张 莉,王 婧,逄焕成(中国农业科学院农业资源与农业区划研究所,北京 100081)
碱胁迫下磷酸脲降低土壤pH值促进菠菜生长
张莉,王婧,逄焕成※
(中国农业科学院农业资源与农业区划研究所,北京 100081)
摘要:为明确磷酸脲缓解菠菜碱胁迫的作用效果,该文以大叶菠菜为材料,研究了碱胁迫下磷酸脲对土壤pH值、植株生长、叶片生理特性的影响。试验设无碱胁迫处理、碱胁迫处理、碱胁迫后灌溉无机肥液处理、碱胁迫后灌溉磷酸脲液处理,结果表明:碱胁迫6d后,施入磷酸脲、无机肥溶液均显著降低土壤pH值,分别比碱胁迫不施肥处理降低2.69、0.86个单位。碱胁迫后灌溉磷酸脲液处理显著提高叶片超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)和过氧化氢酶(catalase,CAT)活性,分别比碱胁迫处理提高7.96%、26.75%、57.70%,丙二醛(malondiadehyde,MDA)含量降低了10.63%,进而减轻了膜脂过氧化程度,显著提高叶片光合色素叶绿素a、b及类胡萝卜素含量,促进菠菜的生长,表现为碱胁迫后灌溉磷酸脲液处理的株高、叶面积、整株干质量分别比碱胁迫处理提高23.55%、21.03%、33.84%;而碱胁迫后灌溉无机肥液处理加剧碱胁迫程度,抑制菠菜生长,降低其生理特性,其叶绿素a、b及类胡萝卜素质量分数比碱胁迫后灌溉磷酸脲液处理降低19.84%、37.15%、14.15%。这说明磷酸脲溶液可以有效减轻菠菜碱胁迫程度,能作为碱化土壤的改良剂,为碱土地植物安全生产提供技术手段。
关键词:土壤;含水率;肥料;磷酸脲;碱胁迫;菠菜;生理特性
张莉,王婧,逄焕成. 碱胁迫下磷酸脲降低土壤pH值促进菠菜生长[J]. 农业工程学报,2016,32(2):148-154. doi:10.11975/j.issn.1002-6819.2016.02.022http://www.tcsae.org
Zhang Li, Wang Jing, Pang Huancheng. Decreasing soil pH value to promote spinach growth by application of urea phosphate under alkaline stress [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 148-154. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.022http://www.tcsae.org
Email:dazhang0376@163.com
当今,全球盐渍土面积约10亿hm2,其中碱土和次生碱化土壤占60%左右[1]。碱土中植物受到高浓度Na+的渗透胁迫的同时,土壤pH值因CO32-和HCO3-的水解而升高,还会加重植物毒害,抑制其生长甚至死亡。近年来,由于化肥过量使用,不合理灌溉等因素,全球碱地面积日益扩大、碱化程度日趋严重[2-3],给农业生产造成严重损失。研发改良、治理碱化土壤的技术,有效防止土地继续碱化,对缓解土地压力、保障粮食安全具有重要意义[4]。多年以来,国内外学者对盐胁迫研究较多,而对生态破坏力更大的碱性土壤治理的研究相对较少[5-6]。田玉福等[7]提出深埋排水管技术改良松嫩平原苏打碱土。姜超强等[8]发现施用适量硫磺可以降低土壤pH值,改善烟叶品质,提高烟叶产值。潘香梅等[9]认为喷施脱落酸能够增强黄瓜幼苗的抗氧化能力,减轻碱胁迫对细胞膜伤害程度,提高其耐碱性。曲长凤等[10]、Suhayda等[11]指出石膏中的Ca2+能够置换土壤表面吸附的Na+,在减轻碱化程度、提高土壤养分有效性和作物产量方面效果显著。以上方法均能够有效改良碱性土壤,但因在不同区域植物种类、耕作方式和土壤性质等因素的限制,未能大面积推广应用。
