徐卓函
摘 要:大数据和人工智能是今天计算机学科的两个重要的分支。近年来,有关大数据和人工智能这两个领域所进行的研究一直从未间断。其实,大数据和人工智能的联系千丝万缕。首先,大数据技术的发展依靠人工智能,因为它使用了许多人工智能的理论和方法。其次,人工智能的发展也必须依托大数据技术,需要大数据进行支撑。大数据时代背景下,未来人工智能会有哪些创新和发展,大家拭目以待。
关键词:大数据 人工智能 云计算 数据挖掘 机器人 人工神经网络
中图分类号:TP18 文献标识码:A 文章编号:1672-3791(2015)11(c)-0030-02
1 什么是大数据
1.1 大数据的定义
大数据是一个数据体量和数据类别都十分庞大的数据集。这个庞大的数据集,我们今天还无法用传统的数据库工具对它的内容进行获取和处理。整体概括起来,大数据具有数据类型多、数据规模大、数据真实性高、数据处理快等四大特征。
大数据的特征:第一,是指数据类型非常多,它的数据来自多种数据源,而非单一的一种数据源,数据的种类和数据的格式日渐丰富;第二,是指数据规模非常大,通常在10TB左右,规模非常庞大;第三,是指数据的真实性非常高,一些新的数据源渐渐兴起,打破了之前传统的数据源,今天的企业愈发需要这些有效的信息,以确保其真实性及安全性;第四,是指数据处理的速度非常快,能够做到数据的及时快速处理。
1.2 大数据的发展历程
“大数据”一词最早提出的是麦肯锡研究院于2011年发布的研究报告《大数据》。之后,经美国高德纳公司和美国一些科学家的宣传推广,渐渐地大数据概念开始流行起来。
大数据发展的萌芽期,是20世纪90年代至21世纪初,此时处于数据挖掘技术阶段。这一时期,随着数据挖掘理论和技术的一步步成熟,已开始有一些与商业相关的智能工具开始被人们所应用,如专家系统、数据仓库和知识管理系统等。
大数据发展的突破期,是2003—2006年,此时处于自由探索非结构化数据阶段。这一时期,非结构化数据的迅猛发展带动了大数据技术的快速发展。此时,可以以2004年Facebook的创立为标志,此时是大数据发展的突破期。
大数据发展的成熟期,是2006—2009年,此时大数据技术形成并行运算与分布式系统。
到了2010年,智能手机开始大量涌现,其应用日益广泛。此时,数据的碎片化、流媒体、分布式等特征更加凸显,移动数据开始急剧增长。
近年来,大数据技术的发展十分迅猛,开始不断向社会各行各业步步渗透,从而导致大数据的技术领域和行业边界越来越不明显,也越来越模糊,大数据的应用创新已经超越了大数据技术的本身,越来越受到各行各业的热捧和青睐。
今天,可以毫不夸张地说,大数据技术能够改变一个领域,为每一个领域带来变革性和创新。
2 什么是人工智能
2.1 人工智能的定义
人工智能是一门新的技术科学,它主要研究和开发用于模拟人类的智能的理论、方法和技术的应用系统,它同样也是计算机学科的一个重要分支。人工智能的终极目的是掌握智能的根本实质,从而生产出一种全新的能以人类智能相似和相近的方式快速做出反应的智能机器。可以说人工智能的发展与计算机科学与技术的发展紧密相连,密不可分。
2.2 人工智能的发展历程
“人工智能”一词最初是在1956年美国达特茅斯学院提出的。
人工智能的发展经历了半个多世纪,它的发展历程十分曲折,大致可分为三个发展阶段:
20世纪40年代中期到50年代中期为第一阶段,被称为人工智能启蒙探索时期。1950年,英国数学家图灵发表了《计算的机器与智能》,提出了机器可以思维进而帮助人类的问题,直接推动了现代人工智能的发展。
20世纪50年代中期到80年代末期为第二阶段,被称为人工智能经典符号时期。人工智能与认知科学、认知心理学等三门学科开始了相依为命的发展历程。
20世纪80年代末期到现在为第三阶段,被称为人工智能联结主义时期。这一时期,主要采用分布处理的方法通过人工神经网络来模拟人脑的智力活动。
3 大数据与人工智能的关系
大数据和人工智能,近年来这两个领域的研究相互交叉促进,产生了很多新的方法、应用和价值。
今天,人类拥有了对数据规模大、数据类型多、数据流转快和数据真实性高的大数据进行存取、检索、分类和统计的能力,完全得益于大数据技术的发展。而且,人工智能领域的一些理论和方法,已经开始用于大数据分析方面,并取得了一定的效果。
研究发现,解决人工智能的扩展性和成长性问题,离不开大数据技术。
以前,人工智能技术还不能实现与人类相似的学习研究能力。原因在于,人工智能看似简单,实际上是一件非常繁琐和复杂的事情,产生人工智能的两个必要条件要有海量数据的支撑和对这些数据的极强处理能力,而以前的机器都不具备这两个条件。
人工智能其实就像人类一样,是需要拥有大量的知识和丰富的经验。在这些知识和经验的背后是需要大量的数据支撑。大数据技术的进一步发展,为储存、分析大量的数据提供了一定的技术支持,使机器得到的数据量和拥有的数据处理能力,与形成人工智能所需要的数据量和数据处理能力相匹配。只有这样,人工智能才能得到发展。人工智能的发展,反过来进一步推动大数据技术的向前发展,形成有效的相互推动作用。
