温和地区阳台壁挂式平板型太阳能热水器水量配比优化

2016-03-21 12:41魏生贤胡粉娥晏翠琼曲靖师范学院物理与电子工程学院曲靖655011曲靖师范学院化学化工学院曲靖655011曲靖师范学院云南省高校先进功能材料及低维材料重点实验室曲靖655011
农业工程学报 2016年3期
关键词:热水器方位角太阳能

魏生贤,胡粉娥,晏翠琼(1.曲靖师范学院物理与电子工程学院,曲靖 655011; .曲靖师范学院化学化工学院,曲靖 655011;3.曲靖师范学院云南省高校先进功能材料及低维材料重点实验室,曲靖 655011)



温和地区阳台壁挂式平板型太阳能热水器水量配比优化

魏生贤1,3,胡粉娥2,晏翠琼1,3
(1.曲靖师范学院物理与电子工程学院,曲靖 655011;2.曲靖师范学院化学化工学院,曲靖 655011;3.曲靖师范学院云南省高校先进功能材料及低维材料重点实验室,曲靖 655011)

摘要:基于温和地区9城市的典型气象数据,利用所建数学模型对阳台壁挂式平板型太阳能热水器的水量配比和太阳能保证率进行了计算,并讨论了方位角对水量配比的影响。结果显示,南向阳台壁挂式太阳能热水器春、夏、秋、冬4季和全年水量配比的取值范围分别为28~51、21~41、31~53、37~57和31~47 kg/m2。为便于应用,给出了南向阳台壁挂式太阳能热水器季均和年均水量配比与倾角间相关系数大于0.99的线性回归关系式。对于非南向阳台壁挂式太阳能热水器,季均和年均水量配比的方位角因子随方位角的增大而逐渐减小。倾角为60°~90°、方位角为10°~90°时,季均和年均水量配比的方位角因子分别位于0.57~1.00和0.72~1.00之间。方位角分别小于20°和30°时,方位角对冬季水量配比和春、夏、秋3季及年均水量配比的影响约为5%;方位角分别小于30°和40°时,方位角对上述水量配比的影响约为10%。进一步讨论发现,温和地区南向阳台壁挂式太阳能热水器的年均太阳能保证率位于0.55~0.70之间,推广应用潜力较大。

关键词:太阳能;热水器;优化;水量配比;方位角;方位角因子;太阳能保证率

魏生贤,胡粉娥,晏翠琼. 温和地区阳台壁挂式平板型太阳能热水器水量配比优化[J]. 农业工程学报,2016,32(3):195-201.doi:10.11975/j.issn.1002-6819.2016.03.028http://www.tcsae.org

Wei Shengxian, Hu Fene, Yan Cuiqiong. Optimization of tank-volume-to-collector-area ratio for balcony wall-mounted flat-plate solar water heater in mild region of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 195-201. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.028http://www.tcsae.org

Email:wsx_8600@163.com

0 引 言

太阳能热水器已广泛应用于中国的城市和农村地区。家电下乡计划进一步扩大了太阳能热水器在农村地区的应用。2010年底,中国太阳能热水器的安装面积已达1.68亿m2,每年节能20 Mt标煤。2015年底,中国太阳能热水器的安装总量已达到2.5亿m2,预计2020年底可达6.0亿m2[1]。太阳能热水器的大规模应用,对中国节能减排、实现国家发改委提出的“2020年非化石能源的份额达到15%[2]”的目标具有积极作用。为提升平板型太阳能热水器的经济性能和热性能,邓月超等对微热管阵列平板太阳能集热器中空保温层进行了优化[3],对基于微热管阵列的平板太阳能热水器的热性能进行了试验研究[4-5]。李明等对立面阳台式太阳能热水器的性能进行了试验研究[6]。此外,国外相关研究者对平板型集热器的传热机制[7]、能效[8]、吸热板结构尺寸[9]、新型相变储热水箱[10-11]以及平板型太阳能热水器的总体性能[12]进行了更深入的研究。这些研究对平板型太阳能热水器的优化设计及其推广应用提供了有效的数据支撑。

