分子印迹电化学传感器

2016-03-21 07:20郭秀春王继磊王海辉陈小艳李圩田周文辉武四新
化学研究 2016年1期

郭秀春,王继磊,王海辉,陈小艳,李圩田,周文辉*,武四新

( 1.河南大学中药研究所,河南开封475004; 2.河南大学化学化工学院,河南开封475004; 3.河南大学特种功能材料重点实验室,河南开封475004)



分子印迹电化学传感器

郭秀春1,王继磊2,王海辉3,陈小艳3,李圩田1,周文辉3*,武四新3

( 1.河南大学中药研究所,河南开封475004; 2.河南大学化学化工学院,河南开封475004; 3.河南大学特种功能材料重点实验室,河南开封475004)

摘要:分子印迹电化学传感器能够选择性识别并检测特定目标化合物,因其设计简单、灵敏度高、价格低廉、携带方便、易于微型化和自动化等优点,在临床诊断、环境监测、食品分析等方面越来越受到人们的关注.本文作者主要论述分子印迹技术与电化学技术相结合构建分子印迹电化学传感器,包括分子印迹电化学传感器的种类,以及电化学方法制备分子印迹聚合物膜的常用单体等.对分子印迹电化学传感器领域新出现的分子印迹聚合物-纳米材料复合物以及纳米结构分子印迹聚合物也一并做了评述.

关键词:分子印迹技术;分子印迹聚合物;电化学传感器

分子印迹技术( Molecular Imprinting Technique,MIT)是指制备对某一特定的目标分子(模板分子)具有特异选择性的聚合物的过程,所制备的聚合物称为分子印迹聚合物( Molecularly Imprinted Polymer,MIP)[1].由于具有构效预定性( Predetermination)、特异识别性( Specific Recognition)和广泛实用性( Practicability)三大特点,分子印迹技术及分子印迹聚合物已经在化合物分离与富集、仿生传感器、人工酶催化剂、抗体模拟酶、药物手性拆分、药物控制释放、药物筛选等诸多领域得到应用,并显示出诱人的应用前景[2].分子印迹聚合物对目标化合物具有特异性识别能力,使得其可以作为传感器的敏感材料(识别元件)用于构建分子印迹传感器.分子印迹聚合物在富集并识别目标化合物之后可以通过光、电、热、质、磁等转化手段(换能器)转化为可以分析的电信号,并获得目标化合物的相关信息.相比于其他类型的传感器,电化学传感器因具有设计简单、灵敏度高、价格低廉、携带方便、易于微型化和自动化等优点,在临床诊断、环境监测、食品分析等方面越来越受到人们的关注[3].结合分子印迹技术和电化学传感器而来的分子印迹电化学传感器在生物及化学传感器领域获得了广泛的关注,成为国内外的研究热点.本文作者将对分子印迹电化学传感器进行综述.

1 分子印迹技术原理及传感器的制备方法

分子印迹聚合物的制备过程就是在模板分子存在的条件下,使功能单体和交联单体发生共聚,将模板分子被包埋在所形成的刚性聚合物材料内.采用一定的方法将模板分子从聚合物材料中洗脱出来,就会在模板分子所占据的空间位置和结构处留下来一个与模板分子在尺寸、形状和结构方面相匹配的三维孔洞.由于功能单体具有与模板分子官能团互补的功能性官能团,因此所合成的分子印迹聚合物能够特异性的与模板分子进行识别和结合(图1)[4].

图1 分子印迹聚合物制备过程[4]Fig.1 Schematic illustration of the preparation of MIP[4]

根据分子印迹聚合物与换能器整合方式的不同,可以将分子印迹传感器的制备方法分为间接法和直接法[5].间接法是先制备MIP膜或颗粒,然后将其整合至传感器的换能器上;直接法则是采用原位聚合法直接在换能器表面制备MIP膜.应该指出,间接法制备的MIP膜一般较厚,容易形成扩散壁垒,使得响应时间延长,同时识别元件与换能器的结合不好[6].针对以上问题,研究者提出了多种方法来提高分子印迹传感器的性能,包括旋涂[7],层层沉积[8-9],电化学聚合[10],接枝聚合[11]等.

2 电化学传感器分类

根据电化学检测技术的不同,电化学分子印迹传感器分为电容型传感器、电导型传感器、电流型传感器、电位型传感器和压电型传感器.

2.1电容型传感器

电容型传感器由一个场效应电容器组成,其内部装有分子印迹聚合物薄膜,并且该分子印迹聚合物薄膜必须是绝缘的.当待测分析物在分子印迹聚合物薄膜上结合时,电容型分子印迹电化学传感器的电容将发生变化,并且电容变化的大小与分析物的量存在定量关系,因此根据电容的改变可实现对分析物的定量检测.电容型化学传感器的优点是无须加入额外的试剂或标记,而且灵敏度高,操作简单,价格低廉.1994年MOSBACH等曾尝试制备分子印迹电容传感器,其敏感材料部分是苯丙氨酸的苯胺分子印迹聚合物膜,但是该试验并不成功,只部分获得了定性检测的效果.1999年,PANASYUK 等[12]改进了该传感器的制备方法,首次成功制备了分子印迹电容性传感器.作者首先利用羟基苯硫酚与金电极之间的金硫键作用在金电极表面自组装一层羟基苯硫酚膜,然后在苯丙氨酸(模板分子)存在条件下电化学聚合苯酚制备了分子印迹薄膜,最后再用烷基硫醇进行封闭,最终实现了对苯丙氨酸的检测.