磷酸脲(CO(NH2)2·H3PO4)是由尿素与磷酸在一定条件下生成的复盐,具有“高浓度、速溶、全溶”的特点,常作为新型高浓度复合肥料,与膜下滴灌技术配套使用,可有效减少氮磷损失,促进作物增产[12-13]。而且,磷酸脲水解后产生酸,可能降低土壤pH值。目前,关于外施磷酸脲是否具有减轻植物碱胁迫程度,改善土壤化学性质的研究仍未见报道。菠菜是一种常见的绿叶蔬菜,它既不耐酸又不耐碱,对土壤酸碱性敏感,能够快速、准确地反映土壤环境的变化。鉴于此,本试验选择大叶菠菜为材料,通过室内培养研究根灌磷酸脲溶液对菠菜幼苗生长和叶片保护酶调节效应的影响,旨在探讨磷酸脲作为消碱剂,对植物生长发育的调节作用,以期为中国碱土的改良和植物安全生产提供技术手段和理论依据。
1.1试验材料与处理
试验在中国农业科学院温室大棚进行,以金丹隆公司生产的大叶菠菜为材料。2014年10月11日,筛选籽粒饱满的种子,播种于装有营养土(pH值=6.81)的塑料钵(内径6 cm×高15 cm)中,共600钵,每钵3粒,各灌溉10 mL去离子水后置于温室培养,温度为25℃/15℃(昼/夜),湿度为60%~70%,每日灌溉5 mL去离子水。幼苗生长30 d(二叶一心),间苗至每穴单株,保留长势一致的幼苗。11月10日开始进行碱胁迫处理,随机选取450钵,每日灌溉5 mL浓度为300 mmol/L,pH值为10.01的NaHCO3与Na2CO3混合液(摩尔比1∶1),其余150钵每日灌溉5 mL去离子水作为对照。11月16日进行试验处理,共设4个处理,对照处理(non-alkali stress treatment,CK)(150钵)仍每日灌溉5 mL无离子水,进行碱胁迫处理的450钵随机分为3个处理,每处理150钵,分别作为碱胁迫处理(adding deionized water after alkali-stress,AS)、碱胁迫后灌溉无机肥液处理(adding inorganic fertilizer solution after alkali-stress which was mixed with diammonium phosphate and urea solution,AS+FT)和碱胁迫后灌溉磷酸脲液处理(adding urea phosphate solution after alkali-stress,AS+UP),AS处理每日灌溉5 mL去离子水,AS+FT处理每日灌溉5 mL无机肥液,AS+UP处理每日灌溉5 mL磷酸脲溶液。其中,磷酸脲溶液浓度为10 mmol/L,无机肥液指磷酸二铵与尿素的混合溶液,其氮、磷含量与磷酸脲溶液相等。各处理溶液基础化学性质见表1。
表1 处理溶液化学性质Table 1 Chemical properties of solutions used in different treatments
1.2样品采集与测定
试验于11月22日,即处理6 d后,测定植株形态与生理指标。随机选取长势一致的10株菠菜,每处理3次重复,用去离子水冲洗干净,吸干水分,测定根长、株高和根、茎、叶鲜质量,置于105℃杀青30 min,80℃烘干,称干质量。取基部向上第5、6片叶,硫代巴比妥酸法测定丙二醛含量,紫外吸收法测定过氧化氢酶活性,愈创木酚法测定过氧化物酶活性、NBT还原法测定超氧化物歧化酶活性[14],乙醇浸提法测定叶绿素含量,比重法测定叶面积;随后多点采集根际土,风干混匀,利用型号FE20-K梅特勒pH计以水土比法(风干土质量:去离子水体积=5∶1)测定根际土壤pH值,根冠比按照根冠比=地下部干物质质量(g)/地上干物质质量(g)公式计算[15]。
1.3数据分析
试验数据采用SPSS 16.0和Excel 2003软件分析、作图,用SSR法进行多重比较。
2.1不同处理土壤pH值变化
试验结果显示(见表2),碱胁迫6 d后土壤pH值极显著增加,平均提高44.19%。根灌磷酸脲和等N、P含量的无机肥溶液均能够显著降低土壤pH值。灌溉6d后,AS+UP和AS+FT处理分别比AS处理降低了2.69 和0.86个单位,其中施入磷酸脲的处理降低土壤pH值的效果最为显著,比AS+FT处理降低了20.40%。
表2 各处理土壤pH值Table 2 Soil pH value in spinach soil under different treatments
2.2不同处理对菠菜幼苗生长的影响