为保证平板型太阳能热水器的高效运行和用户对水箱终温的需求,世界各国因气候不同对平板型太阳能热水器水箱容水量与集热面积配比Vt/Ac(tank-volume-to-collector-area ratio,简称水量配比)给出了不同的推荐值:如美国[13]与希腊[14]75 kg/m2、马来西亚[15]与土耳其[16]50~70 kg/m2、塞浦路斯[17]45~60 kg/m2、爱尔兰[18]50 kg/m2、中国[19]≤100 kg/m2。文献[20]给出了适用于中国不同地区、不同水箱价格的Vt/Ac的计算公式,文献[13]认为50~90 kg/m2较为合适。昆明气候条件下平板型热水器水量配比Vt/Ac在60~100 kg/m2较为合适[21]。

中国地域辽阔,气候复杂,上述研究给出的水量配比范围较大,不利于实际应用。其次,中国人口众多,大中城市居住建筑主要为高层建筑,其屋顶安装的太阳能热水器仅能满足顶层往下6至8层用户的热水需求。阳台壁挂式太阳能热水器的应用可解决集热器安装位置不够的问题,可为其余用户提供热水。但是,阳台壁挂式平板型热水器水量配比的研究较为鲜见,制约了太阳能热水器在高层建筑中的应用。为解决此问题,本文依据平板太阳能集热器有用能量输出模型建立了平板型太阳能热水器的水量配比模型。前期研究显示,此模型的计算值与试验值的相对误差小于10%[22]。本文以中国温和地区9个城市为例,利用所建模型对阳台壁挂式平板型太阳能热水器的水量配比和太阳能保证率进行了计算。为便于确定不同方位时的水量配比,本文引入了一个新概念“水量配比的方位角因子”,以便讨论方位角对热水器水量配比的影响。

1 模型建立

1.1平板型集热器能量输出模型

单位倾斜面上时均接收的太阳总辐射强度[23]

式中Iβ为单位倾斜面上时均接收的太阳总辐射强度,W/m2;Ib、Id和Ih分别为时均太阳直射、地面散射辐射和总辐射强度,W/m2;θ为太阳直射光对斜面的入射角,(°);β为集热器倾角,(°);ρg为地面反射率。Ib、Id和Ih可由水平面上月平均日太阳总辐射量折算得出[22]。

倾斜面上直射、散射和地面反射入射角的修正因子Kb、Kd、和Kg由下式确定[24]。

其中

太阳直射光对斜面的入射角

式中λ为地理纬度,(°);δ为太阳赤纬,(°);γ为集热器方位角,(°);ω为时角,(°);θd、θg为倾斜面上散射和地面反射等效入射角,(°);对于单层透明盖板,常数b0=−0.1。

稳态工况下,t1至t2时间内平板型集热器有用能量输出Qu为

热损失系数可表示为[25-27]

式中t、t1、t2为时间,s;Ac为采光面积,m2;(τα)为透射-吸收积;ULf为平板集热器热损失系数,W/(m2·℃);Tabs与Tair为吸热板与环境空气平均温度,℃;Utop、Ubot、Uedg分别为集热器顶部、底部与边缘热损系数[25-27],W/(m2·℃)。

1.2水箱容水量与集热面积配比

用户的热水热负荷QLoad由下式确定

式中M为水箱容水量,kg;Cp为水的比热,kJ/(kg·℃);Thot为水箱终温,℃;Tw为自来水温度,℃。

当Qu=QLoad时,集热器输出能量即可满足热水热负荷。此时,t1、t2分别代表日出和日落时刻。则水箱容水量与集热面积比Vt/Ac为

式中Vt为水箱容水量,kg。其中,

自来水水温与环境温度、相对湿度和风速的近似关系为[28-29]

式中Tw1和Tw2为自来水水温,℃;RH为相对湿度,%;V为风速m/s。式(13)和(14)的适用范围为:Tair≥0℃,20%≤RH≤95%,0≤V≤8.7 m/s。因两式计算结果存在一定的偏差,为减小误差,本文取式(13)与(14)的平均值作为自来水水温:

