几种常见被动采样技术在水环境中研究进展

2016-04-18 05:19汪盼盼王静刘铮铮陈金媛
环境监控与预警 2016年4期
关键词:采样器极性被动

汪盼盼,王静,刘铮铮,陈金媛

(1. 浙江工业大学环境学院,浙江 杭州 310014 ,2. 浙江省环境监测中心,浙江 杭州 310015)

几种常见被动采样技术在水环境中研究进展

汪盼盼1,王静2,刘铮铮2,陈金媛1

(1. 浙江工业大学环境学院,浙江 杭州 310014 ,2. 浙江省环境监测中心,浙江 杭州 310015)

总结了半透膜被动采样器(SPMDs)、极性有机化合物整合采样器(POCIS)、化学捕收器(Chemcatcher)和硅橡胶被动采样器(Silicon rubber)几种常用被动采样器的结构组成、应用模型、原理、样品的前处理、影响因素及应用范围,指出几种被动采样技术应用上存在的问题,并对其应用前景进行总结和展望。

被动采样技术;SPMDs;POCIS;化学捕收器;SR被动采样器

传统采样方法,即主动采样,为瞬时采样技术,反映的是某一时刻污染物的浓度。该种采样方法获得的结果往往缺乏代表性[1],对一些紧急污染事件无法做到及时采样和追踪[2];对于痕量污染物采样体积大,并不断重复分析,数据随机性大,不利于了解水体痕量污染物的污染现状及污染趋势。而极性有机化合物(POCs)、疏水性有机物(HOCs)等由于其持久性,难以在环境中完全去除[3-4],在水体中常以痕量甚至超痕量形式存在,并对水生生物和人体健康产生影响。该类污染物难以通过主动采样实现有效监测。而被动采样技术作为一种累积采样方法,则可以实现对水体中痕量污染物的采集、检测、分析,并作出全面的健康风险评价,在水环境监测中的应用越来越广泛。

现对水体中几种常用的被动采样装置的结构组成、应用模型、原理、样品的前处理、影响因素及应用范围等进行介绍,并阐述各项被动采样技术的应用前景及存在的问题,以期为水体中痕量有机污染物样品采集方法的选择提供参考。

1 SPMDs

1.1 SPMDs的组成

SPMDs(semipermeable membrane devices),是由Huckins等[5]于1990年提出的一种半透膜被动采样器,主要由一层中性脂质薄膜和填充着三油酸甘油酯的低密度聚乙烯(LDPE)管(厚约75~90 μm)组成。SPMDs采样设备长30~90 cm,宽约2~5 cm,但也有一些是长<20 cm的小设备,具体根据采样的需要选择[6-7]。

1.2 SPMDs采样模型及原理

利用SPMDs富集的化学反应动力学模型(CRK模型)可以推算出目标污染物在水环境中的平均浓度[7]:

式中:Cw为水环境中目标污染物的质量浓度,ng/L;Cs为SPMDs中目标污染物在吸附剂上的质量比,ng/g;Vs为采样体积,L;Ksw为目标物在吸附相-水相中的分配系数,cm3/cm3;Rs为采样速率,L/d;t为采样时间,d。

1.3 SPMDs的前处理以及样品提取

采集样品后的SPMDs置于密封盒中,-20 ℃贮存,带回实验室。使用轻柔刷(尼龙刷)除去SPMDs装置表面的杂物后,将SPMDs浸泡在稀盐酸中,清洗表面去除盐和其他杂质后,依次用超纯水和丙酮冲洗,再用异丙醇冲洗脱水。之后在180 ℃下,先用125~150 mL正己烷透析18 h,再用125~150 mL正己烷透析6 h,收集并合并两次的透析液,氮吹至1 mL,通过SEC(凝胶柱)净化,GC-MS/MS进行检测[6]。