菠菜苗期以营养生长为主[16]。从表3可知,碱胁迫使菠菜幼苗地上部生长受到一定程度的抑制,与对照相比,AS处理株高、叶面积降低了37.45%、31.20%,AS+FT处理分别减少了44.33%、30.67%,AS+UP处理下降了24.30%、15.00%。施用磷酸脲能显著减轻菠菜碱胁迫程度,AS+UP处理的株高、叶面积和干物质质量分别比AS处理分别增加了23.55%、21.03%和33.84%;而施用等N、P含量的无机肥溶液并没有减轻碱胁迫程度,AS+FT处理叶面积比AS处理显著减少了11.01%。各处理根冠比表现为AS、AS+FT显著高于CK和AS+UP处理,分别比CK处理提高了11.90%、14.29%。株高、单株叶面积是衡量幼苗地上部健壮生长的重要指标[16],研究结果表明,施用磷酸脲可改善碱胁迫对幼苗生长的抑制作用,增加光合面积,促进地上部的生长,改变光合产物在器官间的分配。
2.3不同处理对菠菜幼苗组织含水率的影响
由表4可知,碱胁迫导致菠菜出现一定程度的萎蔫现象,AS、AS+FT、AS+UP处理的组织含水率分别比对照降低了5.30%、5.64%和1.61%。碱胁迫的菠菜植株施用磷酸脲液(AS+UP)后,其根、茎、叶含水率分别比AS处理提高了9.87%、2.30%和0.57%;而施用普通无机肥液(AS+FT)后,菠菜根、茎含水率分别比AS处理下降了0.86%和0.44%。水分是植物重要的组成部分,其含水率能直接反映逆境对植物造成伤害的程度[17],研究结果显示,施用磷酸脲会显著提高碱胁迫后菠菜植株的含水率。
表3 碱胁迫不同处理对菠菜生长特征的影响Table 3 Effect of growth characteristics of spinach seedlings under different treatments
表4 碱胁迫不同处理对菠菜组织含水率的影响Table 4 Effect of water content of spinach seedling’s tissues under different treatments
2.4不同处理对叶片光合色素含量的影响
由表5可知,各处理叶片叶绿素a、叶绿素b、类胡萝卜素和叶绿素(a+b)含量均表现为CK>AS+UP>AS>AS+FT。与对照相比,碱胁迫显著降低叶片光合色素含量,AS、AS+FT和AS+UP处理Chl (a+b)质量分数依次比对照降低21.67%、38.96%和2.92%;类胡萝卜素质量分数分别减少10.61%、23.26%和0.89%。碱胁迫后施用磷酸脲可显著提高叶片光合色素质量分数,比AS处理高23.94%(P<0.05),与CK处理无显著差异;而碱胁迫后施用普通无机肥溶液(AS+FT处理)叶片光合色素含量进一步下降,显著低于AS处理。与施用磷酸脲(AS+UP处理)相比,施用普通无机肥溶液(AS+FT处理)的叶绿素a/b显著提高,增加了25.04%。这表明碱胁迫后施用普通无机肥溶液,可能加剧碱胁迫的危害,促进叶绿素a、b的分解,缩小菠菜对不同光质的利用范围,降低叶片最大光合作用的能力。此外,叶绿素和类胡萝卜素是植物光合作用的主要色素,其含量与叶片光合性能密切相关[18]。因此,碱胁迫后根施磷酸脲溶液能够有效延缓光合色素的降解,充分保证光能的吸收和利用。
表5 不同处理对菠菜叶片光合色素含量的影响Table 5 Effect of different treatments on photosynthetic pigment contents of spinach leaves
2.5不同处理对叶片抗氧化系统的影响
研究表明,碱胁迫造成菠菜叶片丙二醛(malondialdehyde, MDA)含量升高(见图1)。遭受碱胁迫的AS、AS+FT、AS+UP处理叶片MDA含量分别比对照提高了22.30%、13.14%和9.30%。碱胁迫后灌施磷酸脲或无机肥溶液,均可不同程度地减轻碱胁迫下叶片质膜膜脂过氧化程度,与AS处理相比,AS+FT、AS+UP处理的MDA含量分别降低7.49%和10.63%。与普通无机肥液相比,磷酸脲溶液降低叶片MDA含量的效果更为显著,其叶片MDA的含量降低了3.40%。
