沉默信息调节因子1对脂类代谢的调控作用

2016-03-09 20:56吴铁梅闫素梅格日乐玛
动物营养学报 2016年5期
关键词:信号通路

吴铁梅 闫素梅 格日乐玛

(内蒙古农业大学动物科学学院,呼和浩特010018)

沉默信息调节因子1对脂类代谢的调控作用

吴铁梅闫素梅*格日乐玛

(内蒙古农业大学动物科学学院,呼和浩特010018)

摘要:沉默信息调节因子1(SIRT1)通过脱乙酰作用能抑制脂肪生成相关基因过氧化物酶体增殖物激活受体γ(PPARγ)和固醇调节元件结合蛋白1c(SREBP1c)的转录活性,从而抑制脂肪细胞分化,降低脂肪沉积,促进脂肪动员。SIRT1通过调节脂类代谢相关的信号通路SIRT1-腺苷酸活化蛋白激酶(AMPK)和SIRT1-哺乳动物雷帕霉素靶蛋白(mTOR)减少脂肪合成,加快脂肪分解,降低脂肪的沉积量。本文主要综述了SRIT1通过相关转录因子与信号通路对动物脂类代谢的调节作用,为进一步研究动物的脂类代谢及改善肉品质提供依据。

关键词:沉默信息调节因子1;脂类代谢;转录因子;信号通路

随着人类现代生活水平的提高,人们对肉品质有了更高的要求,更加注重脂肪的含量与脂肪酸组成。因此,深入了解动物脂类代谢的调节机制对改善肉品质具有重要的理论意义。沉默信息调节因子1(silent information regulator 1,SIRT1)是一种烟酰胺嘌呤二核苷酸依赖的组蛋白脱乙酰酶,与哺乳动物酵母菌酶Sir2具有同源性,所以在生物学功能上两者存在一致性。SIRT1基因可控制细胞周期,抑制细胞凋亡和炎症反应,保护神经和抗氧化应激,促进糖和脂类代谢与神经元增殖分化,参与自噬过程[1]。关于SIRT1在动物脂肪代谢领域的调节作用的研究已经取得一定进展,Picard等[2]研究指出,SIRT1可以通过对过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptors,PPARγ)活性的抑制,下调与脂肪沉积相关的基因转录,抑制脂肪细胞的分化,降低脂肪的沉积,但关于其确切的机制尚不清楚。本文主要综述SIRT1对动物脂类代谢的调节机制,为通过调节动物的脂类代谢来改善肉品质提供依据。

1SIRT1对脂类代谢相关转录因子的调节

1.1参与脂类代谢的主要转录因子

脂肪生成相关基因的表达在脂肪细胞的脂类代谢中发挥关键作用[3],其表达水平由许多转录因子调节[4]。脂肪组织中脂肪生成和脂类分解作用是通过内源遗传机制(基因表达和内源因子调节)之间的相互作用,外部调控因子(激素、外在因素和营养代谢产物)之间的相互作用以及细胞内的局部相互作用产生[5]。参与脂肪酸沉积的调控系统主要包括脂肪生成酶基因[如乙酰辅酶A羧化酶(acetyl-CoA carboxylase,ACC)、脂蛋白脂酶(lipoprotein lipase,LPL)、脂肪酸结合蛋白(fatty acid binding protein 4,FABP4)和硬脂酰辅酶A去饱和酶(stearoyl-CoA desaturase,SCD)]、脂肪酸氧化酶基因[如肉毒碱棕榈酰基转移酶1B(carnitine palmitoyltransferase 1B,CPT1B)和肉毒酰O-乙酰转移酶(carnitine O-acetyltransferase,CRAT)]以及转录调节因子PPARs和固醇调节元件结合蛋白(sterol regulatory element binding factor, SREBP)。在研究不同品种牛脂肪组织沉积调控系统比较[6-7]中已经发现了这些基因在脂肪细胞分化中的作用和表达模式[6,8-9]。PPARs是属于核受体超家族的成员,在脂类分解代谢和储存中起重要作用,目前为止,已经鉴定PPARs家族有3种亚型,即PPARα、PPARβ/δ和PPARγ[10-11]。在不同的细胞中PPARs通过视黄酸受体和类视黄醇X受体配体依赖方式的异源二聚化增加多种基因的表达[11-15]。其中,PPARγ主要在脂肪组织和巨噬细胞中表达,与调节脂类和糖代谢密切相关,并与控制肥胖及其相关疾病有关[10-11]。PPARγ是成脂分化中的主要因素,促进前体脂肪细胞向成熟脂肪细胞分化和细胞中脂滴的聚集[16]。Kersten等[17]研究表明,脂肪细胞中PPARγ的表达量高,能选择性地诱导LPL在脂肪组织的表达,调节脂肪细胞的信号转导,减缓脂解速度,同时增加甘油三酯(triacylglycerol,TG)的合成。因此,PPARγ在PPARs家族中是动物脂肪分解代谢中起重要作用的转录因子。