1.4 SPMDs采样速率Rs的影响因素

一般用Rs表示SPMDs采样器对污染物的采样情况。不同污染物的Rs除和自身的理化性质有关(最主要为KOW)[8],还受环境因素的影响,主要有温度、湍流、pH值、膜污染等。Huckins等[9]研究表明,在一定时间内,目标污染物的Rs随时间增加而增大,随后会达到吸附平衡,处于饱和状态。在一定时间内,Rs随湍流度及流速增大而增大[10],膜污染会降低Rs[11]。但也有不同的结论,如Chang等[12]研究表明,Rs不随温度和流速的变化而变化。

获取目标物的Rs是估计被动采样体积的前提,目前尚无法准确计算,一般通过实验室静态模拟、实验室动态模拟、现场模拟等方式推算。

1.5 SPMDs的应用

SPMDs采样过程中溶解相和汽态相中的细小污染物微粒进入LDPE的气孔中,从而实现截留。SPMDs可以采集监测中等极性到非极性的有机污染物(LogKOW>3.0)[6],也可以采集1.0

2 POCIS

2.1 POCIS的组成

极性有机化合物整合采样器(Polar organic chemical integrative sampler,POCIS)是Alvarez在1999年提出的一种被动采样技术[21]。POCIS是由两个不锈钢圆形垫圈,夹封两层微孔膜,两层微孔膜之间填充固相吸附剂,并且通过三个螺帽来固定不锈钢圈形成的一种采样装置[22]。

2.2 POCIS的材料选择

POCIS微孔膜的材质会影响POCIS的Rs以及采样成本,因而选择合适的POCIS微孔膜十分重要。POCIS微孔膜要根据不同目标污染物的吸附情况及不同膜在采样环境中受到的污染情况进行选择。Kingston等[23]研究提出PS膜(聚砜膜)对极性有机化合物具有适用性,而Alvarez等[22]研究证实PES膜(聚醚砜膜)的采样速率更高,受生物污染的程度更低,采样寿命更长。因此,现在POCIS采样中一般都用PES膜。

两膜之间的固相吸附材剂也是POCIS的重要组成部分,Alvarez等人[22]研究出两种固相吸附剂,质量比8∶2的聚苯乙烯-二乙烯苯树脂和碳吸附质,对应Pesticide-POCIS采样器,适合农药和合成激素等极性物质的吸附;多聚相二乙烯苯结合极性基团形成的Oasis HLB吸附剂,对应Pharmaceutical-POCIS采样器[24],适合一些强极性药物的吸附。对于这两种POCIS吸附剂,Mazzella等[25]研究认为Pharmaceutical-POCIS吸附除草剂的性能比Pesticide-POCIS更好,而Li等[26]则认为Pesiticide-POCIS的吸附率更高。一般来说,Pharmaceutical-POCIS由于具有低毒性等特点,比Pesticide-POCIS更有优势。此外,其他的吸附剂如离子交换树脂,包括Oasis MAX[27]、Oasis MCX[28]、Strata XAW[29],也有一定的应用。但目前主要还是用Oasis HLB作为POCIS的固相吸附剂。

2.3 POCIS采样模型及原理

POCIS采样富集过程遵循动力学第一方程[22]:

动力采样阶段受环境因素影响,Ku远大于Ke,吸附相中污染物浓度和累积时间有关,故:Cs=CwKut,引入Rs得:

式中:Cs为POCIS固相吸附剂中目标污染物的吸附质量比,ng/g;Cw为水中目标污染物的质量浓度,ng/L;Ms为吸附相的质量数;Ku和Ke为吸收和解吸速率常数,L/(g·d);Ksw为目标物在吸附相-水相中的分配系数,cm3/cm3;t为时间,d。

2.4 POCIS的前处理以及样品提取

2.4.1 POCIS的活化

PES膜使用前用200 mL甲醇冲洗2 min,400 mL超纯水冲洗10 min。组装好的POCIS盘用200 mL含0.1%(V/V)氨水的甲醇溶液浸泡后,依次用20 mL甲醇和40 mL超纯水各冲洗10 min。活化好的POCIS用铝箔纸密封4 ℃保存。