研究结果表明(见图2),碱胁迫显著降低菠菜叶片抗氧化酶活性。与对照相比,AS处理超氧化物歧化酶(superoxide dismutase, SOD)、过氧化物酶(peroxidase,POD)和过氧化氢酶(catalase, CAT)活性分别降低13.77%、30.13%和40.90%,AS+FT处理减少16.62%、39.05%和52.29%,AS+UP处理下降6.91%、11.45%和6.81%。结果显示,灌溉普通无机肥溶液会加重叶片碱胁迫程度,但磷酸脲溶液显著增强碱胁迫后叶片抗氧化活酶的活性,其SOD、POD和CAT活性显著高于AS处理,分别提高了6.42%、42.08%、55.13%,与AS+FT处理相比,分别增加了6.41%,23.96%和92.13%。
图1 不同处理对菠菜叶片丙二醛含量的影响Fig.1 Effect of different treatments on malondialdehyde content of spinach leaves
图2 不同处理对菠菜叶片抗氧化酶活性的影响Fig.2 Effect of different treatments on antioxidant enzyme activities in spinach leaves
2.6碱胁迫条件下菠菜生理指标与土壤pH值的关系
相关性分析结果显示(见表5),土壤pH值与丙二醛(MDA)含量、根长极显著正相关(P <0.01);与过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、叶绿素a、叶绿素b和类胡萝卜素含量、株高、植株含水率、叶面积、植株生物量和株高等形态指标呈极显著负相关(P<0.01)。
进一步分析发现,土壤pH值与叶片CAT、POD活性、MDA含量、叶绿素a、叶绿素b与类胡萝卜含量、株高、叶面积和植株含水率成一元二次关系,相关系数依次为0.989、0.988、0.899、0.960、0.976、0.923、0.944、0.926、0.960,均达到极显著水平(P<0.01)。通过多元线性逐步回归得到最优多元线性回归方程为Y=223.562−15.536X1+1.124X2r=0.953(Y:菠菜整株生物量,X1:土壤pH值,X2:单株叶面积)。方程中系数的大小表示因子对菠菜生物量的影响力的高低。在碱胁迫中,土壤pH值对作物生物量作用力更大,是叶面积13.82倍。可见,碱胁迫条件下,降低土壤pH值是作物获得高产和稳产的前提条件。
表5 碱胁迫下菠菜生理指标与土壤pH值相关性Table 5 Correlation between physiological characteristic of spinach and soil pH value under alkaline stress
中国是土壤盐碱化分布广泛的国家,pH值是土壤基本化学性质,影响土壤中营养元素的转化方向、循环过程,一定程度决定土壤肥力的供给情况,是指示土壤质量的重要指标之一,降低土壤碱化程度,对提高土壤利用效率具有重要意义。已有研究表明,高pH值土壤中,蔬菜根系周围矿物离子的活度下降,造成地上营养器官的发育不良,肥料利用率显著下降[19]。本研究发现,碱胁迫影响菠菜幼苗生长,造成植株萎蔫,叶片光合色素含量下降,叶片生理活性降低,这与吴成龙等[20]的研究结果一致。何磊等[21]、曲元刚等[22]研究指出盐碱地渗透胁迫和高土壤pH值是抑制植株生长的主要因素。本研究结果表明,土壤pH值与叶片的CAT、POD等抗氧化酶活性、植株叶面积、生物量、含水率等形态指标呈极显著的负相关,土壤pH值改善是作物获得高产和稳产的基础条件。因而,如何有效降低土壤pH值,是提升肥料利用效率,促进碱土农业可持续发展的重要研究内容。
磷酸脲是一种新型肥料,常作为一种高效滴灌肥,其可显著促进植物的生长,改善作物品质,提高肥料利用效率[12,23]。本研究发现,碱胁迫6 d后灌溉磷酸脲溶液,土壤pH值由9.92降低至7.14,显著降低土壤的碱化程度;而施用普通无机肥溶液,土壤pH值仍维持较高水平,这说明灌溉磷酸脲溶液具有一定的消碱作用,不但能够提供作物生长发育所需要的养分,还能改善土壤微环境,在改良、治理碱化土壤具有一定的应用价值。