1.3太阳能保证率

太阳能保证率是太阳能热水器热性能的重要指标之一。定义为太阳能供热系统提供的热量与总热负荷的比例,用f表示,即

式中Qaux为月平均日的辅助加热量,J。

2 数据来源

《民用建筑设计通则(GB50352-2005)》规定:墙面突出的建筑构件,如凸窗、窗扇、窗罩、空调机位等的突出深度不应大于0.5 m。由于壁挂式集热器的宽度约为1.0 m,则太阳能集热器与阳台结合时倾角必须大于60°。故本文计算中集热器的倾角取为60°~90°。由于阳台朝向并非均为正南向,且同一倾角斜面上接受的太阳辐射基本上以正南向对称分布,故计算中集热器方位角取值为0~90°。基于温和地区9个代表城市(蒙自、临沧、腾冲、昆明、楚雄、丽江、德钦、会理、西昌)的气象数据[30],利用所建数学模型对壁挂式太阳能热水器的水量配比进行了计算与分析。分析过程中,水箱终温为60 ℃,透射-吸收积(τα)为0.81,地面反射率ρg为0.2,水的比热Cp为4.187 kJ/(kg·℃)。

温和地区9城市的月平均气温和水平面上月平均日太阳总辐射量[30]如图1所示。图1a显示,各城市最低气温出现在冬季,德钦的月均气温最低,达−2.4℃;最高气温出现在春夏季,西昌的月均气温最高,达27.3℃。图1b显示,各城市水平面上月平均日太阳总辐射量的最高值基本上出现在春季,昆明和丽江的最大,约为21.5 MJ/m2;最低值出现在冬季,西昌的最小、约为8.9 MJ/m2。

图1 月平均气温和水平面上月平均日太阳总辐射量Fig.1 Monthly average air temperature and monthly average daily total radiation on horizontal

3 结果与分析

3.1正南向阳台壁挂式太阳能热水器的水量配比

利用MATLAB软件对温和地区9个城市春季、夏季、秋季、冬季和全年使用的正南向阳台壁挂式太阳能热水器的水量配比进行了计算,结果如表1所示。表1中的数据显示,同一城市、同一季节,随着倾角的增大,热水器的水量配比逐渐减小。同一城市同一倾角下,热水器水量配比最小值基本上出现在夏季。

表1 正南向阳台壁挂式太阳能热水器的水量配比Table 1 Vt/Acvalues of balcony wall-mounted solar water heater with collectors facing south        kg·m-2

表2给出了温和地区阳台壁挂式太阳能热水器的水量配比的取值范围。表2的数据显示,温和地区9城市春季、夏季、秋季、冬季和全年使用阳台壁挂式太阳能热水器的水量配比范围分别约为28~51、21~41、31~53、37~57和31~47 kg/m2。

表2 正南向阳台壁挂式太阳能热水器的水量配比的取值范围Table 2 Ranges of Vt/Acfor balcony wall-mounted solar water heater with collectors facing south       kg·m-2

为便于确定各倾角下阳台壁挂式太阳能热水器的水量配比,下面将表1中的数据按公式(17)进行线性拟合,拟合系数如表3所示。Vt/Ac与β的线性相关性较好,相关系数R均大于0.99。依据不同季节的供热目的,可利用公式(17)和表3的数据快速确定温和地区各城市各倾角下使用太阳能热水器的水量配比。

表3 水量配比Vt/Ac与集热器倾角β的线性拟合系数Table 3 Linear fitting coefficient between Vt/Acand β

3.2非正南向阳台壁挂式太阳能热水器的水量配比

为便于确定不同方位安装集热器时的水量配比,此处引入水量配比的方位角因子。此因子定义为相同倾角下不同方位角安装集热器时的水量配比与正南向安装集热器时的水量配比的比值。因此,非正南向阳台壁挂式太阳能热水器的水量配比等于正南向的水量配比(表1)与相应水量配比的方位角因子的乘积。图2给出了温和地区阳台壁挂式太阳能热水器水量配比的方位角因子与方位角的变化关系。

