徐晓惠, 张继业, 施继忠, 任松涛
(1.西华大学 汽车与交通学院,610039 成都;2. 牵引动力国家重点实验室(西南交通大学),610031 成都; 3.浙江师范大学 工学院, 321004 浙江 金华)
脉冲干扰时滞复值神经网络的稳定性分析
徐晓惠1, 张继业2, 施继忠3, 任松涛1
(1.西华大学 汽车与交通学院,610039 成都;2. 牵引动力国家重点实验室(西南交通大学),610031 成都; 3.浙江师范大学 工学院, 321004 浙江 金华)
摘要:为分析脉冲干扰因素对复值神经网络动态行为的影响,研究一类具有混合时滞和脉冲干扰的复值神经网络的平衡点的全局指数稳定性. 在假定神经元状态、激活函数以及关联矩阵定义在复数域的情况下,利用M矩阵理论、向量Lyapunov函数法以及数学归纳法,分析确保该系统平衡点的存在性、唯一性以及全局指数稳定性的充分条件,并给出了指数收敛率,最后通过一个数值仿真算例验证了所得结论的正确性. 结果表明:时滞和脉冲干扰均会降低神经元状态的指数收敛速度,所建立的稳定性判据推广了现有结论.
关键词:复值神经网络; 脉冲干扰; 混合时滞; 全局指数稳定性; 矢量Lyapunov函数
近年来,复值神经网络在联想记忆[1]、模式识别[2]、优化问题求解[3]等领域得到了越来越多的应用,关于复值神经网络的其他应用参见文献[4]. 神经网络平衡点的存在性以及收敛性是将其进行硬件设计的前提条件,因此对复值神经网络平衡点的动力学行为的研究是非常必要的. 文献[5]研究了一类具有固定时滞的递归复值神经网络,并利用LMI方法给出了判定该系统全局稳定的充分条件. 文献[6]研究了一类离散复值神经网络,并给出了判定平衡点存在性、唯一性和指数稳定的判定定理. 文献[7]在假设复值激活函数关于神经元状态分别满足有界或Lipschitz条件的情况下,利用LMI方法研究了一类具有固定时滞的复值神经网络平衡点的动态行为. 文献[8]研究了一类递归复值神经网络的多稳态问题,但在模型中没有考虑时滞. 时滞现象在实际系统中是不可避免的, 在神经网络中引入时间滞后参量,有利于移动目标的图像处理、移动物体速度的确定和模式分类. 文献[9-10]在研究一类复值神经网络平衡点的多稳态问题时在模型中引入了时滞,并得到了相应的稳定性充分判据. 文献[11-12]也初步研究了几类具有混合时滞的复值神经网络的平衡点的动态行为,并利用向量Lyapunov函数法的得到了确保系统平衡点存在性、唯一性以及指数稳定性的充分判据. 文献[5-12]所考虑的复值神经网络都是确定型系统,在实现复值神经网络硬件系统中,由于频率转换或者开关闭合等操作,使得系统的状态在某些离散时刻会发生瞬间跳变,即系统状态受到脉冲干扰. 关于具有脉冲干扰的实值神经网络的动态行为分析,文献[13-17]已经作了大量的研究,然而目前尚未有学者对具有脉冲干扰的混合时滞复值神经网络平衡点的动态行为进行过相关研究. 基于以上分析,本文将在一类复值神经网络模型中同时考虑混合时滞和脉冲干扰,利用向量Lyapunov函数法和数学归纳法,研究该系统平衡点的模的全局指数稳定性,并得到确保系统全局指数稳定的充分条件.
1模型描述、基本假设以及引理
(1)
其中:zk∈C为第k个神经元状态,k=1,2,…,n,m∈Ν,n为神经元个数;Δzk(tm)为在离散时刻tm系统状态的突变量,离散集{tm}满足0≤t0
假设连续函数θkj:[0,+)→[0,+),满足
(2)
其中:μkj(β)为[0,δ)上的连续函数,且μkj(0)=1,这里δ>0.