2.2电导型传感器

电导型分子印迹传感器的基本原理是电导(率)的转换.在两个电导电极中间用一层分子印迹聚合物薄膜隔开,当待测分析物与分子印迹聚合物薄膜结合后分子印迹薄膜的电导率会发生变化.由于电导率的变化与分析物的量存在定量关系,从而实现分析物的检测.分子印迹电导传感器的分子印迹膜不需要经过复杂的固化程序,同时其检测方法简单、电导信号响应及平衡速度快.KRIZ等[13]以苄基三苯基氯化膦离子为模板制备分子印迹膜,利用电导法实现了苄基三苯基氯化膦的检测.在此基础上,柴春彦等[14]发明了一种检测氯霉素的电导型传感器(图2),其电极装置由两片丝网印刷电极平行设计组成,接线端子( 2)、电极连线( 3)与工作电极( 4)连成一体组成一条电极基体,电极基体则印刷在电极基片( 1)上,电极连线( 3)的表面覆盖一层绝缘体( 5),接线端子( 2)是裸露的电导材料薄膜,两片丝网刷电极中的一片的工作电极反应区上覆盖有氯霉素分子印迹膜( 6),而另一片中的电极为空白电极.

图2 检测氯霉素的分子印迹电导传感器[14]Fig.2 MIP-based conductometric sensor for chloramphenicol[14]

2.3电流型传感器

电流型分子印迹传感器是依据在固定电位条件下不同的待测分析物的浓度与响应电流之间存在一定的关系,据此来测定待测物的量.分子印迹电流传感器的关键是分子印迹膜内必须有一定的孔道,使待测分子(或探针分子)能够穿过分子印迹膜到达电极表面,进而发生氧化还原反应而产生电流.该类传感器可对电活性物质进行直接检测,也可对非电活性物质进行间接检测,即通过检测探针分子(例如铁氰化钾)的电化学信号实现对非电活性物质的检测.电流型传感器根据采用的检测手段的不同又可以分为差示脉冲伏安法、方波伏安法、循环伏安法、计时电流法等.KRIZ等[15]最先研制成功了电流型分子印迹电化学传感器,该传感器采用竞争模式实现了吗啡的检测.该传感器对吗啡的响应电流随吗啡浓度的增大而增大,当电流达到恒定值时再加入吗啡的结构类似物可待因,可待因与吗啡竞争结合替代下来部分吗啡扩散到金电极表面发生电化学氧化并产生一个小的峰电流.研究表明,吗啡浓度在0.1~10 μg/mL内增加时,传感器的峰电流呈线性增大并且吗啡结构类似物对测定没有影响.

2.4电位型传感器

电位型分子印迹传感器是通过测量分子印迹膜结合待测分析物后电极电位变化的一类电化学传感器.这类传感器的特点是制备分子印迹膜时加入的模板分子不需要去除,同时待测分析物也不需要扩散并穿过分子印迹膜,因此待测分析物的大小不受限制.MURRAY等[16]最先实现了电位型分子印迹传感器的研制.他们制备了一系列的分子印迹聚合物,并制备了相应的离子选择性电极,利用电位法测定了铅离子.该传感器对铅离子具有很强的选择性,电位响应与活度的对数具有良好的线性关系.

2.5压电型传感器

压电型分子印迹传感器是利用石英晶体的压电特性,将分子印迹薄膜固定在石英晶体电极表面,分子印迹薄膜在结合待测分析物之后质量发生变化,导致石英晶体转化为石英晶体电极的谐振频率发生变化.由于其谐振频率变化量与待测物存在线性关系,因此通过计算机处理可以获得极低的待测物含量.HAUPT等[17]最先将分子印迹聚合物和石英晶体微天平结合,成功构建了压电型分子印迹传感器.作者以( S) -普萘洛尔为模板分子在石英晶体电极表面沉积制备了分子印迹膜,分子印迹膜结合模板分子之后发生质量增加及相应的频率降低,频率降低量与模板分子浓度在一定范围内呈线性,并且该分子印迹传感器能够区分( S) -普萘洛尔和( R) -普萘洛尔.

3 电化学聚合法制备分子印迹聚合物膜构建分子印迹电化学传感器

作为一种特殊的原位聚合方法,电化学聚合法制备分子印迹聚合物薄膜具有以下诸多优点: 1)制备简单,在功能单体和模板分子的溶液中进行循环伏安扫描等操作就能实现; 2)能够在任何导电基底上获得厚度可控的分子印迹薄膜[5].因此,本文作者主要讨论通过电化学聚合法制备分子印迹膜,以及结合电化学检测技术构建电化学分子印迹传感器.