图2 阳台壁挂式太阳能热水器水量配比的方位角因子与方位角的关系Fig.2 Variations of azimuth factor of Vt/Acwith azimuth angle for balcony wall-mounted solar water heater

由图2可知:1)季均和年均水量配比的方位角因子随方位角的增大而逐渐减小。2)相同倾角和方位角下,夏季水量配比的方位角因子最大、冬季最小,春、秋季和年均水量配比的方位角因子位于二者之间。3)倾角为60°~90°、方位角为10°~90°时,春、夏、秋、冬4季和年均水量配比的方位角因子分别位于0.74~1.00、0.76~0.99、0.74~1.00、0.57~0.99和0.72~1.00之间。4)方位角小于20o时,冬季水量配比的方位角因子位于0.95~1.00之间;方位角小于30°时,春、夏、秋3季和年均水量配比的方位角因子位于0.95~1.00之间;此时方位角对水量配比仅有5%的影响。5)当方位角分别小于30°和40°时,方位角对冬季水量配比和春、夏、秋3季及年均水量配比存在10%左右的影响。

3.3南向阳台壁挂式太阳能热水器的太阳能保证率

南向阳台壁挂式太阳能热水器的太阳能保证率如表4所示。表中数据显示,各城市各季节和全年的太阳能保证率均存在一定的波动范围。具体体现为:1)德钦和临沧的太阳能保证率相对较小。德钦春、夏、秋3季的太阳能保证率位于0.50~0.57之间;临沧秋冬季的太阳能保证率位于0.53~0.58之间。2)太阳能保证率相对较大的是楚雄、丽江和西昌。楚雄和丽江4季的太阳能保证率分别位于0.62~0.74和0.64~0.70之间;西昌秋冬季的太阳能保证率位于0.67~0.73之间。3)其余城市各季节的太阳能保证率基本上位于0.57~0.68之间。4)就全年而言,楚雄、丽江和西昌的太阳能保证率相对较大,位于0.64~0.70之间;临沧和德钦的太阳能保证率相对较小,位于0.55~0.60之间;其余城市的年均太阳能保证率位于0.60~0.65之间。

表4 正南向阳台壁挂式太阳能热水器的太阳能保证率Table 4 Solar fraction of balcony wall-mounted solar water heater with south-facing collectors

4 结 论

1)温和地区同一城市、同一季节,南向阳台壁挂式太阳能热水器的水量配比随倾角的增大而逐渐减小。

2)温和地区春季、夏季、秋季、冬季和全年使用的南向阳台壁挂式太阳能热水器的水量配比范围分别为28~51、21~41、31~53、37~57和31~47 kg/m2较为合适。

3)为便于实际应用,文中给出了温和地区各城市各倾角下南向阳台壁挂式太阳能热水器季均和年均水量配比与倾角间的线性回归关系式。相关性较好,各相关系数均大于0.99。

4)季均和年均水量配比的方位角因子随方位角的增大而逐渐减小。倾角为60°~90°、方位角为10°~90°时,春、夏、秋、冬4季和年均水量配比的方位角因子分别位于0.74~1.00、0.76~0.99、0.74~1.00、0.57~0.99和0.72~1.00之间。

5)方位角分别小于20°和30°时,方位角对冬季水量配比和春、夏、秋3季及年均水量配比的影响约为5%。当方位角分别小于30°和40°时,方位角对冬季水量配比和春、夏、秋3季及年均水量配比的影响约为10%。

6)温和地区各城市南向阳台壁挂式太阳能热水器各季节的太阳能保证率存在一定的波动范围。德钦春、夏、秋3季和临沧秋冬季的太阳能保证率分别位于0.50~0.57 和0.53~0.58之间;楚雄、丽江4季和西昌秋冬季的太阳能保证率分别位于0.62~0.74、0.64~0.70和0.67~0.73之间;其余城市各季节的太阳能保证率基本上位于0.57~0.68之间。

7)就全年而言,楚雄、丽江和西昌的太阳能保证率相对较大,位于0.64~0.70之间;临沧和德钦的太阳能保证率相对较小,位于0.55~0.60之间;其余城市的年均太阳能保证率位于0.60~0.65之间。

[参考文献]

[1] Yuan Jiahai, Xu Yan, Zhang Xingping, et al. China's 2020 clean energy target: Consistency, pathways and policy implications [J]. Energy Policy, 2014, 65: 692-700.