假设系统(1)的初始条件为zk(s)=φk(s),其中φk(s)为(-,0]上的有界连续函数. 令为系统(1)的平衡点.
定义1若存在常数Γ>0和λ>0,对所有U∈Cn及t≥0,有‖z(t)-z#‖≤sups∈(-,0]‖φ(s)-z#‖Γexp(-λt)成立,则称系统(1)的平衡点z#是全局指数稳定的.
假设1假设激活函数fk(·)满足全局Lipschitz条件,即存在Lipschitz常数lk>0,使得对所有zk,vk∈C,有|fk(zk)-fk(vk)|≤lk|zk-vk|成立,k=1,2,…,n. 令L=diag(l1,l2,…,ln).
引理1[11]对于矩阵A=(akj)n×n∈Rn×n,如果所有非对角元素akj≤0,k≠j,则下面陈述是等价成立的:a) A为M矩阵;b) A的各阶顺序主子式均为正;c) 存在ξ∈Rn>0,使得Aξ>0;d) A的所有特征根的实部为正.
2主要结论
μkj(λ)|pkj|)·lj]<0 .
(3)
这里k=1,2,…,n,m∈N. 那么系统(1) 针对任意外部常输入U∈Cn,均存在唯一平衡点z#,且该平衡点是全局指数稳定的,指数收敛率为0.5(λ-η).
(4)
其中k,j=1,2,…,n且k≠j.
(5)
定义曲线ζ={ω(χ):ωk=ξkχ,χ>0,k=1,2,…,n}和集合Ω(ω)={h:0≤h≤ω,ω∈ζ}. 显然当χ>χ′, Ω(ω(χ))⊃Ω(ω(χ′)). 令ξmax=max1≤k≤n{ξk},ξmin=min1≤k≤n{ξk},χ0=δ‖ψ‖2/ξmin,其中δ>1为一个常数,则
这与假设D+Vk(t*)≥0是矛盾的. 因此有Vk(t)<ξkχ0,即|zk(t)|<(2ξkχ0exp(-λt))0.5,k=1,2,…,n,0 接下来,采用数学归纳法证明: k=1,2,…,n,tm-1≤t (6) 当m=1时,|zk(t)|2<2η0ξkχ0exp(-λt),k=1,2,…,n,t0≤t (7) 由于ηm≥1,进而不等式(7)变为 (8) 进一步可以得到下面的不等式成立,即 k=1,2,…,n,tm≤t (9) 若上式不成立,那么存在某个子系统k′和时刻t′,使得D+Vk′(t′)≥0以及 tm≤t′ tm-τ 这与假设D+Vk′(t′)≥0是矛盾的. 因此不等式(9)是成立的. 根据数学归纳法,有 k=1,2,…,n,tm-1≤t (10) |zk(t)|2<2exp(η(t1-t0))exp(η(t2-t1))…exp(η(tm-1-tm-2))ξkχ0exp(-λt)=2exp(η(tm-1-t0))ξkχ0exp(-λt)<2ξkχ0exp(-(λ-η)(t-t0)),tm-1≤t 进一步,有 ‖z(t)‖<(2δ‖ψ‖2ξmax/ξmin)0.5exp(-0.5(λ-η)(t-t0))=Γ‖ψ‖exp(-0.5(λ-η)(t-t0)), 其中Γ=(2δξmax/ξmin)0.5. 通过定理1所建立的稳定性判据,可得出如下结论:1) 对于系统(1),当系统中没有脉冲干扰因素时,该模型与文献[11]中所研究的模型是相同的. 判定该系统平衡点的存在性、唯一性以及全局指数稳定性的充分条件是假设1成立且矩阵Q为M矩阵. 该结论即为文献[11]中的定理1和定理2. 本文所建立的判据推广了现有结论. 2) 文献[5,8,10-11]以及文献[7]中的定理2在研究各类复值神经网络的动态行为时,继续沿用了分析实值神经网络动态行为的方法,即采用了将复值神经网络系统分解成实部系统和虚部系统的方法,得到了确保系统实部状态和虚部状态稳定的充分判据. 本文在研究该复值系统时,并没有对系统进行实部与虚部的拆分,所建立的稳定性判据为神经元状态的模的全局指数稳定性. 此外,文献[9]和文献[7]中定理3也给出了判定一类复值神经网络系统神经元状态的模的稳定性的充分条件,但在系统模型中未考虑无穷时滞和脉冲干扰因素. 3) 当系统(1)中仅含有可变时滞或者无穷时滞时,令定理1的不等式条件(3)中的bkj=0或pkj=0,其中k,j=1,2,…,n,其他假设条件不变,便可得到确保相应系统平衡点全局指数稳定的充分条件. 3算例 考虑如下复值神经网络 (11) 其中z1(t)=x1(t)+y1(t)i,z2(t)=x2(t)+y2(t)i. 加权矩阵分别为 激活函数为 脉冲发生时刻为{0.2 s, 0.4 s, 0.6 s, 0.8 s,…},且 经计算,有l1=0.50,l2=0.25,η=6.93. 令系统(11)中的时延为τ1j=0.025-0.015sint,τ2j=0.03-0.01cost,j=1,2,t≥0. 令 令初始条件为 进一步计算有 μ1j(λ)|p1j|)·lj]=-0.441<0, μ2j(λ)|p2j|)·lj]=-1.041<0. 根据定理1可得结论:系统(11)存在唯一平衡点,且该平衡点是指数稳定的,指数收敛率为0.535. 关于系统(11)的仿真结果见图1、2,仿真结果验证了以上结论. 图1 系统(11)状态的模曲线 图2 系统(11)状态的实部曲线和虚部曲线 4结论 1)针对一类具有脉冲干扰的混合时滞复值神经网络,在没有沿用实值神经网络研究方法的情况下,对其平衡点的模的全局指数稳定性进行分析. 利用M矩阵理论、向量Lyapunov函数法以及数学归纳法,得到了确保该系统平衡点的模全局指数稳定性的充分条件. 2)稳定性判据同时显示出了时滞和脉冲干扰对系统平衡点指数收敛速度的影响,即时滞越大,脉冲干扰越强烈,系统神经元状态收敛的速度越慢. 所取得的研究成果推广了现有结论. 3)通过数值算例验证了得的结论的可行性,同时算例仿真结果也显示该结论的正确性. 