2.4.2 POCIS样品提取

回收POCIS中的吸附剂,转移至6 mL活化过的SPE小柱(填充少量20 μm的玻璃纤维,用于防止回收的吸附剂的流失),依次用6 mL含0.1%(V/V)氨水的甲醇溶液和6 mL甲醇洗脱,收集淋洗液,氮吹至0.5 mL,加超纯水定容至1 mL,HPLC-MS/MS进行检测。

2.5 POCIS采样速率Rs的影响因素及应用

2.5.1Rs的影响因素

同SPMDs被动采样器一样,POCIS的Rs目前尚无法通过参数准确计算,一般通过实验室模拟、现场模拟等方式推算。影响POCIS采样速率Rs的环境因素与SPMDs差异不大,主要有流速[22]、温度[30]、膜污染[31]、pH值和温度[28]等。除此之外,Rs还受到POCIS中微孔膜和填充吸附材料以及污染物自身理化性质(如LogKOW值)的影响[28]。史晓东[32]通过实验室动态试验研究了盐度、流速及目标物理化性质对磺胺类、大环类脂类、氯霉素类抗生素Rs的影响,研究发现,盐度和流速对Rs有显著影响,高盐度高流速时Rs与LogKOW存在正相关关系,而且流速对Rs的影响比盐度更大。

2.5.2 POCIS的应用

近几年POCIS的其他应用见表1。

表1 近几年POCIS在水环境监测中的应用

POCIS是一种极性综合采样器,是被开发作为一种类生物富集有机物的装置[33]。POCIS弥补了SPMDs无法监测评估水样中极性污染物(LogKOW<4)的不足。POCIS目前已在各种水体中应用,包括废水、饮用水、河湖等水体中[34]。在污染物监测方面的应用主要有药品和个人护理用品(PPCPs)、内分泌干扰物(ECDs)、极性农药和除草剂等污染物的监测[31]。Stephone等[35]的研究表明,POCIS能够有效地监测热带水体中PHACs、ECDs的TWA浓度,在湍流状态下有着更高的采样速率,但POCIS不适合相对分子质量较低的化合物的采样。Harman等[36]的研究显示,POCIS采样器用于长期监测违禁药物的成本效益低,并且可以克服传统采样设备抽样缺乏代表性的问题。近年,POCIS在PFCs(全氟化合物)的监测上也有一定进展[29]。Kaserzon等[37]研究用改性POCIS(600mg Strata XAW作为吸附剂,是一种弱阴离子交换树脂)采样测得全氟羧酸和全氟磺酸盐2种PFCs浓度与主动采样测得浓度相关性良好,相关系数R2=0.92。

3 其他的被动采样技术

3.1 Chemcatcher

Chemcatcher,又叫化学捕收器,是Kingston等[23]人在2000年提出的,其主体结构主要由主体盘、扩散层(可选)、接受相组成。目前,发展出3种Chemcatcher装置:(1) 两个PTFE(聚四氟乙烯)材料支撑接受相,并且接受相在20mm的深腔中[47];(2) 由两个PC(聚碳酸酯)材料封存接收相,并且空腔深度减少至7 mm[48];(3) 由两个PTFE材料封存接收相,接受相在空腔深度只有2 mm。空腔深度减少可以提高Rs,同时采样器对流速和湍流等环境因素的影响更加敏感[49]。一般情况下,位于空腔中的接收相有4种:C18、SDB-RPS(反相磺化苯乙烯-二乙烯基苯的聚合物)、SDB-XD(苯乙烯-二乙烯苯)以及Chelating Emporedisks(亚氨基二乙酸螯合Empore盘)[23,48];保护接收相,控制外界干扰的扩散层的膜也有4种:PES、PS、LDPE和CA膜(醋酸纤维素膜)[23,29]。Chemcatcher在非极性有机化合物(PAHs、PCBs、PBDEs等)、极性有机化合物(除草剂、杀虫剂、药品等)以及无机物采样方面有着广泛的应用。