3.1以吡咯为单体制备分子印迹聚合物膜

吡咯是电化学聚合制备分子印迹聚合物薄膜时最常用的单体,很早就有人尝试利用电化学聚合法制备聚吡咯类分子印迹聚合物.例如电化学聚合制备的聚吡咯分子印迹能够吸附制备聚吡咯过程中所掺入的电解质阴离子[18-19],采用该方法可以实现氯离子[18]和三磷酸腺苷[19]的电位法检测.几年之后,HUTCHINS和BACHAS[20]采用同样的方法电化学合成了聚吡咯分子印迹膜,并采用伏安法实现了硝酸盐的检测,但得到的传感器不具有特异性吸附的特点,也能吸附其他的阴离子.需要指出的是,这些在分子印迹膜制备过程中添加的阴离子“模板分子”仍然留在分子印迹聚合物基体中并没有被除去[21].研究者更进一步发展了电化学聚合制备过氧化聚吡咯分子印迹膜,并实现了大量阴离子模板分子的检测.对于聚吡咯分子印迹聚合物识别体系,在电化学聚合制备分子印迹膜的过程中,聚吡咯基体中首先包埋相应的阴离子模板分子,随后采用过氧化而非采取传统的洗涤法来去除模板分子,最终在过氧化聚吡咯的形成过程中,在聚吡咯膜中留下与模板分子互补的纳米孔洞[22].过氧化过程实际上是通过复杂的机制来消除聚合物基体网络中的正电荷,而最终实现模板分子的释放与去除.与此同时,在聚吡咯基体网络中产生含氧基团使得其能够选择性识别模板分子.SPURLOCK等[21]在这一研究方向上进行了更进一步的研究,他们用电化学聚合方法制备了带电荷和中性模板分子(腺苷、肌苷以及三磷酸腺苷)的过氧化聚吡咯膜,但是遗憾的是所制备的聚吡咯对模板分子的选择性识别能力仍然较低.DEORE等[23-24]实现了过氧化聚吡咯的分子印迹膜的制备,并且所制备的过氧化聚吡咯分子印迹膜对L-谷氨酸有明显的手性选择性识别能力.从此以后,吡咯被大量用于各类化合物的分子印迹聚合物的制备,并与多种换能器结合实现了不同化合物甚至生物大分子的检测,具体见表1.

表1 聚吡咯分子印迹电化学传感器Table 1 MIP-based electrochemical sensors based on ppy

续表1 

3.2以邻苯二胺为单体制备分子印迹聚合物膜

邻苯二胺( 1,2-苯二胺)也是电化学聚合制备分子印迹聚合物的常用单体,但是其文献报道量远少于吡咯.ZAMBONIN等[10]首先报道了利用邻苯二胺为单体制备分子印迹聚合物薄膜,并构建了仿生传感器.作者利用电化学聚合制备了葡萄糖分子印迹聚合物膜,并将其作为识别单元与石英晶体微天平结合实现了葡萄糖的检测.此后,研究者逐渐开始采用邻苯二胺均聚物[38-47]或者与其他单体共聚合[48-55]进行分子印迹聚合物膜的制备.在不同pH缓冲溶液中,利用循环伏安法均能成功制备聚邻苯二胺分子印迹膜,但是pH = 5.2的醋酸缓冲溶液仍是最常用的[10,38,46-47].聚邻苯二胺形成的分子印迹膜较为紧密并且具有一定的刚性,因此具有较好的稳定性,特别适合作为传感器的识别单元.另一方面,在pH=5.2的醋酸缓冲溶液中制得的聚邻苯二胺是不导电的,这一特征使得其很合适用于制备电容型分子印迹传感器[39,41-42].例如,CHENG 等[39]在2001年首次用聚邻苯二胺制得了葡萄糖印迹的电容传感器.需要指出的是,以聚邻苯二胺分子印迹膜为识别单元的电化学传感器一般都需要浸泡于待测物溶液中较长时间( 15 min以上)才能进行测试,这造成了基于邻苯二胺的分子印迹聚合物传感器的平衡时间较长,检测相对耗时.

邻苯二胺与其他单体的共聚物同样可以用于分子印迹聚合物薄膜的制备.PENG等[48]首次用苯胺与邻苯二胺共聚制备了硫酸阿托品的分子印迹聚合物,并结合波传感器实现对阿托品的检测.间苯二酚也常常与邻苯二胺形成共聚物制备分子印迹聚合物.WEETALL和ROGERS[49]在石墨电极上电化学合成了等物质的量之比的间苯二酚与邻苯二胺的共聚物分子印迹膜,利用该分子印迹膜分别印迹了3种不同的分子(染料荧光素、罗丹明以及农药2,4-二氯苯氧乙酸),不过该分子印迹膜需要使用大量的甲醇冲洗以去除模板分子.印迹有染料的分子印迹膜可以通过经典的“再吸附实验”识别相应的染料,最后将识别的染料洗脱至甲醇溶液中并记录其荧光特性来检测相应的染料.2,4-二氯苯氧乙酸分子印迹膜修饰的电极可结合方波伏安法监测连续加入2,4-二氯苯氧乙酸溶液的伏安响应.

表2 邻苯二胺均聚物与共聚物分子印迹电化学传感器Table 2 MIP-based electrochemical sensors based on homopolymers and copolymers of opd

3.3以酚类为单体制备分子印迹聚合物膜

酚类单体是另外一种用于电化学制备分子印迹膜的常见单体(表3).PANASYUK等[56]首次以苯酚为单体,通过电化学制备了分子印迹膜,实现了苯丙氨酸的印迹,并成功制备出第一个电容型分子印迹传感器.在此基础上,其他研究者成功制备出不同的聚酚类传感器,实现了抗生素rifamycin SV ( RSV)[57]、茶碱[58]以及甲基紫精[59]等的检测.BLANCO-LóPEZ等[57]认为RSV分子印迹膜的选择性是基于聚酚薄膜的尺寸排阻效应以及电荷分化差异.WILLNER课题组[59]则认为形成印迹位点的原因是聚酚膜与模板分子之间的π-π相互作用.除了单纯的酚类化合物,电化学制备分子印迹薄膜也常常选择含有氨基的酚类化合物[60-62],因为该类化合物聚合得到的薄膜的孔洞内含有功能化的基团,容易提高其与模板分子之间的选择性识别能力.