适宜的土壤环境是保证作物健壮生长的必要条件[3-4,7]。试验结果显示,灌溉磷酸脲溶液大幅降低土壤pH值,改善了菠菜的生长环境,减轻了碱胁迫对菠菜生长及叶片生理的抑制作用。与AS处理相比,碱胁迫后施用磷酸脲溶液(AS+UP处理)显著提高菠菜幼苗含水率,增强叶片抗氧化酶活性,减少MDA含量,其中菠菜幼苗根、茎、叶组织含水率分别提高了9.87%、2.35%和0.57%,SOD、POD和CAT的活性分别提高7.96%、26.75%、57.70%,MDA含量下降10.63%。分析研究结果可知,生物量变化是植物对盐碱胁迫响应的综合体现及对盐碱胁迫的综合反映[21]。碱胁迫后灌施磷酸脲可显著减轻逆境对地上部生物量的抑制作用,这可能是由于磷酸脲溶液呈酸性,降低了土壤pH值,最终减轻了高pH值对作物的毒害作用,同时,还能提供营养物质,促进植物生长。而施入等N、P含量的普通无机肥,土壤pH值仍维持较高的水平,可能增加了土壤的离子浓度,加剧了根系的渗透胁迫,进一步加重了碱胁迫作用。此外,大量研究发现,碱害条件下,植物受到高pH值的毒害及高浓度盐离子渗透胁迫[20,24],MDA大幅增加[25],破坏膜结构和生理机能[26],激发植物产生抗氧化酶[27],避免膜脂氧化伤害。本研究结果显示,碱胁迫后灌施磷酸脲,可显著改善叶片生理活性。这可能是因为磷酸脲溶液能够保证叶片体内活性氧自由基维持在较低的水平,避免自由基对生物大分子如核酸和蛋白质等物质的降解,进而减轻碱胁迫对生物膜造成的损害,具体机理有待进一步研究。此外,因本试验是在室内培养条件下进行,磷酸脲的消碱效果是否会因地域、盐碱地程度、离子成分、作物种类等因素的不同而发生改变还需要深入探讨。
碱胁迫后灌施磷酸脲土壤pH值降低2.69个单位,改善菠菜的生长环境,显著提升叶片过氧化物酶、超氧化物歧化酶、过氧化氢酶的活性,降低丙二醛的含量,光合色素叶绿素(a+b)质量分数、单株叶面积、总干物质质量分别比碱胁迫处理增加了23.94%、21.03%、33.84%,减轻碱胁迫对菠菜生长的抑制作用,促进菠菜生物量维持较高水平。可见,磷酸脲溶液在改善土壤pH值方面发挥着重要作用,能一定程度上改善菠菜的碱胁迫环境,提高其耐碱能力,为获得较高的经济产量奠定基础,具有一定推广应用价值。
[参考文献]
[1] 张体彬,康跃虎,胡伟,等. 宁夏银北地区龟裂碱土盐分特征研究[J]. 土壤,2012,44(6):1001-1008. Zhang Tibin, Kang Yuehu, Hu Wei, et al. Study on salinity characteristics of Takyric solonetz in Ningxia Yinbei region[J]. Soil, 2012, 44(6): 1001-1008. (in Chinese with English abstract)
[2] Decheng Shi, Deli Wang. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag[J]. Plant and Soil, 2005, 271(1): 15-26.
[3] 徐恒刚. 中国盐生植被及盐渍化生态[M]. 北京:中国农业科学技术出版社,2004:23-28,136-137.
[4] 王婧,逄焕成,任天志,等. 地膜覆盖与秸秆深埋对河套灌区盐渍土水盐运动的影响[J]. 农业工程学报,2012,28(15):52-59. Wang Jing, Pang Huancheng, Ren Tianzhi, et al. Effect of plastic film mulching and straw buried on soil water-salt dynamic in Hetao plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012, 28(15): 52-59. (in Chinese with English abstract)
[5] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving Plant Abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59(2): 206-216.