参考文献 [1] LEE D L. Improvement of complex-valued Hopfield associative memory by using generalized projection rules [J]. IEEE Transactions on Neural Networks, 2006, 17(5): 1341-1347. [2] NAIT-CHARIF H. Complex-valued neural networks fault tolerance in pattern classification applications [C] //Proceedings of the Second WRI Global Congress on Intelligent Systems. Wuhan: IEEE, 2010: 154-157. [3] JIANG D. Complex-valued recurrent neural networks for global optimization of beamforming in multi-symbol MIMO communication systems [C] //Proceedings of International Conference on Conceptual Structurtion. Shanghai: Springer, 2008: 1-8.[4] HIROSE A. Recent progress in applications of complex-valued neural networks [C] // Proceedings of 10th International Conference on Artificiality Intelligence Soft Computing II. Zakopane: Springer, 2010: 42-46. [5] ZHANG Ziye, LIN Chong, CHEN Bing. Global stability criterion for delayed complex-valued recurrent neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(9): 1704-1708. [6] SREE H, MURTHY G. Global dynamics of a class of complex valued neural networks [J]. International Journal Neural Systems, 2008, 18(2): 165-171. [7] HU Jin, WANG Jun. Global stability of complex-valued recurrent neural networks with time-delays [J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(6): 853-864. [8] HUANG Yujiao, ZHANG Huaguang, WANG Zhanshan. Multistability of complex-valued recurrent neural networks with real-imaginary-type activation functions [J]. Applied Mathematics and Computation, 2014, 229: 187-200. [9] ZHAO Zhenjiang, SONG Qiankun. Global exponential stability of complex-valued neural networks with time-varying delays on time scales [C] // Proceedings of the 33rd Chinese Control Conference. Nanjing: Control Systems IEEE, 2014: 5080-5085. [10]ZHOU Bo, SONG Qiankun. Boundedness and complete stability of complex-valued neural networks with time delay [J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(8): 1227-1238. [11]徐晓惠, 张继业, 赵玲. 一类混合时滞复值神经网络的动态行为分析[J]. 西南交通大学学报, 2014, 49(3): 470-476. [12]XU Xiaohui,ZHANG Jiye, SHI Jizhong. Exponential stability of complex-valued neural networks with mixed delays [J]. Neurocomputing, 2014, 128: 483-490. [13]SONG Qiankun, ZHANG Jiye. Global exponential stability of impulsive Cohen-Grossberg neural network with time-varying delays [J]. Nonlinear Analysis: Real World Applications,2008, 9(2): 500-510. [14]LI Liangliang, JIAN Jigui. Exponential convergence and Lagrange stability for impulsive Cohen-Grossberg neural networks with time-varying delays [J]. Journal of Computational and Applied Mathematics, 2015, 277: 23-35. [15]TOJTOVSKA B, JANKOVIC S. On some stability problems of impulsive stochastic Cohen-Grossberg neural networks with mixed time delays [J]. Applied Mathematics and Computation, 2014, 239: 211-226. [16]杨治国, 黄玉梅. 