表3 聚酚分子印迹电化学传感器Table 3 MIP-based electrochemical sensors based on polyphenols

3.4其他单体制备分子印迹聚合物薄膜

大体上来说,能够在电化学条件下聚合并且具有一定的活性功能团的化合物都可以作为单体来制备分子印迹聚合物.除了上述吡咯、苯胺和多酚类化合物外,噻吩及其衍生物、苯磺酸及其衍生物等都可以作为单体,利用电化学聚合法来制备分子印迹膜,并进行分子印迹传感器的构建,但是该类化合物大多比较昂贵,亦或合成和制备较为复杂,因此在此不再祥述.

4 分子印迹聚合物-纳米材料复合物

单纯分子印迹聚合物膜作为传感器的识别元件,通常表现出吸附能力差和灵敏度不高的问题.研究人员发现只有改善分子印迹聚合物膜的吸附动力,缩短响应时间并彻底地去除模板分子才能成功地获得性能优良的分子印迹传感器[66].将纳米材料与分子印迹聚合物复合或者杂化用作传感器的识别单元,能够使传感器识别单元的表面积增大,提高分子印迹聚合物膜的导电性和电子传递能力,最终实现分子印迹电化学传感器灵敏度的显著提高.目前已有金、铂纳米颗粒、碳纳米管以及石墨烯等材料被应用于分子印迹电化学传感器(表4).

表4 分子印迹聚合物-纳米材料复合物分子印迹电化学传感器Table 4 MIP-based electrochemical sensors based on MIP-nanomaterial composites

续表4 

金、铂纳米颗粒具有优良的电催化活性、生物相容性等优点,已经被大量应用于分子印迹电化学传感器的性能改进.KAN等[67]在茶碱的分子印迹聚合物薄膜中加入了金纳米颗粒,提高了分子印迹聚合物薄膜导电性.此实验中,作者在模板分子存在的条件下,先电化学聚合了邻苯二胺.然后通过恒电位法在分子印迹薄膜表面沉积了一层金纳米颗粒而使膜的导电性显著提高(大约30倍).与传统的分子印迹传感器相比,金纳米颗粒的加入使得分子印迹传感器的线性范围得到了增加,检测限得到了降低.ZHOU等[68]首先将铂纳米颗粒固定在玻碳电极上,然后使6-巯基烟酸和模板分子β-雌二醇在铂纳米颗粒表面自组装;然后利用循环伏安法使得自组装膜发生电化学聚合;最后通过恒电位法去除模板分子得到对β-雌二醇具有识别能力的分子印迹电化学传感器,其检测灵敏度明显高于没有铂纳米颗粒修饰的分子印迹传感器.

碳纳米管是典型的一维纳米材料,碳纳米管较大的比表面积、较高的导电能力使其对电化学传感器具有明显的增敏效应.KAN等[69]将分子印迹聚合物与碳纳米管复合得到相应的复合材料并将其作为电极修饰材料,结合计时电流法实现了神经传递介质多巴胺的检测.石墨烯可以看作是将管状的碳纳米管剪切并铺展开来形成的二维纳米材料,石墨烯具有优异的导电、导热和力学性能.因为石墨烯的每个原子都在石墨烯片层的表面,因此石墨烯与吸附分子之间的相互反应以及电子传输非常灵敏[70].

随着分子印迹聚合物与不同纳米材料复合体系研究的深入,部分研究人员也开始了多元复合体系的研究,比如分子印迹聚合物-石墨烯-金纳米颗粒复合体系[71]等,多元复合体系结合了不同纳米材料的特性,使得所制备的传感器的性能得到了进一步的提升.

5 纳米结构分子印迹聚合物

相对于平面结构的分子印迹膜,三维纳米结构的分子印迹聚合物作为传感器的识别单元可以获得较高的比表面积,并增加印迹位点数量和比例,以此来提高识别待测分析物的结合位点[77].基于以上考虑,很多研究者一直致力于纳米结构分子印迹膜的制备以及传感器的构建.

表5 纳米结构分子印迹聚合物电化学传感器Table 5 MIP-based electrochemical sensors based on nanostructured MIPs

HUANG等[78]以樟脑磺酸为虚拟模板分子,电化学聚合得到了聚吡咯分子印迹纳米线.该分子印迹纳米线直径约为100 nm,长度为几微米.研究者用法拉第阻抗谱研究了带电分子结合到聚吡咯分子印迹纳米线修饰电极表面时的界面变化.同时,当聚吡咯分子印迹纳米线传感器用于检测苯丙氨酸时表现出明显的手性选择能力,即当特定的对映异构体被识别时会引起电子传递阻抗降低.