[6] 颜宏,赵伟,盛艳敏,等. 碱胁迫对羊草和向日葵的影响[J].应用生态学报,2005,16(8):1497-1501. Yan Hong, Zhao Wei, Sheng Yanmin, et al. Effects of Alkali-stress on Aneurolepidium chinense and Heliɑnthus ɑnnuus[J]. Chinese of Journal of Applied Ecology, 2005,16(8): 1497-1501. (in Chinese with English abstract)
[7] 田玉福,窦森,张玉广,等. 暗管不同埋管间距对苏打草甸碱土的改良效果[J]. 农业工程学报,2013,29(12):145-153. Tian Yufu, Dou Sen, Zhang Yuguang, et al. Improvement effects of subsurface pipe with different spacing on sodic-alkali soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013,29(12): 145-153. (in Chinese with English abstract)
[8] 姜超强,沈嘉,郭卢,等. 硫磺对碱性植烟土壤烤烟生长及烟叶重金属含量的影响[J]. 中国烟草科学,2013,34(5):47-51. Jiang Chaoqiang,Shen Jia,Guo Lu,et al. Effects of sulfur on growth of flue-cured tobacco and heavy metal contents of tobacco leaves in alkaline soil[J]. Chinese Tobacco Science,2013, 34(5): 47-51. (in Chinese with English abstract)
[9] 潘香梅,郁继华,张国斌,等. 脱落酸对碱胁迫下黄瓜幼苗叶片膜脂过氧化及保护酶活性的影响[J]. 甘肃农业大学学报,2010,45(6):75-78. Pan Xiangmei, Yu Jihua, Zhang Guobin, et al. Effects of ABA on membrane lipid peroxidation and protective enzyme activities of cucumber seedlings leaves under alkaline stress[J]. Journal of Gansu Agricultural University, 2010,45(6): 75-78. (in Chinese with English abstract)
[10] 曲长凤,杨劲松,姚荣江,等. 不同改良剂对苏北滩涂盐碱土壤改良效果研究[J]. 灌溉排水学报,2012,31(3):21-25. Qu Changfeng, Yang Jingsong, Yao RongJiang, et al. Effects of different soil amendments on coastal saline-alkali soil in North Jiangsu[J]. Journal of Irrigation and Drainage, 2012,31(3): 21-25. (in Chinese with English abstract)
[11] Suhayda C G, Lijuan Yin, Redmann R E, et al. Gypsum amendment improves native grass establishment on saline-alkali soils in northeast China[J]. Soil Use and Management, 1997, 13(1): 43-47.
[12] 刘键,杜建卫,张卫星. 磷酸脲对膜下滴灌棉花品质和产量的影响[J]. 中国土壤与肥料,2006(4):37-39. Liu Jian, Du Jianwei, Zhang Weixing. Effect of ureaphosphate on the quality and yield of cot ton by drip irrigation under plastic film[J]. Soil and Fertilizer Sciences in China, 2006(4): 37-39. (in Chinese with English abstract)
[13] 王敏. 磷酸脲的用途和发展前景[J]. 化工生产与技术,2004,11(3):23. Wang Min. the use and prospect of Urea phosphate[J]. Chemical Production and Technology, 2004, 11(3): 23. (in Chinese with English abstract)
[14] 李合生. 植物生理生化实验原理与技术[M]. 北京:高等教育出版社,2001:119-120,260-261.