SREBP是1993年从体外培养人的hela细胞核抽提纯化出来,是固醇类和脂肪酸合成中的重要转录调节因子。SREBP有SREBP1a、SREBP1c和SREBP2共3种亚型,它们在哺乳动物脂类合成作用不同,SREBP2是胆固醇生物合成的调节因子,SREBP1c主要参与脂肪酸合成,SREBP1a一定程度的参与胆固醇和脂肪酸合成[18-20]。SREBP1c是重要的脂肪形成转录因子,能直接调控脂类代谢相关主要基因的表达。此外,在成脂分化中SREBP1c有助于PPARγ的表达和内源性PPARγ配体的产生[21-23]。Graugnard等[23]提出,SREBP1c基因的表达能被营养调控。大多数非反刍动物的SREBP1c转录调控对胰岛素敏感,在碳水化合物过多的情况下会刺激脂肪组织中的脂肪酸合成和TG的沉积[22]。SREBP1c可能与脂肪生成的机制有关。尤其是SREBP1c异构体主要参与脂肪生成和脂肪酸同化酶的调节。有研究指出,脂类饱和度调控SREBP1c蛋白的转录和活化[24]。因此,SREBP1c也是反映动物脂肪分解代谢和脂类饱和度的重要指标之一。因此,本综述主要阐述SIRT1如何通过SREBP1c来调节脂类代谢及其稳态。

1.2SIRT1对PPARγ的调节

人和哺乳动物的脂肪组织分为白色脂肪组织(white adipose tissue,WAT)和棕色脂肪组织(brown adipose tissue,BAT)。其中,WAT是一种重要的调节体内代谢平衡的组织,也是哺乳动物机体的主要脂肪储存库。然而,WAT的关键作用是可以作为内分泌组织,通过分泌激素和细胞因子,如瘦素、脂联素、肿瘤坏死因子α等,影响胰岛素敏感性和炎症。因此,对体内代谢平衡有重大的影响[25]。BAT是哺乳动物体内非颤栗产热的主要来源,对维持动物体温和能量平衡起重要作用。研究表明,CCAAT-增强子结合蛋白(CCAAT-enhancer binding protein,C/EBP)α在成纤维细胞中可促进成脂分化,在C/EBPα缺失的大鼠成纤维细胞中PPARγ能启动成脂分化,但是在没有PPARγ的情况下,C/EBPα不能启动成脂分化[26]。因此,PPARγ是参与成脂分化的重要转录因子。在WAT中PPARγ可促进脂肪细胞分化和脂类合成代谢[25]。在WAT体内平衡中发现,SIRT1是PPARγ的抑制剂[2]。Moynihan等[27]研究表明,在脂肪组织中SIRT1与核受体共抑制因子相互作用,负调控白色脂肪细胞中的PPARγ,使脂肪结合蛋白表达减少,抑制脂肪细胞分化,降低脂肪沉积,促进脂肪动员。因此,SIRTl在动物脂肪沉积和肌肉发育中的关键调控作用与其对PPARγ的调节作用有关。研究发现,SIRT1通过脱乙酰作用能抑制PPARγ在脂肪生成目的基因中的转录活性[28]。小鼠脂肪组织中敲除SIRT1能促进机体体重的增重效果,是由于提高了机体的脂肪量,比起脂肪组织未敲除SIRT1的小鼠,脂肪细胞也较大[29]。这些研究结果提示小鼠脂肪细胞敲除SIRT1有抑制胰岛素的趋势。然而,脂肪组织的SIRT1水平下降导致了人类和啮齿动物的肥胖[30-31]。这可能是通过凋亡蛋白酶依赖机制,肥胖导致SIRT1裂解从而使SIRT1降解,降低了SIRT1活性。研究也证实,SIRT1在WAT的褐变中起作用,WAT中SIRT1超表达导致WAT特异性基因下调和BAT特异性基因上调,而SIRT1的缺乏有相反效果[30]。这可能与SIRT1-依赖脱乙酰基作用对PPARγ的调控作用有关,而PPARγ是通过促进转录辅助调节因子PRDM16促使了BAT的生成[32]。此外,有关人类脂肪组织中SIRT1的过表达可提高体内能量平衡,进一步证实了SIRT1对脂肪组织的内稳态平衡起关键作用[33]。