CHOONG等[79]首先在镀钛硅基底上生长直立碳纳米管阵列,然后以碳纳米管阵列为三维支架,采用电化学方法制备咖啡因的分子印迹聚吡咯纳米薄膜.所制备的分子印迹纳米膜的厚度可控且具有较高的比表面积,同时碳纳米管的高导电性使得分子印迹传感器的电化学信号得到增强.这个实验现象在检测大的生物分子,例如蛋白质等方面具有很好的应用前景.采用类似的方法,CAI等[80]在碳纳米管阵列的顶端,以蛋白质为模板制备了聚苯酚纳米壳层.作者利用阻抗可以监测聚苯酚纳米壳层对蛋白质的识别,除了能高灵敏度和高选择性地检测蛋白质外,该纳米传感器还能检测到蛋白质的构象变换.利用此分子印迹传感器,作者实现人乳头瘤病毒-E7衍生蛋白的高灵敏度的检测(检测限低于pg/L).

MENAKER等[81]采用牺牲模板法合成了具有表面印迹位点的蛋白质印迹微米或者纳米线.研究者以聚碳酸酯微孔膜为牺牲模板,首先通过物理吸附将模板蛋白吸附付微孔滤膜的疏水面,然后将微孔滤膜固定于金电极表面,通过电化学聚合聚乙烯二氧噻吩以及聚苯乙烯磺酸制备分子印迹微米棒,最后用氯仿将微孔膜溶解掉.作者通过荧光吸附试验证明了所制备分子印迹材料的识别性能,分子印迹微米棒对模板蛋白的选择性吸附大约是对牛血清蛋白的吸附的两倍.

反蛋白石结构是另外一种制备三维纳米结构分子印迹聚合物膜的方法,KAN等[82]首先将SiO2胶体晶体沉积在电极表面组装成致密的堆积层;然后在SiO2胶体晶体表面和空隙处电沉积聚吡咯分子印迹聚合物,去掉模板分子之后得到三维有序大孔结构的分子印迹聚合物膜;最终结合电化学方法实现了多巴胺的高灵敏检测.

ZHOU等[83]首先以电沉积法在ITO导电膜上制备稀疏的氧化锌纳米棒阵列,然后以此纳米棒阵列为三维支架,通过电化学在氧化锌纳米棒阵列表面电沉积聚吡咯分子印迹纳米膜,制得聚吡咯纳米棒阵列修饰的ITO导电膜,将其作为传感器的识别元件结合差示脉冲法实现了肾上腺素的高灵敏度的检测.

6 结语

事实证明电化学与分子印迹技术相结合构建分子印迹电化学传感器非常具有吸引力,可以应用于不同物质特异性检测,并且通过杂交或杂化方法可以发展灵敏度更高的更复杂的电化学传感器.在这一方面,将电化学技术与纳米材料或纳米结构的分子印迹聚合物结合对发展新型的分子印迹电化学传感器至关重要.虽然已有部分报道,但这一领域尚未成熟,仍有待广大研究者继续推动分子印迹电化学传感器的发展,最终使高灵敏度、高选择性、高稳定性的分子印迹电化学传感器进入分析仪器市场.参考文献:

[1]姜忠义,吴洪.分子印迹技术[M ].北京:化学工业出版社,2003: 5-6.

[2]郭秀春,周文辉.分子印迹技术研究进展[J].化学研究,2012,23: 103-110.

[3]KIMMEL D W,LEBLANC G,MESCHIEVITZ M E,et al.Electrochemical sensors and biosensors [J ].Anal Chem,2012,84: 685-707.

[4]KLEIN J U,WHITCOMBE M J,MULHOLLAND F,et al.Template-mediated synthesis of a polymeric receptor specific to amino acid sequences [J ].Angew Chem Int Ed,1999,38 ( 13/14) : 2057-2060.

[5]谭天伟.分子印迹技术及应用[M].北京:化学工业出版社,2010: 188-189.

[6]PILETSKY S A.Electrochemical sensors based on molecularly imprinted polymers [J ].Electroanal,2002,14: 317-323.

[7]DAS K,PENELLE J,ROTELLO V M.Selective picomolar detection of hexachlorobenzene in water using a quartz crystal microbalance coated with a molecularly imprinted polymer thin film [J ].Langmuir,2003,19: 3921-3925.

[8 ]SHI F,LIU Z,WU G L,et al.Surface imprinting in layer-by-layer nanostructured films [J].Adv Funct Mater,2007,17: 1821-1827.

[9 ]NIU J,LIU Z,FU L,et al.Surface-imprinted nanostructured layer-by-layer film for molecular recognition of theophylline derivatives [J ].Langmuir,2008,24: 11988-11994.

[10]MALITESTA C,LOSITO I,ZAMBONIN P G.Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors [J ].Anal Chem,1999,71: 1366-1370.

[11]PANASYUK-DELANEY T,MIRSKY V M,ULBRICHT M,et al.Impedometric herbicide chemosensors based on molecularly imprinted polymers [J ].Anal Chim Acta,2001,435: 157-162.

[12]PANASYUK T L,Mirsky V M,PILETSKY S A,et al.Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors [J ].AnalChem,1999,71: 4609-4613.

[13 ]KRIZ D,KEMPE M,MOSBACH K.Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors [J].Sensor Actuat BChem,1996,31: 178-181.

[14]柴春彦,李锋,王莉,等.检测氯霉素的导电型电极及其分子印迹膜的制备方法:中国,200810203012 [P].2009-05-06.

[15]KRIZ D,MOSBACH K.Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer [J].Anal Chim Acta,1995,300: 71 -75.