3.2 Silicone rubber

Silicone rubber,又叫硅橡胶被动采样器,简称SR被动采样器。Smedes等[50]研究用的SR被动采样器由圆柱支撑主框架,内部挂3~6个硅橡胶膜(5.5 cm×9.0 cm,膜厚约为0.5 mm),整个采样膜表面积约为100 cm2。在采样过程中,可以根据需求,使用更大表面积的膜。SR被动采样器适合疏水性有机物(LogKOW在3~8范围)的监测。Rusina等人[51]研究表明,SR被动采样器的传质阻力和Kpw(聚合物-水分配系数)比SPMDs和Chematcher更低,SR更符合流体动力学理论,采样效果更好,有取代传统疏水性被动采样装置的趋势。

4 结论与展望

被动采样技术的发展,对监测环境中痕量污染物的研究具有重要意义。被动采样设备种类较多,文中提到的只是较常用的几种。这些采样设备各有特色,SPMDs适用于疏水性有机物采样,POCIS适用于极性有机物的采样,Chemcatcher则可用于无机物包括一些金属离子的采样。总之,被动采样技术在采样过程中更具灵活性和代表性,能及时应对各种环境中的紧急污染情况。

被动采样技术也存在着诸多的问题。主要表现为:(1)一种采样设备仅适用于某一类理化特性污染物的采样,无法较全面地监测水体污染物;(2)被动采样设备的PRCs校准物选择困难,要充分考虑其是否具有代表性以及PRCs在校准过程中受环境干扰带来的误差等情况;(3)缺少被动采样的相关规范及标准;(4)各种环境因素对被动采样过程的影响机理尚不清楚;(5)Rs数据资料匮乏,有关不同水体目标物Rs的文献很少。

目前,被动采样在我国仍处于起步阶段,在实际环境监测工作中的应用还不够广泛。PRCs校准物的优化选择以及利用PRCs校正实验在实验室模拟水样、现场模拟来推算各种水样采样速率Rs仍是被动采样技术有待完善的难点。针对不同水样及不同目标污染物,选择合适的被动采样器(如POCIS)中的固定吸附剂也是被动采样技术发展的一个重点。

[1] MAZZELLA N, DEBENNEST T, DELMAS F. Comparison between the polar organic chemical integrative sampler and the solid-phase extraction for estimating herbicide time-weighted average concentrations during a microcosm experiment[J]. Chemosphere, 2008, 73(4): 545-550.

[2] LISSALDE S, CHARRIAU A, POULIER G, et al. Overview of the Chemcatcher®; for the passive sampling of various pollutants in aquatic environments Part B: Field handling and environmental applications for the monitoring of pollutants and their biological effects[J]. Talanta, 2016, 148: 572-582.

[3] SCHMID P, KOHLER M, GUJER E, et al. Persistent organic pollutants, brominated flame retardants and synthetic musks in fish from remote alpine lakes in Switzerland.[J]. Chemosphere, 2007, 67(9):S16-S21.

[4] PETER S, CHRISTIAN B, NANCY B, et al. The missing piece: sediment records in remote Mountain lakes confirm glaciers being secondary sources of persistent organic pollutants.[J]. Environmental Science & Technology, 2011, 45(1):203-208.

[5] HUCKINS J N, TUBERGEN M W, MANUWEERA G K. Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavaiiability of lipophilic contaminants and estimating their bioconcentration potential[J]. Chemosphere, 1990, 20(5): 533-552.

[6] HUCKINS J N, PETTY J D, BOOIJ K. Monitors of organic chemicals in the environment: semipermeable membrane devices[M]. Springer Science & Business Media, 2006.

[7] HUCKINS J N, MANUWEERAA G K, PETTY J D, et al. Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water[J]. Environmental Science & Technology, 1993, 27(12): 2489-2496.