然而,决定BAT生理功能的因素有解偶联蛋白1(uncoupling protein 1,UCP1)和PPARγ的辅助激活因子(peroxisome proliferator-activated receptor gamma coactivator-1 alpha,PGC-1α)。PGC-1α是诱导棕色脂肪细胞UCP1表达的重要激活剂。St-Pierre等[34]研究得出,在寒冷、有氧运动和禁食条件下,交感神经兴奋诱导大鼠BAT内PGC-1α的表达,提高UCP1的表达量,从而增加大鼠机体能量消耗。Louet等[35]在培养的小鼠原代肝细胞中迅速转染PGC-1a,可使肉毒碱棕榈酰基转移酶1(CPT1)(脂肪酸β氧化的限速酶)的基因表达上调,肝脏脂肪酸的β氧化激活。Boutant等[36]研究表明,在BAT中SIRT1的超表达提高了能量消耗。综合这些研究结果可以总结出:SIRT1通过脱乙酰作用抑制WAT中PPARγ的转录活性,从而抑制成脂分化,而在BAT中SIRT1使PGC-1α活性提高,从而提高了脂肪氧化,因此,激活SIRT1能阻止脂肪细胞的脂肪过度积累,具有促进脂肪消耗和提高产热的功能。

1.3SIRT1对SREBP1c的调节

SREBP1c转录因子通过促进脂肪生成和胆固醇生成基因的表达促进脂肪的储存。通过SIRT1,SREBP1c脱乙酰作用呈现蛋白质泛素调节下降解[32]。因此,SIRT1的激活引起SREBP1c蛋白水平下降,导致SREBP1c在脂肪生成基因的启动子减少和其表达水平降低[37-38]。当大鼠肝细胞中可激活SIRT1的能量代谢相关的代谢物降低时,引起SREBP1发生脱乙酰作用。相对应地,通过药物激活SIRT1,减少了SREBP1c的乙酰化作用,同时,SREBP1c的目的基因如3-羟基-3甲基戊二酸单酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase,HMGR)和脂肪合成酶(fatty acid synthase,FAS)的表达量减少,由此说明SIRT1对SREBP介导的脂肪生成通路具有拮抗作用[39],SIRT1通过对SREBP1c的负调节作用抑制脂肪生成基因的表达[39-41]。转基因小鼠模型的研究指出,SIRT1在体内具有平衡胆固醇的作用。小鼠肝脏敲除SIRT1后降低了肝脏中参与胆固醇逆向运输基因的表达[37],说明肝脏中SIRT1的过度表达可降低血液胆固醇水平。已经证实SIRT1调节体内胆固醇代谢并调控胆汁酸受体(farnesoid X receptor,FXR)和肝X受体(liver X receptor,LXR)、LXRα和LXRβ[42-43],此外,SIRT1对FXR的Lys157和Lys217位点进行脱乙酰作用[43];下调肝脏中的SIRT1会提高FXR的乙酰化作用,从而抑制FXR与视黄醇类X受体α异二聚体化[44]。因此,SIRT1在肝脏中的缺失可抑制FXR的相关转录程序,导致胆结石的形成[45]。通过增加SREBP1c活性,LXR是有效的脂质合成代谢诱导物[46]。然而,SIRT1能使SREBP1c脱去乙酰基产生蛋白酶体降解[38]。因此,SIRT1的过度表达可提高胆固醇代谢和防止肝脂肪变性,而肝脏敲除SIRT1促进了脂质在肝脏堆积。综上所述,SIRT1通过对SREBP1c的负调节作用,可抑制其下游脂肪代谢基因的表达从而抑制脂肪生成;通过促进LXR活性,有利于体内胆固醇的平衡,同时可防止因SREBP1c的脱乙酰作用造成的对脂质合成代谢的不利影响。