[16]MURRAY G M,JENKINS A L,BZHELYONSKY A,et al.Molecularly imprinted polymers for the selective sequestering and sensing of ions [J].J Hopkins APL Tech D,1997,1: 464-472.

[17 ]HAUPT K,NOWORYTA K,KUTNER W.Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance [J].Anal Commun,1999,36: 391-393.

[18 ]DONG S,SUN Z,LU Z.Chloride chemical sensor based on an organic conducting polypyrrole polymer [J].Analyst,1988,113: 1525-1528.

[19]BOYLE A,GENIES E M,LAPKOWSKI M.Application of the electronic conducting polymers as sensors: Polyaniline in the solid state for detection of solvent vapours and polypyrrole for detection of biological ions in solutions [J].Synth Met,1989,28: C769-C774.

[20]HUTCHINS R S,BACHAS L G.Nitrate-selective electrode developed by electrochemically mediated imprinting/ doping of polypyrrole [J].Anal Chem,1995,67: 1654 -1660.

[21 ]SPURLOCK L D,JARAMILLO A,PRASERTHDAM A,et al.Selectivity and sensitivity of ultrathin purine-templated overoxidized polypyrrole film electrodes [J].Anal Chim Acta,1996,336: 37-46.

[22]SURYANARAYANAN V,WU C T,HO K C.Molecularly imprinted electrochemical sensors [J].Electroanal,2010,22: 1795-1811.

[23 ]DEORE B,CHEN Z,NAGAOKA T.Overoxidized polypyrrole with dopant complementary cavities as a new molecularly imprinted polymer matrix [J ].Anal Sci,1999,15: 827-828.

[24 ]DEORE B,CHEN Z D,NAGAOKA T.Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole [J ].Anal Chem,2000,72: 3989-3994.

[25 ]SYRITSKI V,REUT J,MENAKER A,et al.Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of l-aspartic acid [J].Electrochim Acta,2008,53: 2729-2736.

[26]SHIIGI H,OKAMURA K,KIJIMA D,et al.Fabrication process and characterization of a novel structural isomer sensor molecularly imprinted overoxidized polypyrrole film [J].Electrochem Solid-State Lett,2003,6: H1-H3.

[27]SHIIGI H,KIJIMA D,IKENAGA Y,et al.Molecular recognition for bile acids using a molecularly imprinted overoxidized polypyrrole film [J ].J Electrochem Soc,2005,152: H129-H134.

[28]TAKEDA S,YAGI H,MIZUGUCHI S,et al.A highly sensitive amperometric adenosine triphosphate sensor based on molecularly imprinted overoxidized polypyrrole [J].J Flow Injection Anal,2008,25: 77-79.

[29]XIE C,GAO S,GUO Q,et al.Electrochemical sensor for 2,4-dichlorophenoxy acetic acid using molecularly imprinted polypyrrole membrane as recognition element [J].Microchim Acta,2010,169: 145-152.

[30 ]OZCAN L,SAHIN Y.Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode [J].Sensor Actuat B-Chem,2007,127: 362-369.

[31]OZKORUCUKLU S P,SAHIN Y,ALSANCAK G.Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole [J].Sensors-Basel,2008,8: 8463-8478.

[32]EBARVIA B S,CABANIIIA S,SEVIlla F.Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole [J ].Talanta,2005,66: 145-152.

[33]ALLBANO D R,SEVILLA F.Piezoelectric quartz crystal sensor for surfactant based on molecularly imprinted polypyrrole [J].Sens Actuat B-Chem,2007,121: 129 -134.

[34]SUEDEE R,INTAKONG W,LIEBERZEIT P A,et al.Trichloroacetic acid-imprinted polypyrrole film and its property in piezoelectric quartz crystal microbalance and electrochemical sensors to application for determination of haloacetic acids disinfection by-product in drinking water [J].J Appl Polym Sci,2007,106: 3861-3871.

[35]VINJAMURI A K,BURRIS S C,DAHL D B.Caffeine and theobromine selectivity using molecularly imprinted polypyrrole modified electrodes [J].ECS Trans,2008,13: 9-20.

[36 ]öZCAN L,SAHIN M,SAHIN Y.Electrochemical preparation of a molecularly imprinted polypyrrole-modified pencil graphite electrode for determination of ascorbic acid[J].Sensors-Basel,2008,8: 5792-5805.

[37 ]NAMVAR A,WARRINER K.Microbial imprinted polypyrrole/poly ( 3-methylthiophene) composite films for the detection of Bacillus endospores [J].Biosens Bioelectron,2007,22: 2018-2024.

[38]PENG H,ZHANG J,NIE L,et al.Development of a thickness shear mode acoustic sensor based on an electrosynthesized molecularly imprinted polymer using an underivatized amino acid as the template [J ].Analyst,2010,126: 189-194.

[39]CHENG Z,WANG E,YANG X.Capacitive detection of glucose using molecularly imprinted polymers [J].Biosens Bioelectron,2001,16: 179-185.

[40]FENG L,LIU Y,TAN Y,et al.Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers [J].Biosens Bioelectron,2004,19: 1513-1519.

[41]YANG L,WEI W,XIA J,et al.Capacitive biosensor for glutathione detection based on electropolymerized molecularly imprinted polymer and kinetic investigation of the recognition process [J ].Electroanal,2005,17: 969-977.

