional differential pressure method can not meet the technical requirements, because the error is too large. We select the electronic remote sensor to measure the level of oxidation reactor in the project. We overcome the measuring error by using the electronic remote sensor, and its installation, maintenance is very convenient.
Key Words:Oxidation reactor;Level monitoring;Electronic remote level transmitter
液位是石油化工生产过程中重点监控的四大过程参数之一。工艺设备内物料液位的测量是否真实准确,往往直接影响工艺生产,甚至关系到安全生产问题。氧化反应器是DCP(过氧化二异丙苯)装置中最主要的反应设备。因此,设计中根据生产工艺的特点,选择恰当的液位测量方法对氧化反应器的液位进行准确测量,对DCP装置的生产显得尤为重要。
1 问题提出
位于浙江的某化工企业新建50 000 t/年DCP装置。其氧化工段为连续生产工艺,此工段内有四套大型氧化反应器,这四套氧化反应器相互串联。氧化反应器外形尺寸:直径:Ф2 800 mm,总高:26 320 mm。液位测量取压口间距:h2-h1=21 700 mm。氧化反应器操作压力:0.15~0.2 MPa(G)。如采用傳统差压液位测量方法,其管路安装图如图1所示。
图1中:ρ1为氧化反应器内物料密度;ρ2为隔离液密度;H为氧化反应器内物料液位;h2-h1为液位测量取压口间距。
根据差压液位测量原理可得知,差压液位变送器正负室的压差ΔP应满足公式[1]:
ΔP=ρ1gH+ρ2gh1-ρ2gh2,ΔP=ρ1gH-(h2-h1)ρ2g (1)
由(1)式我们可清楚的发现,当ρ2不变时,对差压液位变送器做负迁移后[3],差压液位变送器检测的压差ΔP将与氧化反应器内物料液位H成线性关系。对变送器做负迁移问题这里不再赘述。
由(1)式得:H=[ΔP+(h2-h1)ρ2g]/ρ1g (2)
由于该装置为户外装置,故隔离液的温度将难免受环境温度或伴热温度的影响。当隔离液温度发生变化后,即ρ2变化后,而变送器参数保持不变时,则由(1)式可知ΔP必然将发生变化,那么,氧化反应器液位指示值H也必然发生相应变化。液位测量由此产生误差。
现在我们假设在环境温度为25 ℃时将差压液位变送器校准好,氧化反应器内物料液位保持在H=7 m处,隔离液为水。物料密度ρ1=0.91 g/mL,25 ℃时ρ2=0.997 g/mL。那么,由(2)式得:H=[ΔP+(h2-h1)ρ2(25)g]/ρ1g (3)
式中ρ2(25)为25 ℃时隔离液密度。此时H为实际液位值。当隔离液温度升至35 ℃时,液位变送器参数不变,但ΔP将变为ΔP(35),ΔP(35)=ρ1gH-(h2-h1)ρ2(35)g (4)
由此导出:H(35)=[ΔP(35)+(h2-h1)ρ2(25)g]/ ρ1g=[ρ1gH-(h2-h1)ρ2(35)g+(h2-h1)ρ2(25)g]/ρ1g= H-(ρ2(35)-ρ2(25))×(h2-h1)/ρ1 (5)
由(5)式得知:当隔离液温度升至35 ℃时,液位指示值H(35)比实际液位H增加了(ρ2(25)-ρ2(35))×(h2-h1)/ρ1。代入数值后,得知:当隔离液温度由25℃升至35℃后,液位测量误差为:ΔH(25)=(ρ2(25)-ρ2(35))×(h2-h1)/ρ1≈71.5 mm。此时测量值的相对误差为:ΔH(25)/H=71.5/7 000=0.010 2≈1%。氧化反应器内物料体积偏差:ΔV=π(D/2)2×ΔH(25)≈0.44 m3。由此可见,采用传统差压液位测量方法时,当隔离液温度变化时,其液位测量误差还是较大的。
由于该项目氧化反应器的液位测量取压口间距太大,h2-h1=21 700 mm,双法兰带毛细管差压液位变送器也无法适用。
2 解决方案
为解决氧化反应器的液位测量问题,通过多方比较,我们最终采用了Rosemount 3051S/ERS电子远传液位变送器系列。该系列变送器由2个3051S压力传感器构成。高压侧为主传感器,低压侧为副传感器。主、副传感器间采用CAN通讯协议通讯。通讯缆采用双绞屏蔽线即可,无需专用电缆。主传感器配有一专用计算模块,主传感器接收高压侧压力信号,并与副传感器传递过来的信号进行差压计算,然后将差压转换成4~20 mA模拟信号输出至控制系统进行监控。其安装方式见图2。
3 Rosemount 3051S/ERS电子远传液位变送器方案的优点
(1)安装、维护方便。
此方案省去了传统差压液位测量方法中的引压管、隔离液等。减少了安装、维护的工作量,减少了安装材料费用。同时也避免了隔离液保温、伴热、泄漏等问题。
(2)响应快、精度高、稳定性好。
Rosemount 3051S/ERS的响应时间为0.5 s。根据Rosemount公司提供的数据,双法兰带毛细管差压液位变送器,当毛细管长度为10英尺时,其响应时间为2.5 s。3051S/ERS电子远传液位变送器测量精度高且不受环境温度发生变化的影响。
(3)建立真正的零基准差压测量。
(4)减少了备品备件。
(5)Rosemount 3051S/ERS电子远传液位变送器功能强。
3051S/ERS除了提供液位计算外,还可以提供每个压力传感器的测量值及物料体积测量值等。
4 结语
电子远传液位变送器很好地解决了大型氧化器的液位测量问题。在石油化工设计中,常常会碰到大型容器、塔器的液位测量问题。尤其在环境恶劣地区,电子远传液位变送器是一种较好的液位检测手段。另外,由于其安装方便,就设备改造项目而言,该方案也值得借鉴。
参考文献
[1] 陆德民.石油化工自动控制设计手册[M].化学工业出版社,2001.
[2] HG/T 20507-2014,自动化仪表选型设计规范[S].2014.
[3] 成钦炳.实用化工测量与成分分析仪表[M].江苏科学技术出版社,1986.