[8] MARRUCCI A, MARRAS B, CAMPISI S S, et al. Using SPMDs to monitor the seawater concentrations of PAHs and PCBs in marine protected areas (Western Mediterranean)[J]. Marine Pollution Bulletin, 2013, 75(1): 69-75.

[9] HUCKINS J N, PETTY J D, ORAZIO C E, et al. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water[J]. Environmental Science & Technology, 1999, 33(21): 3918-3923.

[10] BOOIJ K, SLEIDERINK H M, SMEDES F. Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards[J]. Environmental Toxicology and Chemistry, 1998, 17(7): 1236-1245.

[11] RICHARDSON B J, ABBOTT S B D L, MCCLELLAN K E, et al. The use of permeability reference compounds in biofouled semi-permeable membrane devices (SPMDs): A laboratory-based investigation[J]. Marine Pollution Bulletin, 2008, 56(9): 1663-1667.

[12] CHANG W T, LEE C L, BRIMBLECOMBE P, et al. The effects of flow rate and temperature on SPMD measurements of bioavailable PAHs in seawater[J]. Marine Pollution Bulletin, 2015, 97(1): 217-223.

[13] PETTY J D, ORAZIO C E, HUCKINS J N, et al. Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants[J]. Journal of Chromatography A, 2000, 879(1): 83-95.

[14] UTVIK T I R, JOHNSEN S. Bioavailability of polycyclic aromatic hydrocarbons in the North Sea[J]. Environmental Science & Technology, 1999, 33(12): 1963-1969.

[15] WANG Y, WANG Z, MA M, et al. Monitoring priority pollutants in a sewage treatment process by dichloromethane extraction and triolein-semipermeable membrane device (SPMD)[J]. Chemosphere, 2001, 43(3): 339-346.

[16] VERWIJ F, BOOIJ K, SATUMALAY K, et al. Assessment of bioavailable PAH, PCB and OCP concentrations in water, using semipermeable membrane devices (SPMDs), sediments and caged carp[J]. Chemosphere, 2004, 54(11): 1675-1689.

[17] SHAW M, MÜLLER J F. Preliminary evaluation of the occurrence of herbicides and PAHs in the Wet Tropics region of the Great Barrier Reef, Australia, using passive samplers[J]. Marine Pollution Bulletin, 2005, 51(8): 876-881.

[18] GALE R W, HUCKINS J N, PETTY J D, et al. Comparison of the uptake of dioxin-like compounds by caged channel catfish and semipermeable membrane devices in the Saginaw River, Michigan[J]. Environmental Science & Technology, 1996, 31(1): 178-187.

[20] KIM U J, KIM H Y, ALVAREZl D, et al. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples[J]. Science of the Total Environment, 2013, 470-471(2): 1537-1544.

[21] ALVAREZ D A. Development of an integrative sampling device for hydrophilic organic contaminants in aquatic environments[M]. UMI Dissertation Services, 2008.

[22] ALVAREZ D A, PETTY J D, HUCKINS J N, et al. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments[J]. Environmental Toxicology and Chemistry, 2004, 23(7): 1640-1648.

[23] KINGSTON J K, GREENWOOD R, MILLS G A, et al. Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments[J]. Journal of Environmental Monitoring, 2000, 2(5): 487-495.

[24] 谷云云, 胡霞林, 尹大强. 极性有机化合物整合采样技术在水环境有机污染物监测中的应用[J]. 环境化学, 2013(07):1376-1387.

[25] MAZZELLA N, LISSALDE S, MOREIRA S, et al. Evaluation of the use of performance reference compounds in an Oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater[J]. Environmental Science & Technology, 2010, 44(5): 1713-1719.

[26] LI H, VERMEIRSSEN E L M, HELM P A, et al. Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers[J]. Environmental Toxicology and Chemistry, 2010, 29(11): 2461-2469.