[42]LIU X,LI C,WANG C,et al.The preparation of molecularly imprinted poly( o-phenylenediamine) membranes for the specific O,O-dimethyl-α-hydroxylphenyl phosphonate sensor and its characterization by AC impedance and cyclic voltammetry [J].J Appl Polym Sci,2006,101: 2222-2227.

[43 ]WEN W,SHITANG H,SHUNXHOU L,et al.Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator [J].Sensor Actuat B-Chem,2007,125: 422-427.

[44]KANG J,ZHANG H,WANG Z,et al.A novel amperometric sensor for salicylic acid based on molecularly imprinted polymer-modified electrodes [J ].Polym-Plast Technol Eng,2009,48: 639-645.

[45]LIU Y,SONG Q J,WANG L.Development and characterization of an amperometric sensor for triclosan detection based on electropolymerized molecularly imprinted polymer [J].Microchem J,2009,91: 222-226.

[46]LI J,JIANG F,WEI X.Molecularly imprinted sensor based on an enzyme amplifier for ultratrace oxytetracycline determination [J].Anal Chem,2010,82: 6074-6078.

[47]LI J,JIANG F,LI Y,et al.Fabrication of an oxytetracycline molecular-imprinted sensor based on the competition reaction via a GOD-enzymatic amplifier [J ].Biosens Bioelectron,2011,26: 2097-2101.

[48]PENG H,LIANG C,ZHOU A,et al.Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine [J ].Anal Chim Acta,2000,423: 221-228.

[49]WEETALL H H,ROGERS K R.Preparation and characterization of molecularly imprinted electropolymerized carbon electrodes [J].Talanta,2004,62: 329-335.

[50 ]GOMEZ-CABALLERO A,ARANZAZU GOICOLEA M,BARRIO R J.Paracetamol voltammetric microsensors based on electrocopolymerized-molecularly imprinted film modified carbon fiber microelectrodes [J ].Analyst,2005,130: 1012-1018.

[51]WEETALL H H,HATCHETT D W,ROGERS K R.Electrochemically deposited polymer-coated gold electrodes selective for 2,4-dichlorophenoxyacetic acid [J].Electroanalysis,2005,17: 1789-1794.

[52 ]GOMEZ-CABALLERO A,UNCETA N,ARANZAZU GOICOLEA M,et al.Voltammetric determination of metamitron with an electrogenerated molecularly imprinted polymer microsensor [J].Electroanal,2007,19: 356-363.[53]OUVANG R,LEI J,JU H,et al.A Molecularly imprinted copolymer designed for enantioselective recognition of glutamic acid [J].Adv Funct Mater,2007,17: 3223 -3230.

[54 ]GOMEZ-CABALLERO A,UNCETA N,ARANZAZU GOICOLEA M,et al.Evaluation of the selective detection of 4,6-dinitro-o-cresol by a molecularly imprinted polymer based microsensor electrosynthesized in a semiorganic media [J ].Sensor Actuat B-Chem,2008,130: 713-722.

[55 ]SONG W,CHEN Y,XU J,et al.Dopamine sensor based on molecularly imprinted electrosynthesized polymers[J].J Solid State Electrochem,2010,14: 1909-1914.

[56]PANASYUK T L,MIRSKY V M,PILETSKY S A,et al.Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors [J].Anal Chem,1999,71: 4609-4613.

[57]BLANCO-LóPEZ M C,GUTIERREZ-FERNANDEZ S,LOBO-CASTANON M J,et al.Electrochemical sensing with electrodes modified with molecularly imprinted polymer films [J].Anal Bioanal Chem,2004,378: 1922-1928.[58]WANG Z,KANG J,LIU X,et al.Capacitive detection of theophylline based on electropolymerized molecularly imprinted polymer [J].Int J Polym Anal Ch,2007,12: 131-142.

[59]RISKIN M,TEL-VERED R,WILLNER I.The imprint of electropolymerized polyphenol films on electrodes by donor-acceptor interactions: Eelective electrochemical sensing of N,N'-dimethyl-4,4'-bipyridinium ( methyl viologen) [J].Adv Funct Mater,2007,17: 3858-3863.

[60]PENG H,YIN F,ZhOU A,et al.Characterization of electrosynthesized poly-( o-aminophenol) as a molecular imprinting material for sensor preparation by means of quartz crystal impedance analysis [J].Anal Lett,2002,35: 435-450.

[61 ]LIAO H,ZHANG Z,LI H,et al.Preparation of the molecularly imprinted polymers-based capacitive sensor specific for tegafur and its characterization by electrochemical impedance and piezoelectric quartz crystal microbalance[J].Electrochim Acta,2004,9: 4101-4107.

[62]LI J,ZHAO J,WEI X.A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol [J].Sensor Actuat B-Chem,2009,40: 663-669.

[63]HUAN S,HU S,SHEN G,et al.Au microelectrode based on molecularly imprinted oligomer film for rapid electrochemical sensing [J ].Anal Lett,2003,36: 2401-2416.

[64]PAN M F,FANG G Z,LIU B,et al.Novel amperometric sensor using metolcarb-imprinted film as the recognition element on a gold electrode and its application [J].Anal Chim Acta,2011,690: 175-181.

[65]LUO N,HATCHETT D W,ROGERS K R.Recognition of pyrene using molecularly imprinted electrochemically deposited poly( 2-mercaptobenzimidazole) or poly ( resorcinol) on gold electrodes [J ].Electroanal,2007,19: 2117-2124.