[2] Hong L, Zhou N, Fridley D, et al. Assessment of China’s renewable energy contribution during the 12th five year plan[J]. Energy Policy, 2013, 62: 1533-1543.

[3] 邓月超,赵耀华,全贞花,等. 微热管阵列平板太阳能集热器中空保温层优化[J]. 农业工程学报,2015,31(5):268-274. Deng Yuechao, ZhaoYaohua, Quan Zhenhua, et al. Optimization of hollow insulation layer for flat plate solar collector based on micro heat pipe array[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 268-274. (in Chinese with English abstract)

[4] 邓月超,全贞花,赵耀华,等. 基于微热管阵列的平板太阳能热水器的性能试验[J]. 农业工程学报,2013,29(4):222-228. Deng Yuechao, Quan Zhenhua, Zhao Yaohua, et al. Performance experiments for flat plate solar water heater based on micro heat pipe array[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 222-228. (in Chinese with English abstract)

[5] Deng Yuechao, Wang Wei, Zhao Yaohua, et al. Experimental study of the performance for a novel kind of MHPA-FPC solar water heater[J]. Applied Energy, 2013, 112: 719-726.

[6] 李明,郑土逢,季旭,等. 立面阳台式太阳能热水器的性能特性[J]. 农业工程学报,2011,27(10):228-232. Li Ming, Zheng Tufeng, Ji Xu, et al. Performance of facade balcony type solar water heaters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions ofthe CSAE), 2011, 27(10): 228-232. (in Chinese with English abstract)

[7] Cerón J F, Pérez-García J, Solano J P, et al. A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors: Analysis and validation of the heat transfer mechanisms[J]. Applied Energy, 2015, 140: 275-287.

[8] Farzad Jafarkazemi, Emad Ahmadifard. Energetic and exergetic evaluation of flat plate solar collectors[J]. Renewable Energy, 2013, 56: 55-63.

[9] Jilani G, Thomas Ciby. Effect of thermo-geometric parameters on entropy generation in absorber plate fin of a solar flat plate collector [J]. Energy, 2014, 70: 35-42.

[10] Mohammad Ali Fazilati, Ali Akbar Alemrajabi. Phase change material for enhancing solar water heater, an experimental approach[J]. Energy Conversion and Management, 2013, 71: 138-145.

[11] Behrooz M Ziapour, Azad Aghamiri. Simulation of an enhanced integrated collector–storage solar water heater[J]. Energy Conversion and Management, 2014, 78: 193-203.

[12] Khaled Zelzouli, Amenallah Guizani, Chakib Kerkeni. Numerical and experimental investigation of thermosyphon solar water Heater[J]. Energy Conversion and Management, 2014, 78: 913-922.

[13] 宋爱国. 真空管式太阳热水器的水量配比及日平均效率的修正[J]. 首都师范大学学报:自然科学版,2002,23(4):40-43. Song Aiguo. Mass area ratio and corrected to average daily efficiency about evacuated tubular solar water heaters[J]. Journal of Capital Normal University: Natural Science Edition, 2002, 23(4): 40-43. (in Chinese with English abstract)

[14] Prapas D E. Improving the actual performance of thermosiphon solar water heaters[J]. Renewable Energy, 1995, 6(4): 399-406.

[15] Zahedi H R, Adam N M, Sapuan S M, et al. Effect of storage tank geometry on performance of solar water heater[J]. Journal of Scientific & Industrial Research, 2007, 66(2): 146-151.

[16] Kemal Çomakl, Ugur Çaklr, Mehmet Kaya, et al. The relation of collector and storage tank size in solar heating systems[J]. Energy Conversion and Management, 2012, 63: 112-117.

