崔铁忠 卢康荣 李银霞 王万山
【摘 要】线粒体是细胞内不可或缺的细胞器,它合成细胞所需90%以上的能量。线粒体疾病多为遗传性罕见病,但其致死性强且致病机理还不清晰。电子传递链复合物III是电子传递的重要载体,与呼吸链上其他复合物相比,其与线粒体疾病的联系并不是很清楚。随着人们对复合物III组装过程研究的不断深入,多个致病基因不断被发现,使得人们重新审视其与线粒体疾病的关系。本综述以近年来复合物III的研究进展为基础,分析并总结了相关线粒体疾病的发病机理和未来的研究方向 。
【关键词】线粒体;疾病;复合物III
Complex III of the electron transport chain and mitochondrial diseases
CUI Tie-zhong1 LU Kang-rong2 LI Yin-xia3 WANG Wan-shan4
(1.Department of Cell Biology, Yale School of Medicine, New Haven, 06520, USA;
2.Basic Medical College of Southern Medical University, Guangzhou Guangdong 510515, China;
3.Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, 84112, USA;
4.Institute of Comparative Medicine, Southern Medical University, Guangzhou Guangdong 510515, China)
【Abstract】Mitochondrion is an essential organelle which produces above 90% of energy in cells. Mitochondrial diseases are rare genetic disorders, but they are potentially life-threatening diseases with unknown pathogenic mechanisms. Complex III(also called Cytochrome c reductase) is directly involved in the electron transport in the mitochondria. Relative to the other respiratory complexes, the complex III is loosely associated with mitochondrial diseases. With the rapid expanding of complex III knowledge in the recent years, multiple mutations in the genes of complex III have been discovered to cause mitochondrial diseases, and this also calls attentions of scientists on the relation between complex III and mitochondrial diseases. Based upon the recent progress of mitochondrial complex III, we summarized the complex III-associated mitochondrial diseases and the future research directions.
【Key words】Mitochondrion; Diseases; Complex III
0 引言
线粒体疾病是一类相对罕见的、但非常严重的遗传性疾病。线粒体疾病主要由电子传递链相关基因突变而引起,其中由复合物I、复合物II和复合物IV突变诱发的线粒体疾病已经有很多报道[1-4],但由复合物III(或称为细胞色素c还原酶)突变引起的线粒体疾病鲜有报道。这一现象可由两个因素来解释。第一,复合物III相对稳定,突变几率比可能较小;第二,对应于复合物III的缺陷,没有明显的病理学和生物化学标记物,使得对其诊断变得格外困难。尽管如此,有复合物III缺陷的病人都伴有较低的辅酶Q:细胞色素c氧化酶活性,同时可以观测到多种不同的临床症状[5-7]。由于复合物III组装机制十分复杂且并不清晰,使得没有办法去解释这些临床症状[8]。