与其说人工智能的发展依靠大数据,不如说大数据开启人工智能新篇章。人工智能领域的一些理论和方法,能够有效地提升大数据的使用价值。与此同时,大数据技术的发展也将在为人工智能提供一个用武之地。
4 未来人工智能的发展
随着大数据技术和计算机科学技术的不断发展,未来人工智能的发展主要会在以下几个方面:模式识别、专家系统、符号计算、人工神经网络和机器情感。
4.1 模式识别
模式识别,顾名思义,是指通过计算机采用数学计算的方法来研究模式的自动判读、处理等识别功能。
可以断定,随着计算机技术的不断向前发展,人类一定能对复杂的信息处理过程做深入的进一步的研究。与此同时,模式识别功能也为人类认识自身智能创造了可行的线索和提供了必要的帮助。
在现实生活中,对人类来说最重要的是对光学信息以及声学信息的判断和识别。大家知道,准确、高效是计算机识别的最大特点。例如,今天已经应用很广的指纹识别功能就是一个典型的案例。
人类每个人的指纹独一无二,具有唯一性。早在很多年前,我国有关专家就对数字图像的离散几何性质进行了深入的观察和研究,进而建立了从人类指纹的灰度图像精确计算纹线局部方向,从而提取了人类指纹特征信息的相关理论与算法。
这一研究发现,随后就被用于全自动指纹鉴定系统,从而开创了我国指纹自动识别系统应用的先河。
4.2 专家系统
专家系统,是未来人工智能发展的一个重要方向。专家系统在今天的生活中已被广泛应用。其实,专家系统是指一个具有大量的行业或领域专门的知识与经验的程序系统。它主要利用计算机科学技术和人工智能技术为基础,先根据某一行业或领域一些权威专家或多个专家所提供的一些相关知识和相关经验,再进行深入推理和判断,进而可以模拟人类专家的判断决策过程。通过这个过程,从而来帮助人们解决现实中一些需要人类专家来处理的一些复杂的问题。
实现专家系统必须要有两个条件:一是要拥有类似于该领域专家解决实际问题的推理机制,二是建立一个完善的存储有该领域中经过专家事先总结、分析并按某种模式表示的专家知识库。这两个条件缺一不可,否则无法进行专家识别。
研究发现,专家系统能对人类输入的信息进行快速处理,并运用相关的行业和领域知识进行推理判断,进而作出相应的判断和决策。
科学家们对专家系统的研究由来已久,一直以来被科学家们所重视。今天,各种各样的专家系统已遍布了各行各业的不同领域,并且取得巨大的成功。
目前,专家系统可以分为十种类型:教育型、预测型、解释型、维修型、规划型、诊断型、调试型、设计型、控制型等。
4.3 符号计算
科学计算是计算机发明以来最基本和主要的用途之一。科学计算可分为两类:一类是纯数值的计算,另一类是符号计算。符号计算与传统的纯数值计算不同,它是一种智能化的计算,主要通过处理相应的符号来进行的计算。
在符号计算中,符号可以代表的种类非常非常多,如实数、复数、整数、有理数等,还可以用符号来代表函数、多项式、集合等。
很久以前,人类就希望能有一个可以进行符号计算的计算机软件系统来帮助人们进行计算。可以追溯到20世纪50年代末,人们就开始对此进行研究。今天,随着计算机科学技术和人工智能技术的进一步发展,已相继出现了多种可以进行符号计算的计算机系统软件。
这些符号计算软件功能齐全,且具有共同的特点:一是人机界面友好,命令输入方便灵活,反应快捷,操作便捷;二是在操作界面上,一般都支持交互式处理,人通过键盘输入命令,计算机处理后即显示结果。
虽然计算机只是在执行人给它的指令,具有一定的局限性,但是在符号计算中已经有了相当大的突破,相信在未来的符号计算领域会有更大的进步和发展。
4.4 人工神经网络和机器情感
计算机技术发展到今天,人工智能的基本思想已经在许多领域中得到应用。未来人工智能应用最重要的一个新领域就是人工神经网络。
研究表明,情感属于智能的一部分,而并不是与智能相分离的。因此,可以断言人工智能未来发展的下一个突破就是要赋予计算机情感能力,让智能情感化。
人工智能进入21世纪的今天,正酝酿着新的突破,创造新的奇迹。
未来人工智能的应用将会为人类创造出更多更高级的智能“产品”来服务人类自身,而且人工智能将会在越来越多的领域会超越人类智能。
大数据时代背景下,相信人工智能将会得到长足的发展,更多的发现、发明和成果将会出现在大家面前。仿佛可以看到,与人类水平相同甚至超越人类自身智能就快要实现。
相信这一刻就在不远的将来,让大家拭目以待。
参考文献
[1] 蔡自兴,徐光祐.人工智能及其应用[M].4版.清华大学出版社,2010.
[2] (加)海金.神经网络与机器学习[M].3版.北京:机械工业出版社,2011.
[3] (美)库兹韦尔.奇点临近[M].北京:机械工业出版社,2011.
[4] (英)迈尔-舍恩伯格.大数据时代[M].杭州:浙江人民出版社,2013.
[5] 涂子沛.数据之巅[M].北京:中信出版社,2014.