[17] Soteris Kalogirou. Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters[J]. Solar Energy, 2009, 83(1): 39-48.

[18] Ayompe L M, Duffy A, Keever M M, et al. Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate[J]. Energy, 2011, 36(5): 3370-3378.

[19] NY/T 343-1998. 家用太阳热水器技术条件[S]. 中华人民共和国农业部发布,1998.

[20] 王少杰,涂光备,郑宗和,等. 太阳热水器水箱容积与集热面积的合理配比的探讨[J].太阳能学报,2003,24(5):629-632. Wang Shaojie, Tu Guangbei, Zheng Zonghe, et al. Optimal ratio of solar water tank capacity and solar collector area [J]. Acta Energiae Solaris Sinica, 2003, 24(5): 629-632. (in Chinese with English abstract)

[21] 谌学先,高文峰. 家用太阳热水器水量配比与平均日效率关系[J]. 云南师范大学学报,2000,20(2):24-28. Chen Xuexian, Gao Wenfeng. The relation between ratio of water mass to area of solar energy collector and average daily efficiency in domestic solar water heaters[J]. Journal of Yunnan Normal University, 2000, 20(2): 24-28. (in Chinese with English abstract)

[22] 魏生贤,李明,林文贤,等. 高层住宅建筑南立面太阳能热水系统水量配比特性研究[J]. 太阳能学报,2012,33(4):663-669. Wei Shengxian, Li Ming, Lin Wenxian, et al. The study of mass area ratio of solar water heating systems integrated with south-façade of high-rise residential buildings[J]. Acta Energiae Solaris Sinica, 2012, 33(4): 663-669. (in Chinese with English abstract)

[23] Notton G, Cristofari C, Poggi P. Performance evaluation of various hourly slope irradiation models using Mediterranean experimental data of Ajaccio[J]. Energy Conversion and Management, 2006, 47 (2): 147-173.

[24] Cristofari C, Notton G, Poggi P, et al. Modelling and performance of a copolymer solar water heating collector[J]. Solar Energy, 2002, 72(2): 99-112.

[25] Wang Man, Wang Jiangfeng, Zhao Yuzhu, et al. Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors[J]. Applied Thermal Engineering, 2013, 50: 816-825.

[26] Duffie J A, Beckman W A. Solar Engineering of Thermal Processes[M]. Third ed. John Wiley & Sons, New York, 2006. [27] Khaled Zelzouli, Amenallah Guizani, Chakib Kerkeni. Numerical and experimental investigation of thermosyphon solar water Heater[J]. Energy Conversion and Management, 2014, 78: 913-922.

[28] 白振营. 一个计算湖泊(水库)自然水温的新公式[J].水文,1999(3):29-32. Bai Zhenying. A new formula for calculating water temperature of lake or reservoir[J]. Hydrology, 1999(3): 29-32. (in Chinese with English abstract)

[29] 李克锋,郝红升,庄春义,等. 利用气象因子估算天然河道水温的新公式[J]. 四川大学学报:工程科学版,2006,38(1):1-4. Li Kefeng, Hao Hongsheng, Zhuang Chunyi, et al. A new method for predicting water temperature of river by using meteorological factors [J]. Journal of Sichuan University: Engineering Science Edition, 2006, 38(1):1-4. (in Chinese with English abstract)

[30] 中国气象局气象信息中心气象资料室与清华大学建筑技术科学系主编. 中国建筑热环境分析专用气象数据集(含光盘)[M]. 北京:中国建筑工业出版社,2005.