2SIRT1对脂类代谢相关的信号通路的调节

2.1SIRT1-腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)通路

2.1.1SIRT1-AMPK通路与脂类合成代谢

SIRT1是能量代谢的重要调节因子,并参与应激反应、细胞生存、线粒体生物合成和细胞能量代谢以及细胞氧化还原状态等多种细胞调节过程[44-45]。然而,SIRT1被多酚类物质如白藜芦醇激活,Hou等[47]对人类脂肪细胞的研究显示,白藜芦醇激活SIRT1,刺激肝激酶B1(LKB1)和AMPK的磷酸化,从而增加了ACC的磷酸化,抑制了ACC的活性,减少丙二酰辅酶A的产生,进一步促进了脂肪酸氧化和抑制了脂肪酸合成,导致肝细胞脂质减少。此外,AMPK被多酚类物质激活,抑制葡萄糖诱导的FAS表达量,这有助于减少TG含量,抑制脂肪酸合成。此外,AMPK在能量平衡的调节代谢中起重要作用并参与SIRT1的激活[48-49]。SIRT1和AMPK被认为是燃烧敏感分子,能调节脂类代谢。AMPK被磷酸化激活引起AMP和ATP的比例增加或引起细胞应激,随后ACC磷酸化[50-51],这抑制了ACC的羧化作用,从而减少了丙二酰辅酶A和脂肪酸的生物合成。这些结果提示,SIRT1通过磷酸化AMPK,抑制ACC和FAS的活性,减少脂肪的沉积和脂肪酸合成。

2.1.2SIRT1-AMPK通路与脂类分解代谢

脂类代谢包括合成代谢和分解代谢,在动物机体内二者处于稳态平衡。脂类分解是复杂的过程。TG水解成甘油和游离脂肪酸是通过一系列脂解酶参与完成的。脂解速率与细胞中脂肪甘油三酯脂肪酶(adipose triglyceride lipase,ATGL)活性成正比,Lass等[52]报道ATGL是脂解限速酶,使TG水解成甘油和游离脂肪酸。ATGL和激素敏感酯酶(hormone-sensitive lipase,HSL)都是参与分解细胞内TG的重要酶。ATGL能够启动脂类分解,HSL随后作用于甘油二酯,两者合作参与WAT的有效分解。已经报道ATGL是SIRT1的下游基因。叉头框O1(forkhead box O1,FoxO1)是个转录因子,可被脱磷酸作用/脱乙酰作用调节,导致其核转位而诱导脂解限速酶如ATGL的转录[53-54]。SIRT1对脂类代谢的作用是建立在FoxO1调节ATGL的表达的基础上[55-57]。在培养的3T3-L1小鼠脂肪细胞中,敲除SIRT1可降低TG的水解作用,这是由于FoxO1的乙酰化和磷酸化水平提高,导致ATGL表达减少所致[56]。Picard等[2]研究报道,大鼠3T3-L1稳定成纤维细胞的SIRT1过度表达时,细胞内脂肪含量降低,而SIRT1的下调引起TG的增加。研究发现,人类肝癌细胞(HepG2)中莫纳可林K通过SIRT1-AMPK通路的激活,使FoxO1脱磷酸和核转运作用,造成细胞内的脂肪含量降低[58]。可见,SIRT1-AMPK通路的激活通过对转录因子FoxO1的脱磷酸作用/脱乙酰基作用来调节下游基因ATGL的转录,进而对动物脂类分解代谢起重要调节作用。

2.1.3SIRT1-AMPK通路与胆固醇合成代谢

SIRT1不仅影响脂肪酸合成和脂类分解,也影响类固醇生成。3-羟基-3甲基戊二酸单酰辅酶A(3-hydroxy-3-methylglutaryl coenzyme A,HMG-CoA)合成酶催化1分子乙酰辅酶A和乙酰乙酰辅酶A缩合成HMG-CoA,然而,HMG-CoA是合成胆固醇和酮体的共同中间产物,它在肝线粒体中裂解成酮体,但在细胞液中,由HMGR催化,还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)供氢还原转变为甲羟戊酸,经过一系列酶的催化下进一步合成胆固醇。HMGR是胆固醇生物合成的限速酶。据Henin等[59]报道,AMPK被5-氨基-4-甲酰胺咪唑核糖核苷酸激活,通过激活ACC和HMGR抑制脂肪酸和胆固醇的生物合成。Bordone等[37]研究表明,转基因小鼠的SIRT1过度表达使血液和WAT的总胆固醇含量显著降低。Endo等[60]研究得出,莫纳可林K的化学结构与HMGR类似,是一个强有力的HMGR的竞争性抑制剂。通过对人类肝癌细胞的研究发现,HMGR的竞争性抑制剂莫纳可林K的降脂效果是通过SIRT1-AMPK通路的激活,使FoxO1脱磷酸和核转运作用,造成细胞内的脂肪含量降低[58]。可见,SIRT1通过AMPK信号通路调节脂类合成与分解代谢相关的基因表达,降低脂肪的沉积,但是具体确切的机制有待于进一步研究。