[66 ]RISKIN M,TEL-VERED R,BOURENKO T,et al.Imprinting of molecular recognition sites through electropolymerization of functionalized au nanoparticles: Development of an electrochemical TNT sensor based on π-donoracceptor interactions [J].J Am Chem Soc,2008,130: 9726-9733.

[67]KAN X,LIU T,ZHOU H,et al.Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination [J ].Microchim Acta,2010,171: 423-429.

[68]YUAN LH,ZHANG J,ZHOU P,et al.Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17β-estradiol [J].Biosens Bioelectron,2011,29: 29 -33.

[69]KAN X W,ZHAO Y,GENG Z R,et al.Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition [J].J.Phys Chem C,2008,112: 4849-4854.

[70]ROCHEFORT A,WUEST J D.Interaction of substituted aromatic compounds with grapheme [J].Langmuir,2009,25: 210-215.

[71]MEHMET L Y,NECIP A,TANJU E,et al.Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid [J ].RSC Adv,2015,5: 65953-65962.

[72]STOBIECKA M,DEEB J,HEPEL M.Molecularly templated polymer matrix films for biorecognition processes: Sensors for evaluating oxidative stress and redox buffering capacity [J].ECS Trans,2009,19: 15-32.

[73]ZHANG J,WANG Y,LV R,et al.Electrochemical tolazoline sensor based on gold nanoparticles and imprinted poly-o-aminothiophenol film [J ].Electrochim Acta,2010,55: 4039-4044.

[74 ]LAKSHMI D,BOSSI A,WHITCOMBE MJ,et al.Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element [J].Anal Chem,2009,81: 3576-3584.

[75]RISKIN M,TEL-VERED R,LIOUBASHEVSKI O,et al.Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite [J ].J Am Chem Soc,2009,131: 7368-7378.

[76]RISKIN M,TEL-VERED R,FRASCONI M,et al.Stereoselective and chiroselective surface plasmon resonance ( SPR) analysis of amino acids by molecularly imprinted Au-nanoparticle composites [J ].Chem Eur J,2010,16: 7114-7120.

[77 ]WHITCOMBE M J,CHIANELLA I,LARCOMBE L,et al.The rational development of molecularly imprinted polymer-based sensors for protein detection [J ].Chem Soc Rev,2011,40: 1547-1571.

[78]HUANG J,WEI Z,CHEN J.Molecular imprinted polypyrrole nanowires for chiral amino acid recognition [J].Sensor Actuat B-Chem,2008,134: 573-578.

[79 ]CHOONG C,BENDALL J S,MILNE W I.Carbon nanotube array: A new MIP platform [J].Biosens Bioelectron,2009,25: 652-656.

[80]CAI D,REN L,ZHAO H,et al.A molecular-imprint nanosensor for ultrasensitive detection of proteins [J].Nat Nanotechnol,2010,5: 597-601.

[81 ]MENAKER A,SVRITSKI V,REUT J,et al.Electrosynthesized surface-imprinted conducting polymer microrods for selective protein recognition [J].Adv Mater,2009,21: 2271-2275.

[82]KAN X W,LI C,ZHOU H,et al.Three dimensional ordered macroporous electrochemical sensor for dopamine recognition and detection [J ].Am J Biomed Sci,2012,4: 184-193.

[83]LI H H,WANG H H,LI W T,et al.A novel electrochemical sensor for epinephrine based on three dimensional molecularly imprinted polymer arrays [J ].Sensor Actuat B-Chem,2016,222: 1127-1133.

[责任编辑:毛立群]

Molecularly Imprinted Polymer-Based Electrochemical Sensors

GUO Xiuchun1,WANG Jilei2,WANG Haihui3,CHEN Xiaoyan3,LI Weitian1,ZHOU Wenhui3*,WU Sixin3

( 1.Institute of Chinese Materia Medica,Henan University,Kaifeng 475004,Henan,China;
2.College of Chemistry and Chemical Engineering,Henan University,Kaifeng 475004,Henan,China; 3.The Key Laboratory for Special Functional Materials,Henan University,Kaifeng 475004,Henan,China)

Abstract:Molecularly imprinted polymer-based electrochemical sensors are capable of selective recognition and detection of target molecules.And,they have attracted considerable attention in clinical diagnostics,environmental monitoring and food analysis fields due to their simplicity,high sensitivity,low cost,easy to carry,possibility of easy miniaturization and automation.This review highlights the combining of molecular imprinting technology and electrochemical sensors for construction molecularly imprinted polymer-based electrochemical sensors ( MIP-based electrochemical sensors),including the types of MIP-based electrochemical sensors and monomers used for electrosynthesis of MIPs for MIP-based electrochemical sensors.New emerging MIP /nanomaterials and nanostructured MIPs in MIP-based electrochemical sensors are also reviewed.

Keywords:molecular imprinting technology ( MIT) ; molecularly imprinted polymer ( MIP) ; electrochemical sensors

作者简介:郭秀春( 1982-),女,副教授,研究方向为药物分析.*通讯联系人,zhouwh@ henu.edu.cn.

基金项目:国家自然科学基金( U1204214).

收稿日期:2015-10-03.

中图分类号:O635

文献标志码:A

文章编号:1008-1011( 2016) 01-0001-11