1 线粒体复合物III概述
线粒体复合物III是电子传递链上的核心元素,它介导辅酶Q的氧化和细胞色素c的还原[9-11]。复合物III在结构和功能上,从低等生物到高等生物都是高度保守的[12]。在高等哺乳动物中,复合物III由11个亚基组成[13-14]。其中,细胞色素b由线粒体基因组编码,而其他10个基因均由核基因组编码。复合物III的功能单位为二聚体,而且有证据表明在真核生物中复合物III和复合物IV(或包含复合物I)形成超高分子复合物[15-16]。这一超级复合物的形成有助于提高电子传输的效率和减少自由基的产生。在复合物III的11个亚基中,只有3个亚基是催化亚基,他们分别是细胞色素b,细胞色素c1和Rieske铁硫蛋白。细胞色素b含有两个血红素:高电位血红素(bH)和低电位血红素(bL)。细胞色素c1含有1个c类血红素分子。Rieske铁硫蛋白含有一个2Fe-2S的铁硫簇。其他8个非催化性亚基(UQCRC1,UQCRC2,UQCRH,UQCRB,UQCRQ,Subunit 9,UQCR10和UQCR11)多为结构性元素,但它们具体的功能还不是十分清楚。
复合物III的组装在酵母中研究得最为清晰,目前的证据支持酵母中复合物III的组装机制在高等生物中也是高度保守的[17-18]。随着近年来研究的不断深入,科学家已经绘制出一个相对较为清晰的组装模型。组装首先是由几个核心结构亚基起始的,在组装因子的协助下其他亚基通过蛋白间相互作用而加入以形成亚复合物。其后,不同亚复合物合并而形成复合物III前体复合物。最后,Rieske蛋白在分子伴侣和转运酶的介导下完成转运而嵌入到前体复合物中而完成复合物III的成熟[19]。由于复合物III的结构亚基的鉴定已经很清晰,目前的研究热点集中在这些组装因子是如何帮助结构亚基插入到这些中间复合体而完成组装的[20-22]。基于前期在酵母中的研究,目前在哺乳动物细胞中也取得了一定的进展,例如,多个与酵母同源的组装因子被陆续发现,且它们的功能均是保守的[23-24]。尽管如此,复合物III的组装在哺乳动物中还没有被完全解析,还有待于更深入的研究。
直到近年来,一系列与复合物III相关的基因突变陆续被报道,引起了人们对于复合物III和线粒体疾病的关注[25]。截至到目前,以下基因被报道其突变可引起线粒体疾病:细胞色素b(MTCYB),BCSlL,UQCRB,UQCRQ,UQCRC2,CYC1,TTC19,LYRM7,UQCC2和UQCC3[26]。以下,我们将进一步介绍这些基因突变诱发线粒体疾病的过程和临床表现。
2 结构亚基突变与线粒体疾病
大多数复合物III的结构亚基对于其功能都是必需的,因此这些基因突变很可能导致非常严重的线粒体疾病。
2.1 MTCYB
MTCYB是酵母COB的同源基因,是复合物III中唯一由线粒体基因组编码的基因。最近报道的Arg318Pro突变导致病人出现了严重的肌肉和脑的病变。这个位点位于MTCYB蛋白的保守序列位置,其突变不仅显著地降低了复合物III活性,而且也降低了复合物I的稳定性。这些数据也证明了在高等生物中,复合物I和复合物III是相互作用的,并且彼此相互依存。
2.2 细胞色素c1
细胞色素c1(Cyc1)是重要的核心催化亚基,它接受来自于UQCRFS1的电子,并传递给细胞色素c。CYC1位于染色体8q24上,CYC1突变体被独立地在不同的病人上检测出来[35],突变位点分别是288G>t和642C>T。序列分析表明,这两个位点均是保守性非常强的,对于CYC1功能起着非常重要的作用。这些病人主要临床表现包括代谢异常、乳酸积累。在这些病人肌肉组织中,细胞色素c1水平显著降低,并伴有高血糖症。在酵母中的异源表达实验也验证了这些位点在维持Cyc1结构中的重要作用。
2.3 UQCRB
UQCRB是酵母QCR7的同源基因,与核心亚基细胞色素b相互作用,对于细胞色素b的成熟起着至关重要的作用[27-28]。UQCRB位于染色体8q22上,它的突变首先是从一个土耳其家庭中的女儿身上发现的[29]。这个女孩表现出了较大的肝脏,肝脏乳酸水平升高。同时,淋巴细胞和成纤维细胞均表现出了显著降低的复合物III活性。测序分析表明,女孩UQCRB基因第4外显子在位于338-341的位置有4个碱基缺失。结构分析表明,这个位置的碱基编UQCRB C-末端高度保守的关键氨基酸,这可能解释了致病的原因。
2.4 UQCRQ