2.2SIRT1-哺乳动物雷帕霉素靶蛋白(mTOR)通路

2.2.1mTOR通路与脂类代谢

激素是影响脂类代谢的重要因素,其中胰岛素起关键作用。胰岛素与细胞表面上的胰岛素受体结合加强细胞膜上蛋白激酶B(Akt)的磷酸化[61]。Horton等[62]研究表明,胰岛素介导Akt对脂质合成作用的调控是通过大鼠肝细胞SREBPs转录因子来实现的。胰岛素处理或者持续的激活Akt能迅速的诱导U2OS(人骨肉瘤细胞)细胞核内SREBP1的积聚以及脂肪合成基因的表达[63]。此外,TSC1-TSC2复合物是mTORC1上游因子的主要抑制剂,持续激活Akt或TSC1和TSC2的任何一个缺失都会激活mTORC1信号,引起SREBP1和SREBP2靶基因的总体表达量上调,促进脂肪合成[64-65]。Düvel等[64]研究指出,mTORC1信号通路促进成熟形式的SREBP1在大鼠脂肪细胞核内的积累,并诱导SREBP1的自身表达和参与固醇和脂肪酸生物合成基因的表达;在探索其分子调控机制中发现,在TSC2缺乏的细胞中mTORC1的下游核糖体S6激酶1(ribosome protein subunit 6 kinase 1,S6K1)促进了SREBP1的激活及SREBP1和SREBP2靶基因表达量,因此mTOR通过SREBP转录因子调控脂肪合成。通过药理学和遗传学的脂肪形成研究中发现,多能干细胞向成熟脂细胞分化被mTOR信号通路调控。C/EBPβ和C/EBPδ是前体脂肪细胞克隆增生的主要驱动器,对前体脂肪细胞成熟至关重要。雷帕霉素处理前体脂肪细胞是降低C/EBPβ表达量从而抑制前体脂肪细胞的克隆增生,这一过程受到mTOR通路中S6K1的调控[66]。PPARγ和C/EBPα是调控前体脂肪细胞终末分化的主要转录因子[67]。mTOR信号通路能提高PPARγ的转录和蛋白质水平及转录活性,但是机制尚不清楚[68-71]。体外培养大鼠3T3-L1细胞的研究提示,前体脂肪细胞终末分化不受mTORC1信号下游S6K1的调控,而受真核翻译起始因子4E结合蛋白(4EBP)的调控[72-73]。然而,研究表明极度活跃的mTORC1信号通过对胰岛素信号的负反馈效应抑制PPARγ活性[74]。因此,mTOR信号通路也调控脂肪细胞的成脂分化过程。

Chakrabarti等[75]在大鼠3T3-L1脂肪细胞中发现,抑制mTORC1通路的活性可增加ATGL的转录,促进脂肪分解,抑制脂肪合成,这与雷帕霉素引起的脂解作用增强相似。HSL在PKA的Ser563位点的磷酸化与HSL的脂解活性增加有关。HSL的磷酸化抑制与mTORC1的激活和减少脂肪酸的释放有关[76]。然而,mTORC1信号通路通过抑制ATGL转录如何负向调控HSL在PKA点上的磷酸化尚未清楚,具体机制有待于进一步研究。与抑制mTORC1相同,细胞内敲除特异性基因会导致HSL在Ser563点上的磷酸化[77]。除脂肪细胞脂解作用外,mTORC1能控制细胞外脂肪酶LPL。LPL是血浆内存在的水溶性脂肪酶,不仅存在内皮细胞表面,主要存在于肌肉和脂肪组织中。LPL水解TG促进循环中极低密度脂蛋白转变为中密度脂蛋白和低密度脂蛋白,促进组织脂蛋白的吸收[78]。研究得出小鼠脂肪组织中4EBP1/2的双敲除引起脂解作用的降低[73],S6K1敲除后呈现出脂解速率提高的趋势[79]。然而,敲除大鼠的脂肪特异性基因,减少肥胖,但并不表现出显著的提高脂解作用[69]。可见,脂肪组织或脂肪细胞中抑制mTORC1通路会上调ATGL的转录,或敲除特异性基因导致HSL的磷酸化,从而促进脂类分解作用,减少脂肪的沉积。