[27] FAUVELLE V, MAZZELLA N, DELMAS F, et al. Use of mixed-mode ion exchange sorbent for the passive sampling of organic acids by polar organic chemical integrative sampler (POCIS)[J]. Environmental Science & Technology, 2012, 46(24): 13344-13353.

[28] LI H, HELM P A, PATERSON G, et al. The effects of dissolved organic matter and pH on sampling rates for polar organic chemical integrative samplers (POCIS)[J]. Chemosphere, 2011, 83(3): 271-280.

[29] KASERZON S L, VERMEIRSSEN E L M, HAWKER D W, et al. Passive sampling of perfluorinated chemicals in water: Flow rate effects on chemical uptake[J]. Environmental Pollution, 2013, 177: 58-63.

[30] RUJIRALAI T, BULL I D, LLEWELLYN N, et al. In situ polar organic chemical integrative sampling (POCIS) of steroidal estrogens in sewage treatment works discharge and river water[J]. Journal of Environmental Monitoring, 2011, 13(5): 1427-1434.

[31] ALVAREZ D A, HUCKINS J N, PETTY J D, et al. Tool for monitoring hydrophilic contaminants in water: polar organic chemical integrative sampler (POCIS)[J]. Comprehensive Analytical Chemistry, 2007, 48: 171-197.

[32] 史晓东. 利用被动采样方法研究药物和内分泌干扰物的河口环境行为[D]. 华东师范大学, 2014.

[33] VERMEIRSSEN E L M, KÖRNER O, SCHÖNENBERGER R, et al. Characterization of environmental estrogens in river water using a three pronged approach: active and passive water sampling and the analysis of accumulated estrogens in the bile of caged fish[J]. Environmental Science & Technology, 2005, 39(21): 8191-8198.

[34] LINDBERG R H, OLOFSSON U, RENDAHL P, et al. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge[J]. Environmental Science & Technology, 2006, 40(3): 1042-1048.

[35] BAYEN S, SEGOVIA E, LOH L L, et al. Application of Polar Organic Chemical Integrative Sampler (POCIS) to monitor emerging contaminants in tropical waters[J]. Science of the Total Environment, 2014, 482: 15-22.

[36] HARMAN C, REID M, THOMAS K V. In situ calibration of a passive sampling device for selected illicit drugs and their metabolites in wastewater, and subsequent year-long assessment of community drug usage[J]. Environmental Science & Technology, 2011, 45(13): 5676-5682.

[37] KASERZON S L, KENNEDY K, HAWKER D W, et al. Development and calibration of a passive sampler for perfluorinated alkyl carboxylates and sulfonates in water[J]. Environmental Science & Technology, 2012, 46(9): 4985-4993.

[38] GUIBAL R, LISSALDE S, CHARRIAU A, et al. Improvement of POCIS ability to quantify pesticides in natural water by reducing polyethylene glycol matrix effects from polyethersulfone membranes[J]. Talanta, 2015, 144: 1316-1323.

[39] GONZALEZ-REY M, TAPIE N, Le MENACH K, et al. Occurrence of pharmaceutical compounds and pesticides in aquatic systems[J]. Marine Pollution Bulletin, 2015.

[40] JAIMES-CORREA J C, SNOW D D, BARTELT-HUNT S L. Seasonal occurrence of antibiotics and a beta agonist in an agriculturally-intensive watershed[J]. Environmental Pollution, 2015, 205: 87-96.

[41] GUIBAL R, LISSALDE S, CHARRIAU A, et al. Coupling passive sampling and time of flight mass spectrometry for a better estimation of polar pesticide freshwater contamination: Simultaneous target quantification and screening analysis[J]. Journal of Chromatography A, 2015, 1387: 75-85.

[42] TANWAR S, DI CARRO M, MAGI E. Innovative sampling and extraction methods for the determination of nonsteroidal anti-inflammatory drugs in water[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 106: 100-106.