UQCRQ是酵母QCR8的同源基因,与UQCRB亚基和核心亚基细胞色素b组成早期组装复合物。UQCRB位于染色体5q31上,它编码一个只有9.5kDa小分子蛋白[30-32]。UQCRQ的突变首先是从一个以色列家族中发现的[33-34],这个突变为208C>T的点突变。在这个家族中,所有的基因突变人者发育迟缓,同时伴有显著的复合物III活性低下等症状。尽管这个突变导致了非常严重的临床表现,有些病人在不断接受治疗的情况下也生存了较长的时间。
3 组装因子突变与线粒体疾病
复合物III的组装因子在组装过程中起着不同程度的作用。对于必需组装因子的基因突变,其潜在的危害性类似于结构亚基的突变;同时,非必需组装因子的突变也可能造成比较明显的危害。
3.1 BCS1L
BCS1L是酵母中BCS1的同源基因,位于染色体2q35上。BCS1L的功能已经十分清晰,它主要负责UQCRFS1的跨膜转运,参与复合物III的最终成熟过程,是组装的必需因子。BCS1L是已知复合物III相关疾病中突变最多的基因[36-37],这些突变导致了多种临床表现,主要相关疾病包括:GRACILE综合症,肝脏疾病,脑病和Bjornstad综合症[38]。这些突变的共同特征是UQCRFS1蛋白水平下降和复合物III前体累积。BCS1L基因相对较大,其致病突变几乎分布在其蛋白的各个区域,而且这些突变的分布和疾病的严重程度并没有显著关系。有些BCS1L病人不仅有复合物III的缺陷,也表现出了复合物IV的临床表现,这些表型和BCS1L可以调节ATP合成效率的功能是完全相符的[39-40]。
3.2 TTC19
TTC19是首先在病人身上发现的参与复合物III组装的蛋白,只存在于高等生物中,而不存在于植物和酵母中[41]。TTC19突变多导致脑病和神经性疾病[42]。尽管每个病人症状的表现型不同,他们的共同特点是有严重的复合物III缺陷[43]。TTC19的功能目前未知,但有证据表明在TTC19突变体中UQCRC1和UQCRC2以单体的形式存在,证明其参与UQCRC1和UQCRC2的组装,但其参与的具体组装步骤还有待于进一步研究。
3.3 MZM1L
MZM1L,又称为LYRM7,是酵母MZM1的同源蛋白[44-45]。MZM1L位于染色体5q23.3上。现有证据表明,Mzm1L是功能非常保守的蛋白,它在复合物III的最后成熟过程中起着非常重要的作用[46]。Mzm1L作为UQCRFS1的分子伴侣,稳定UQCRFS1的结构,避免其降解或形成蛋白聚集体[47]。Mzm1L的突变首先是在一个摩洛哥家庭中的女孩身上发现的[48],不过其父母都是健康人群。这个病人在20个月之前都是健康的,之后其伴有贫血和缺铁的症状。随后,诱发了严重的脑病和代谢性疾病,并于28个月时由严重的呼吸衰竭而死亡。可见,尽管MZM1L在酵母中是非必需组装因子,其突变仍在人体中产生了很大的危害。
3.4 UQCC2
UQCC2是新发现的参与复合物III组装的蛋白因子,它于UQCC1相互作用而促进催化蛋白细胞色素b的合成和组装。UQCC2突变导致体内低水平的细胞色素b,从而严重的影响细胞的呼吸水平。UQCC2突变病人首先也是在婴幼儿身上发现的[49-51],在幼儿时期这个病人表现出了严重的神经系统发育迟缓、听力受损严重和自闭症。急性代谢性疾病发病后12小时后,病人死亡。作为必需组装因子,UQCC2在酵母中的作用较为清晰,这也为疾病的诊断和治疗提供了一定的借鉴。
4 总结
鉴于复合物III在电子传递中的重要的作用,其突变往往导致十分严重的发育性及代谢性疾病。过往的经验表明,早期的医学的诊断和干预能减少患者的痛苦以及延长患者的寿命。随着技术手段的不断完善,尤其是基因组测序成本的大幅度降低和蛋白质学技术的不断应用,为线粒体疾病早期的诊断提供了可能性。其次,对于线粒体疾病的发病机理是建立在人们对线粒体复合物组装机制的认知的基础之上的。尽管哺乳动物有其专一的组装因子和组装步骤,但其大体上是和低等生物的组装机制是保守的。截止目前,人们对酵母线粒体复合物III的早期和晚期组装过程的了解是基本清晰,这也直接帮助解释了以上基因突变和线粒体疾病的关系,也体现了基础生物学对于医学的贡献。在今后的研究中,科学家应该在加强对病人的诊断和治疗的同时,也应该继续加大对组装过程的研究,以期能在不讲的将来绘制出整个复合物III的组装过程。
【参考文献】
[1]Atkinson A, Smith P, Fox JL, Cui TZ, Khalimonchuk O, Winge DR. The LYR protein Mzm1 functions in the insertion of the Rieske Fe/S protein in yeast mitochondria[J].Mol Cell Biol 2011;31:3988-96.