具有混合时滞的脉冲Cohen-grossberg神经网络的指数耗散性[J]. 四川大学学报(自然科学版), 2010, 47(3): 464-468. [17]施继忠, 徐晓惠, 张继业. 扩散反应脉冲Cohen-Grossberg神经网络的鲁棒稳定性[J]. 西南交通大学学报, 2010, 45(4): 596-602. (编辑魏希柱) Stability analysis of delayed complex-valued neural networks with impulsive disturbances XU Xiaohui1, ZHANG Jiye2, SHI Jizhong3, REN Songtao1 (1.School of Automobile and Transportation, Xihua University, 610039 Chengdu, China; 2.National Traction Power Laboratory(Southwest Jiaotong University), 610031 Chengdu, China; 3. College of Engineering, Zhejiang Normal University, 321004 Jinhua, Zhejiang,China) Abstract:To investigate the effect of impulsive disturbances on the dynamical behavior of the equilibrium point of complex-valued neural networks, the globally exponential stability of a class of the system with mixed delays and impulsive disturbances was studied in this paper. Assume that the neuron states, activation functions and interconnected matrix were defined in the complex domain. Some sufficient conditions for assuring the existence, uniqueness and globally exponential stability of the equilibrium point of the system were obtained by applying the M matrix theory, the mathematical induction and the vector Lyapunov function methods. Meanwhile, the exponential convergence rate was proposed. It can be concluded from the established sufficient conditions that the exponential convergence rate of the neurons is reduced by both time delays and the impulsive disturbances. The stability criteria established in this paper generalize the existing results. Finally, a numerical example with simulations was given to show the correctness of the obtained results. Keywords:complex-valued neural networks; impulsive disturbances; mixed delays; globally exponential stability; vector Lyapunov function 中图分类号:TP391 文献标志码:A 文章编号:0367-6234(2016)03-0166-05 通信作者:徐晓惠,xhxu@163.com. 作者简介:徐晓惠(1982—),女,副教授;张继业(1965—),男,教授,博士生导师. 基金项目:国家自然科学基金(11402214, 51375402, 11572264, 61273021);四川省青年科技创新研究团队专项计划 (2015TD0021);教育部“春晖计划”合作科研项目(Z2014075);浙江省自然科学基金(LY14E08006). 收稿日期:2014-12-10. doi:10.11918/j.issn.0367-6234.2016.03.028