[43] DALTON R L, PICK F R, BOUTIN C, et al. Atrazine contamination at the watershed scale and environmental factors affecting sampling rates of the polar organic chemical integrative sampler (POCIS)[J]. Environmental Pollution, 2014, 189: 134-142.

[44] LISCIO C, ABDUL-SADA A, AL-SALHI R, et al. Methodology for profiling anti-androgen mixtures in river water using multiple passive samplers and bioassay-directed analyses[J]. Water Research, 2014, 57: 258-269.

[45] BOLES T H, WELLS M J M. Pilot survey of methamphetamine in sewers using a Polar Organic Chemical Integrative Sampler[J]. Science of the Total Environment, 2014, 472: 9-12.

[46] BARRANGER A, AKCHA F, ROUXEL J, et al. Study of genetic damage in the Japanese oyster induced by an environmentally-relevant exposure to diuron: Evidence of vertical transmission of DNA damage[J]. Aquatic Toxicology, 2014, 146: 93-104.

[47] VRANA B, MILLS G, GREENWOOD R, et al. Performance optimisation of a passive sampler for monitoring hydrophobic organic pollutants in water[J]. Journal of Environmental Monitoring, 2005, 7(6): 612-620.

[48] AGUILAR-MARTNEZ R, GMEZ-GMEZ M M, Palacios-Corvillo M A. Mercury and organotin compounds monitoring in fresh and marine waters across Europe by Chemcatcher passive sampler[J]. International Journal of Environmental Analytical Chemistry, 2011, 91(11): 1100-1116.

[49] CHARRIAU A, LISSALDE S, POULIER G, et al. Overview of the Chemcatcher®; for the passive sampling of various pollutants in aquatic environments Part A: Principles, calibration, preparation and analysis of the sampler[J]. Talanta, 2016, 148: 556-571.

[50] SMEDES F, BOOIJ K. Guidelines for passive sampling of hydrophobic contaminants in water using silicone rubber samplers[M]. International Council for the Exploration of the Sea, 2012.

[51] RUSINA T P, SMEDES F, KLANOVA J. Diffusion coefficients of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in polydimethylsiloxane and low‐density polyethylene polymers[J]. Journal of Applied Polymer Science, 2010, 116(3): 1803-1810.

Research Progress in Several Common Passive Sampling Techniques in Water Environment

WANG Pan-pan1, WANG Jing2, LIU Zheng-zheng2, CHEN Jin-yuan1

(1.CollegeofEnvironment,ZhejiangUniversityofTechnology,Hangzhou,Zhejiang310014,China; 2.ZhejiangProvinceEnvironmentalMonitoringCenter,Hangzhou,Zhejiang310015,China)

Several commonly used passive sampling techniques were summarized in this paper, including semipermeable membrane devices (SPMDs), polar organic chemical integrative sampler (POCIS), a chemical catcher named Chemcatcher, and Silicon rubber sampler. The device structure, model, principle, sample pretreatment, influence factors and application range of each of the technique were summarized, and technical issues was pointed out during current application. Future applications was summarized prospected.

Passive sampling technology; SPMDs; POCIS; Chemcatcher; Silicon rubber

2015-12-20;

2016-03-11

2014年浙江省重大科技专项项目(2014C03026);2016年浙江省环保科技项目(2016A011)

汪盼盼(1992—),男,在读硕士研究生,研究方向为环境监测。

X830.1

B

1674-6732(2016)04-0031-06

猜你喜欢
采样器极性被动
地表水环境监测采样需注意问题探讨
新闻语篇中被动化的认知话语分析
大气采样器检定注意事项及常见故障排除探析
浅析密闭采样系统在炼化企业生产中的应用
蔓延
粉尘采样器检定和校准证书中不确定度区别
跟踪导练(四)
第五课 拒绝被动
红葱不同极性提取物抑菌活性研究
香椿子不同极性部位对糖尿病周围神经病变的保护作用