[15] 曲继松,郭文忠,张丽娟,等. 柠条粉作基质对西瓜幼苗生长发育及干物质积累的影响[J]. 农业工程学报,2010,26(8):291-295. Qu Jisong, Guo Wenzhong, Zhang Lijuan, et al. Influence of caragana-straw as nursery substrate on growth and dry matte accumulation of watermelon seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 291-295. (in Chinese with English abstract)
[16] 刘爽,王宇欣,刘志丹. 生物氢烷工程沼渣用于油菜及菠菜育苗的效果[J]. 农业工程学报,2014,30(11):225-232. Liu Shuang, Wang Yuxin, Liu Zhidan. Application Effect of biohythane residue onbrassica andspinacia seedling production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(11): 225-232. (in Chinese with English abstract)
[17] 杨春武,李长有,尹红娟,等. 小冰麦(Triticum ɑestivum-Agropyron intermedium)对盐胁迫和碱胁迫的生理响应[J].作物学报,2007,33(8):1255-1261. Yang Chunwu, Li Changyou, Yin Hongjuan, et al. Physiological response of xiao bing mai (Triticum ɑestivum-Agropyron intermedium) to salt-stress and alkali-stress[J]. Acta Agronomica Sinica, 2007, 33(8): 1255-1261. (in Chinese with English abstract)
[18] 王宇超,王得祥. 盐胁迫对木本滨藜叶绿素合成及净光合速率的影响[J]. 农业工程学报,2012,28(10):151-158. Wang Yuchao, Wang Dexiang. Effects of salt stress on chlorophyll content and net photosynthetic rate of woody saltbush[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012,28(10): 151-158. (in Chinese with English abstract)
[19] 李粉茹. 于群英,邹长明. 设施菜地土壤pH值、酶活性和氮磷养分含量的变化[J]. 农业工程学报,2009,25(1):217-222. Li Fenru, Yu Qunying, Zou Changming. Variations of pH value, enzyme activity and nitrogen phosphorus content in protected vegetable soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2009, 25(1): 217-222. (in Chinese with English abstract)
[20] 吴成龙,周春霖,尹金来,等. 碱胁迫对不同品种菊芋幼苗生物量分配和可溶性渗透物质含量的影响[J]. 中国农业科学,2008,41(3):901-909. Wu Chenglong, Zhou Chunlin, Yin Jinlai, et al. Effects of alkaline stress on biomass allocation and the contents of soluble osmoticum in different organs of two Heliɑnthus tuberosus L. Genotypes[J]. Scientia Agricultura Sinica, 2008, 41(3): 901-909. (in Chinese with English abstract)
[21] 何磊,陆兆华,管博,等. 盐碱胁迫对两种高粱种子萌发及幼苗生长的影响[J]. 西北植物学报,2012,32(2):362-369. He Lei, Lu Zhaohua, Guan Bo, et al. Seed germination and seedling growth of the two sorghums under saline-alkaline stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012,32(2): 362-369. (in Chinese with English abstract)
[22] 曲元刚,赵可夫. NaCl和Na2CO3对玉米生长和生理胁迫效应的比较研究[J]. 作物学报,2004,30(4):334-341. Qu Yuangang, Zhao Kefu. Comparative studies on growth and physiological reaction of Zeɑ mɑys under NaCl and Na2CO3Stresses[J]. Acta Agronomica Sinica, 2004, 30(4): 334-340. (in Chinese with English abstract)
[23] 梁飞,田长彦. 土壤盐渍化对尿素与磷酸脲氨挥发的影响[J].生态学报,2011,31(14):3999-4006. Liang Fei, Tian Changyan. Effects of soil salinization on ammonia volatilization characteristics of urea and urea phosphate[J]. Acta Ecologica Sinica, 2011, 31(14): 3999-4006. (in Chinese with English abstract)
[24] 王金满,杨培岭,张建国,等. 脱硫石膏改良碱化土壤过程中的向日葵苗期盐响应研究[J]. 农业工程学报,2005,21(9):33-37. Wang Jinman, Yang Peiling, Zhang Jianguo, et al. Salinity effect on sunflower at seedling stage during improving sodic soils reclaimed with by-product from flue gas desulphurization (BFGD)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(9): 33-37. (in Chinese with English abstract)
[25] 薛延丰,刘兆普. 不同浓度NaCl和Na2CO3处理对菊芋幼苗光合及叶绿素荧光的影响[J]. 植物生态学报,2008,32(1):161-167. Xue Yanfeng, Liu Zhaopu. Effect of NaCl and Na2CO3stresses on photosynthesis and parameters of chlorophyll fluorescence in Heloɑnthus Tuberosus seedlings[J]. Journal of Plant Ecology, 2008, 32(1): 161-167. (in Chinese with English abstract)
[26] Souza J F, Rauser W E. Maize and radish sequester excess cadmium and zinc in different ways[J]. Plant Science, 2003,165(5): 1009-1022.