Optimization of tank-volume-to-collector-area ratio for balcony wall-mounted flat-plate solar water heater in mild region of China

Wei Shengxian1,3, Hu Fene2, Yan Cuiqiong1,3
(1. College of Physics and Electronic Engineering, Qujing Normal University, Qujing 655011, China; 2. College of Chemistry and Chemical Engineering, Qujing Normal University, Qujing 655011, China; 3. Yunnan Higher Universities Key Laboratory of Advanced Functional and Low Dimensional Materials, Qujing Normal University, Qujing 655011, China)

Abstract:Solar water heaters are widely used in urban and rural China. The Home Appliances to the Countryside program from government further expands its application in rural areas. In the end of 2010, there were 168 million square meters of installed solar heaters, with an annual primary energy saving of 20 Mtce. The total installation is very likely to reach 250 million square meters in 2015 and at least 600 million square meters in 2020. In the 2009 Copenhagen UN Climate Change Summit, president Hu Jintao pledged to the international community to reduce the CO2intensity of the economy by 40% to 45% by 2020 on the baseline level of 2005. Meanwhile, the share of non-fossil energy is also expected to rise to 15%. Application of solar water heaters will help to achieve this goal. The thermal performance of the flat-plate type solar energy water heater has been studied globally. In order to ensure the efficient operation of the solar water heater and user's demand to the terminal temperature of a tank, the countries all over the world with different climate have given different recommended value for water-mass-to-collector-area ratio (the ratio is abbreviated as MAR) of the flat-plate solar water heater. However, China has a vast territory and its climate is complex. The value range of recommended value from literatures is too large to be used to practical application. The main residential buildings in large and medium-sized cities are mostly high-rise buildings. The solar water heater installed on roof can only meet hot water use for the top six to eight floors. The application of the balcony wall-mounted solar water heater is one of the effective ways to solve hot water needs for the rest of users in high-rise buildings. Based on the typical meteorological data of nine cities in mild region of China, the values of MAR of the balcony wall-mounted flat-plate solar water heater have been calculated by using the established mathematical model. The water tank terminal temperature of 60℃, the collector angle of 60°-90° and the azimuth angle of 0-90° were used in model analysis. Calculation results for south-facing balcony wall-mounted solar water heater in mild region showed that the appropriate MAR of spring, summer, autumn, winter and the whole year was 28-51, 21-41, 31-53, 37-57 and 31-47 kg/m2, respectively. For convenience of practical application, the linear regression relation between seasonal and annual average MAR and the tilt angle for south-facing balcony wall-mounted solar water heater. The correlation coefficients between them were greater than 0.99. In this paper, we introduced a new concept “azimuth factor of MAR” which was easy to calculate MAR for the collector with different azimuth angle. For the non-south-facing balcony wall-mounted solar water heater, the seasonal and annual average azimuth factors of MAR decreased with the increase of the azimuth angle. The seasonal and annual average azimuth factors of MAR ranged from 0.57 to 1.00 and 0.72 to 1.00 when the tilt angle and azimuth angle were respectively at 60°-90° and 10°-90°. The azimuth angle had about 5% effect on MAR for winter and spring, summer, autumn and the whole year when the azimuth angle was less than or equal to 20° and 30°. The azimuth angle had about 10% effect on the above-mentioned MAR when the azimuth angle was less than or equal to 30° and 40°. In conclusion, the annual average solar fraction ranges should be in 0.55-0.70 for the south-facing balcony wall-mounted flat-plate solar water heater used in mild region of China.

Keywords:solar energy; water heaters; optimization; tank-volume-to-collector-area ratio; azimuth angle; azimuth factor; solar fraction

作者简介:魏生贤,男,云南省梁河县人,教授,博士,从事太阳能热利用的研究工作。曲靖曲靖师范学院物理与电子工程学院,655011。

基金项目:NSFC-云南联合基金重点项目(U1137605);云南省科技厅面上项目(2013FZ111);曲靖师范学院科技创新团队项目(TD201301)

收稿日期:2015-08-30

修订日期:2015-12-17

中图分类号:TK519

文献标志码:A

文章编号:1002-6819(2016)-03-0195-07

doi:10.11975/j.issn.1002-6819.2016.03.028

猜你喜欢
热水器方位角太阳能
应用广泛的太阳能无人机
近地磁尾方位角流期间的场向电流增强
谁应该为毁损的热水器负责?
太阳能可以这样玩
太阳能热水器
无处不在的方位角
向量内外积在直线坐标方位角反算中的应用研究
自制一个太阳能热水器
身边的太阳能
2016《太阳能》与您同行