[2]Hayashi K, Cui TZ, Kawamukai M. Multiple roles of coenzyme Q in mitochondrial function, sulfide metabolism and life span[C].5th international fission yeast meeting 2009;Tokyo, Japan.
[3]DiMauro S, Schon EA, Carelli V, Hirano M. The clinical maze of mitochondrial neurology[J].Nat Rev Neurol 2013;9:429-44.
[4]Plaza Davila M, Martin Munoz P, Tapia JA, Ortega Ferrusola C, Balao da Silva CC, Pena FJ. Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility[J].PLoS One 2015;10:e0138777.
[5]Cui TZ, Kawamukai M. Analysis of CoQ10 gene in fission yeast[C].5th Conference of International Coenzyme Q10 Association 2007;Kobe, Japan.
[6]于雪颖,殷峻.2型糖尿病骨骼肌和肝脏线粒体功能障碍的研究进展[J].中国糖尿病杂志,2015:11:46-52.Yu XY, Yin J. Research progress of mitochondrial dysfunction in skeletal muscle and liver in type 2 diabetes[J].Chinese Journal of Diabetes, 2015;11:46-52.
[7]Antoun G, McMurray F, Thrush AB, Patten DA, Peixoto AC, Slack RS, et al. Impaired mitochondrial oxidative phosphorylation and supercomplex assembly in rectus abdominis muscle of diabetic obese individuals[J].Diabetologia 2015;58:2861-6.
[8]Orr AL, Vargas L, Turk CN, Baaten JE, Matzen JT, Dardov VJ, et al. Suppressors of superoxide production from mitochondrial complex III[J].Nat Chem Biol 2015;11:834-6.
[9]Cui TZ, Conte A, Fox JL, Zara V, Winge DR. Modulation of the respiratory supercomplexes in yeast: enhanced formation of cytochrome oxidase increases the stability and abundance of respiratory supercomplexes[J].J Biol Chem 2014;289:6133-41.
[10]李洁,王玉侠,张耀斌,邢良美.补充辅酶Q10及递增负荷跑台运动训练对大鼠心肌和脑线粒体电子传递链酶复合体活性的影响[J].体育科学,2008;1:24-49.
[11]Borek A, Kuleta P, Ekiert R, Pietras R, Sarewicz M, Osyczka A. Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1(S151P in Human) Affects the Equilibrium Distribution of[2Fe-2S] Cluster and Generation of Superoxide[J].J Biol Chem 2015;290:23781-92.
[12]Bonke E, Zwicker K, Drose S. Manganese ions induce H2O2 generation at the ubiquinone binding site of mitochondrial complex II[J].Arch Biochem Biophys 2015;580:75-83.
[13]Cui TZ, Katayama S, Kawamukai M. Analysis of coq10 gene in Schizosaccharomyces pombe[C].Annual conference of Japan society for bioscience, biotechnology, and agrochemistry 2007;Tokyo, Japan.
[14]Akarsu S, Torun D, Erdem M, Kozan S, Akar H, Uzun O. Mitochondrial complex I and III mRNA levels in bipolar disorder[J].J Affect Disord 2015;184:160-3.
[15]李凤杰,沈丽君,方合志.线粒体呼吸链复合体I[J].中国细胞生物学学报,2014;36:1-9.
[16]Kolossov VL, Beaudoin JN, Ponnuraj N, DiLiberto SJ, Hanafin WP, Kenis PJ, et al. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III[J].Am J Physiol Cell Physiol 2015;309:C81-91.
