吕秋燕,刘文斌,唐 敏*,申腾飞,程玲玲
(1.苏州市吴中区东山中学,中国 苏州 215107;2.中国矿业大学理学院,中国 徐州 221116)
带p-Laplacian算子的分数阶微分方程多点边值问题的解的存在性
吕秋燕1,刘文斌2,唐敏2*,申腾飞2,程玲玲2
(1.苏州市吴中区东山中学,中国 苏州215107;2.中国矿业大学理学院,中国 徐州221116)
摘要利用不动点定理,研究带有p-Laplacian算子的分数阶微分方程多点边值问题解的存在性,得到边值问题至少存在一个解的充分条件.
关键词分数阶微分方程;p-Laplacian算子;存在性;不动点定理
Exitence of Solutions for Fractions Multi-point Boundary Value Problem withp-Laplacian Operator
LVQiu-yan1,LIUWen-bin2*,TANGMin2,SHENTeng-fei2,CHENGLing-ling2
(1.Dongshan High School, Suzhou 215107, China;2.College of Science, China University of Mining and Technology, Xuzhou 221116, China)
AbstractThis paper presents a study on the existence of solutions for the fractional multi-point boundary value problem withp-Laplacian operator. Making use of the fixed-point theorem, we obtained sufficient conditions to guarantee the existence of at least one solution for the boundary value problem.
Key wordsfractional differential equation;p-Laplacian operator; existence; fixed point theorem
近年来,分数阶微分方程被广泛应用于物理学、生物学、控制论等诸多领域[1-3],因此,分数阶微分方程受到许多学者的广泛关注,并取得了很多有意义的结果.文献[4]研究了分数阶微分方程三点边值问题
解的存在性,其中1<α≤2,0≤β≤1.
为了研究流体力学中相关问题,文献[5]介绍了一类带有p-Laplacian算子的微分方程,其一维形式如下
(φp(x′(t)))′=f(t,x(t),x′(t)),
(1)
文献[13]研究了下面分数阶微分方程反周期边值问题
受以上文献的启示,我们研究如下一类带有p-Laplacian算子分数阶微分方程多点边值问题解的存在性,
(2)
1基本定义和预备知识
显然,E是Banach空间.
定义1.1[14]函数u:(0,∞)→R的α>0阶Riemann-Liouville型积分是指
其中右边在(0,∞)上逐点定义.
定义1.2[14]函数u:(0,∞)→R的α>0阶Caputo型微分是指
其中n为大于或等于α的最小整数,右边是在(0,∞)上逐点定义的.
引理1.1[14]设函数u∈C(0,1)有α>0阶的Caputo型微分,则
其中n是大于或等于α的最小整数.
引理1.3设g(t)∈C[0,1],
(3)
2主要结论
引理2.1算子F:E→E是全连续的.
定理2.1对任意的常数r>0,Ω={u|‖u‖ (H)|f(t,u,v,w)|≤σφp(mr), 因此得到 由引理1.2知F满足Rothe条件,原方程至少存在一个解. 3例子 例3.1考虑如下带有p-Laplacian算子的分数阶微分方程多点边值问题 (4) 不妨设r=6,则有界集Ω={u‖|u‖E<6,u∈E}. 显然,问题(4)满足定理2.1的假设条件.因此,至少存在一个解. 参考文献: [1]LAKSHMIKANTHM V. Theory of fraction functional differential equations[J]. Nonlinear Anal: TMA, 2008,69(10):33337-33343. [2]ABDELKADER B. Second-order boundary value problems with integral boundary conditions[J]. Nonlinear Anal, 2009,70(1):364-371. [3]DELBOSCO D. Fractional calculus and function spaces[J]. J Fract Calc,1994,6:45-53. [4]LI C, LUO X, ZHOU Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Comput Math Appl, 2010,59(3):1363-1375. [5]LEIBENSON L S. General problem of the movement of a compressible fluid in a porous medium[J]. Izvestiia Akademii Nauk Kirgizskoi SSR, 1945,9:7-10. [6]SHEN T, LIU W, CHEN T,etal. Solvability of fractionalm-point boundary value problems withp-Laplacian operator at resonance[J]. Electr J Diff Equ, 2014(58):1-10. [7]JIANG W. Solvability of boundary value problem withp-Laplacian at resonance[J]. Bound Value Probl, 2014(1):36. [8]申腾飞,刘文斌,宋文耀.一类带有p-Laplacian算子分数阶微分方程边值问题正解的存在性[J]. 湖南师范大学自然科学学报, 2012,35(5):9-14. [9]BAI Z. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J Math Anal Appl, 2005,311(2):495-505. [10]GE W. The existence of solutions ofm-point boundary value problems at resonance[J]. Acta Math Appl Sin, 2005,28(4):288-295. [11]CHENG L, LIU W, YE Q. Boundary value problem for a coupled system of fractional differential equations withp-Laplacian operator at resonance[J]. Electr J Diff Equ, 2014(60):1-12. [12]BAI Z. On positive solutions of nonlocal fractional boundary value problem[J]. Nonlinear Anal: TMA, 2010,72(2):916-924. [13]CHEN T. An anti-periodic boundary value problem for the fractional differential equation withp-Laplacian operator[J]. Appl Math, 2012,25(11):1671-1675. [14]BAI Z. Solvability for a class of fractional m-point boundary value problems at resonance[J]. Comput Math Appl, 2012,62(3):1292-1302. [15]钟成奎.非线性泛函分析引论[M].兰州:兰州大学出版社,1998. (编辑HWJ) 中图分类号O175.8 文献标识码A 文章编号1000-2537(2016)01-0080-05 *通讯作者,E-mail:wblium@163.com 基金项目:国家自然科学基金资助项目(11271364) 收稿日期:2013-12-02 DOI:10.7612/j.issn.1000-2537.2016.01.014