[27] 岳自慧,毛桂莲,许兴,等. 脱硫废弃物对碱胁迫下油葵幼苗抗氧化酶活性和膜脂过氧化作用的影响[J]. 江苏农业学报,2010,26(4):716-720. Yue Zihui, Mao Guilian, Xu Xing, et al. Effect of desulphurized waste on antioxidative enzyme activities and lipid peroxidation of oil sun flower seedlings under alkali stress[J]. Jiangsu of AgriculturalSciences, 2010, 26(4): 716-720. (in Chinese with English abstract)
Decreasing soil pH value to promote spinach growth by application of urea phosphate under alkaline stress
Zhang Li, Wang Jing, Pang Huancheng※
(Institute of Agriculturɑl Resources ɑnd Regionɑl Plɑnning, CAAS, Beijing 100081, Chinɑ)
Abstract:Soil alkalization is one of major environmental problems which adversely affect growth and development of plant and crop yield in agricultural production all over the world. Effective measures should be taken to reduce the impact of alkaline stress on plant growth. Urea phosphate is a new-type compound fertilizer in the drip-irrigation. It can generate acid after hydrolysis, but it is unclear if it can improve soil pH value and plant growth after applying to alkaline soil at present. Therefore, this study was conducted to test the effects of urea phosphate solution on soil pH value, plant growth and physiological characteristics of large-leaf spinach. The alkaline stress was simulated by irrigating 5 mL/d solution which was a mixture of 300 mmol/L NaHCO3solution and 300 mmol/L Na2CO3solution at 1:1 molar ratio for 6 d in a greenhouse. Four treatments were set in a random complete block design in this paper, including CK (Non-alkali stress), AS treatment (adding 5 mL deionized water after alkali-stress), AS+FT treatment (adding 5 ml inorganic fertilizer solution after alkali-stress which was mixed with diammonium phosphate and urea solution and had a concentration equal with urea phosphate solution) and AS+UP treatment (adding 5 ml urea phosphate solution after alkali-stress). The results showed that the soil pH value was significantly increased by 44.19% after alkali-stress, but it were significantly decreased by 2.69 and 0.86 when applying urea phosphate solution and inorganic fertilizer solution to soil 6 days after alkaline stress, and urea phosphate solution had better effect than inorganic fertilizer solution on improving soil pH value. Compared to AS treatment, superoxide dismutase (SOD),peroxidase (POD) and catalase (CAT) activities in AS+UP treatment were significantly increased by 6.42%, 42.08% and 55.13%, respectively, malondiadehyde (MDA) content was significantly reduced by 10.62% and then the extent of membrane lipid was obvious alleviated. Meanwhile, photosynthetic pigment content was greatly improved after applying urea phosphate solution. Chlorophyll a, chlorophyll b and carotenoid concentrations of AS+UP treatment were increased by 22.36%, 32.06% and 10.88%, respectively. Improvement effect on spinach seedlings growth in AS+UP treatment was superior to AS treatment,and plant height, whole leaf area and dry substance of spinach of AS+UP treatment were respectively 23.55%, 21.03% and 33.84% higher than AS treatment. However, the seedling growth in AS+FT treatment was inhibited and physiological characteristics of spinach leaves were decreased. Compared to AS treatment, SOD, POD and CAT activities in AS+FT treatment were reduced by 15.33%, 29.06% and 51.15%, respectively, and its MDA content was higher than that of AS treatment, so chlorophyll a, chlorophyll b and carotenoid contents were decreased by 19.84%, 37.15% and 14.15%,respectively. Moreover, leaf area, dry matter weight and root length were also respectively 26.47%, 26.16% and 1.65% lower than AS+UP treatment. This research indicates that urea phosphate solution has positive effects on improving soil condition and enzyme activity under alkaline stress. Therefore, it can be promoted as a kind of soil amendment to reduce soil pH value in alkaline soil, enhance the ability to adapt to alkali stress and ensure the normal growth and development of crop plants, and it may be a valid method to increase land use efficiency and mitigate the pressure of land demand.
Keywords:soils; moisture; fertilizers; urea phosphate; alkaline stress; spinach; physiological characteristic
通信作者:※逄焕成,男,研究员,博士生导师,主要从事盐碱地改良与耕作制度研究。北京中国农业科学院农业资源与农业区划研究所,100081。Email:panghuancheng@caas.cn
作者简介:张莉,女,河南信阳人,博士生,主要从事土壤耕作与培肥的研究。北京中国农业科学院农业资源与农业区划研究所,100081。
基金项目:公益性行业(农业)科研专项项目(201303130)。
收稿日期:2015-08-31
修订日期:2015-12-01
中图分类号:S15
文献标志码:A
文章编号:1002-6819(2016)-02-0148-07
doi:10.11975/j.issn.1002-6819.2016.02.022