[17]Cui TZ, Kawamukai M. Analysis of CoQ10 gene in fission yeast[C].Annual conference of Japanese coenzyme Q society 2008;Tokyo, Japan.
[18]Markevich NI, Hoek JB. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain[J].Biochim Biophys Acta 2015;1847:656-79.
[19]Belskie KM, Van Buiten CB, Ramanathan R, Mancini RA. Reverse electron transport effects on NADH formation and metmyoglobin reduction[J].Meat Sci 2015;105:89-92.
[20]Smith P, Aaron E, Cui TZ, Fox J. Khalimonchuk O, Winge DR. Discerning the Role of Mzm1: a novel bc1complex assembly factor[C].Gordon Conference of Cell Biology of Metals 2011;Rhode Island, US.
[21]Singh N, Hroudova J, Fisar Z. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria[J].J Mol Neurosci 2015;56:926-31.
[22]Zhu X, Zhang M, Liu J, Ge J, Yang G. Ametoctradin is a potent Qo site inhibitor of the mitochondrial respiration complex III[J].J Agric Food Chem 2015;63:3377-86.
[23]Cui TZ, Kawamukai M. Coq10, a mitochondrial coenzyme Q binding protein, is required for proper respiration in Schizosaccharomyces pombe[J].FEBS J 2009;276:748-59.
[24]van Rahden VA, Fernandez-Vizarra E, Alawi M, Brand K, Fellmann F, Horn D, et al. Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome[J].Am J Hum Genet 2015;96:640-50.
[25]Akarsu S, Torun D, Bolu A, Erdem M, Kozan S, Ak M, et al. Mitochondrial complex I and III gene mRNA levels in schizophrenia, and their relationship with clinical features[J].J Mol Psychiatry 2014;2:6.
[26]Cui TZ, Kaino T, Kawamukai M. A subunit of decaprenyl diphosphate synthase stabilizes octaprenyl diphosphate synthase in Escherichia coli by forming a high-molecular weight complex[J].FEBS Lett 2010;584:652-6.
[27]Fox JL, Atkinson A, Smith P, Cui TZ, Khalimonchuk O, Winge DR. Mzm1 is an assembly factor for Rieske iron-sulfur protein insertion into ubiquinol-cytochrome c reductase[C].FASEB Conference: Mitochondrial Assembly and Dynamics in Health, Disease and Aging 2011;Colorado, USA.
[28]Stickles AM, de Almeida MJ, Morrisey JM, Sheridan KA, Forquer IP, Nilsen A, et al. Subtle changes in endochin-like quinolone structure alter the site of inhibition within the cytochrome bc1 complex of Plasmodium falciparum[J]. Antimicrob Agents Chemother 2015;59:1977-82.
[29]Haut S, Brivet M, Touati G, Rustin P, Lebon S, Garcia-Cazorla A, et al. A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis[J].Hum Genet 2003;113:118-22.
[30]Fox JL, Cui TZ, Smith PM, Khalimonchuk O, Winge DR. Role of the Assembly Factor Mzm1 in the Biogenesis of the Mitochondrial Cytochrome bc1 Complex[C].Bioenergetics Gordon Research Conference: Molecular Mechanisms and Fundamental Principles to Cellular Energetics in Health and Disease 2013;Andover, NH, US, June 23-28, .
[31]Desmurs M, Foti M, Raemy E, Vaz FM, Martinou JC, Bairoch A, et al. C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization[J].Mol Cell Biol 2015;35:1139-56.
[32]Shrotriya S, Deep G, Lopert P, Patel M, Agarwal R, Agarwal C. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells[J].Mol Carcinog 2015;54:1734-47.
[33]Cui TZ, Kawamukai M. Coenzyme Q binding proteins[C].Annual conference of Japanese isoprenoids society 2008;Sendai, Japan.
[34]Barel O, Shorer Z, Flusser H, Ofir R, Narkis G, Finer G, et al. Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ[J].Am J Hum Genet 2008;82:1211-6.
[35]Gaignard P, Menezes M, Schiff M, Bayot A, Rak M, Ogier de Baulny H, et al. Mutations in CYC1, encoding cytochrome c1 subunit of respiratory chain complex III, cause insulin-responsive hyperglycemia[J].Am J Hum Genet 2013;93:384-9.
[36]Cui TZ, Smith P, Atkinson A, Fox J, Winge DR. Mzm1 collaborates with AAA ATPase Bcs1 for the maturation and translocation of the Rieske Fe/S protein Rip1[C].FASEB Conference: Trace Elements in Biology &Medicine 2012 Colorado, USA.
[37]Ezgu F, Senaca S, Gunduz M, Tumer L, Hasanoglu A, Tiras U, et al. Severe renal tubulopathy in a newborn due to BCS1L gene mutation: effects of different treatment modalities on the clinical course[J].Gene 2013;528:364-6.
[38]李洁,汪浩.不同强度急性疲劳运动对大鼠心肌线粒体电子传递链酶复合体活性的影响[J].中国运动医学杂志,2007;3:112-8.
[39]Cui TZ, Kawamukai M. Stabilization of octaprenyl diphosphate synthase in E. coli by formation of a high-molecular complex with other diphosphate synthases[C]. TERPNET 2009 Meeting, 2009;Tokyo, Japan.
[40]Bhattacharya K, Bag AK, Tripathi R, Samanta SK, Pal BC, Shaha C, et al. Mahanine, a novel mitochondrial complex-III inhibitor induces G0/G1 arrest through redox alteration-mediated DNA damage response and regresses glioblastoma multiforme[J].Am J Cancer Res 2014;4:629-47.
[41]崔铁忠,冷平,李宝.柿子果酒酵母菌的筛选研究[J].中国酿造,2005;24:21-3. Cui TZ, Leng P, Li B. Screen fo yeast for persimmon wine[J]. China Brewing 2005;24:21-3.
[42]Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, et al. Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies[J].Nat Genet 2011;43:259-63.
[43]李红智,刘丹慧,吕建新.线粒体电子传递系统的组装及其生物学意义[J].生命科学,2011;23:1042-51.
[44]Cui TZ, Smith PM, Fox JL, Khalimonchuk O, Winge DR. Late-stage maturation of the Rieske Fe/S protein: Mzm1 stabilizes Rip1 but does not facilitate its translocation by the AAA ATPase Bcs1[J].Mol Cell Biol 2012;32:4400-9.
[45]Beutner G, Eliseev RA, Porter GA, Jr. Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes[J].PLoS One 2014;9:e113330.
[46]Park JH, Lee HJ, Park HH, Rhee WJ, Park TH. Stabilization of cellular mitochondrial enzyme complex and sialyltransferase activity through supplementation of 30Kc19 protein[J].Appl Microbiol Biotechnol 2014;99:2155-63.
[47]Fox J, Atkinson A, Smith P, Cui TZ, Khalimonchuk O, Winge D. Biogenesis of Mitochondrial Electron Transport Chain Complex III: Role of the Assembly Factor Mzm1,[C].64th Southeastern Regional Meeting of the American Chemical Society 2012;Raleigh, NC, November 14-17.
[48]Invernizzi F, Tigano M, Dallabona C, Donnini C, Ferrero I, Cremonte M, et al. A homozygous mutation in LYRM7/MZM1L associated with early onset encephalopathy, lactic acidosis, and severe reduction of mitochondrial complex III activity[J].Hum Mutat 2013;34:1619-22.
[49]Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing[J].Sci Transl Med 2012;4:118ra10.
[50]Ge SQ, Zheng HZ, Cui TZ, et al. Small non-coding RNAs in mammalian male germ cells and their implications for male infertility[J].Andrology,2015,4(150):1-8.
[51]崔铁忠,李银霞,王燕,等.线粒体电子传递链复合物III的组装及其研究进展[J].医学研究与教育,2016[已接受].Cui TZ, Li YX, Wang Y, et al. Assembly of complex III of mitochondrial electron transport chain and its progress[J].Med Research and Education, 2016,[Epub ahead of print].
[责任编辑:王楠]