2.2.2SIRT1-mTOR通路与脂类代谢

Ras蛋白脑组织同源类似物(ras homolog enriched in brain,Rhe)是能够直接作用于mTOR的上游调节物的一个具有小GTPase活性的蛋白,在哺乳动物细胞中其发挥作用的机理与GTP活性是密切相关的。Hay等[80]通过哺乳动物细胞证实,Rheb在状态为Rheb-GTP时才具有活性,能够直接与mTOR结合对mTOR进行正向调节,而且mTOR上游TSC1-TSC2复合物可调节其活性[81]。Ghosh等[82]通过鼠和人的试验证实,SIRT1作用于TSC1-TSC2复合物中的TSC2,TSC2是一种GTPase激活蛋白,是mTOR信号的负调节物,它作用于Rheb-GTP使其变为 Rheb-GDP而失活。因此,SIRT1可能通过负调控mTOR信号通路,进而对脂肪代谢进行调控。赵涛涛等[83]通过用白藜芦醇和烟酰胺处理小鼠的研究结果表明,激活SIRT1可有效地抑制mTORC1信号通路活性,抑制SIRT1则激活mTORC1信号通路。因此,SIRT1通过作用于mTORC1的上游TSC2负调控mTORC1信号通路从而减少脂肪合成,加快脂肪分解,减少脂肪沉积量,但其确切的调控机制有待于进一步研究。

3小结

综上所述,SIRT1通过脱乙酰作用能抑制转录因子PPARγ和SREBP1c,引起其下游的脂肪生成基因的表达量下调,从而抑制脂肪细胞分化,降低脂肪沉积,促进脂肪动员。SIRT1通过调节脂类代谢相关的信号通路SIRT1-AMPK和SIRT1-mTOR减少脂肪合成,加快脂肪分解,降低脂肪的沉积量。然而,目前关于SIRT1对脂类代谢的调控多数以人和大鼠等哺乳动物为研究对象,而在猪、禽及反刍动物领域的研究很少,因此,今后应深入开展SIRT1对猪、禽和反刍动物脂类代谢的调节机制的研究,为通过饲粮对动物的脂类代谢和肉品质进行调控提供理论基础。

参考文献:

[1]王晓凯,张志成,孙天胜.SIRT1的生理作用及调控机制的研究进展[J].中华临床医师杂志,2011,5(24):7315-7318.

[2]PICARD F,KURTEV M,CHUNG N,et al.Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ[J].Nature,2004,429(6993):771-776.

[3]MANNEN H.Identification and utilization of genes associated with beef qualities[J].Animal Science Journal,2011,82(1):1-7.

[4]TANIGUCHI M,GUAN L L,ZHANG B,et al.Gene expression patterns of bovine perimuscular pre-adipocytes during adipogenesis[J].Biochemical and Biophysical Research Communications,2008,366(2):346-351.

[5]FERNYHOUGH M E,HELTERLINE D I,VIERCK J L,et al.Dedifferentiation of mature adipocytes to form adipofibroblasts:more than just a possibility[J].Adipocytes,2005,1(1):17-24.

[6]WANG Y H,BYRNE K A,REVERTER A,et al.Transcriptional profiling of skeletal muscle tissue from two breeds of cattle[J].Mammalian Genome,2005,16(3):201-210.

[7]LEHNERT S A,REVERTER A,BYRNE K A,et al.Gene expression studies of developing bovinelongissimusmuscle from two different beef cattle breeds[J].BMC Developmental Biology,2007,7(1):95.

[8]ZHANG Q K,LEE H G,HAN J A,et al.Differentially expressed proteins during fat accumulation in bovine skeletal muscle[J].Meat Science,2010,86(3):814-820.

[9]LEE S H,GONDRO C,VAN DER WERF J,et al.Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle)[J].BMC Genomics,2010,11(1):623.

[10]ANGHEL S I,WAHLI W.Fat poetry:a kingdom for PPARγ[J].Cell Research,2007,17(6):486-511.

[11]CHRISTODOULIDES C,VIDAL-PUIG A.PPARs and adipocyte function[J].Molecular and Cellular Endocrinology,2010,318(1/2):61-68.

[12]WHITE U A,STEPHENS J M.Transcriptional factors that promote formation of white adipose tissue[J].Molecular and Cellular Endocrinology,2010,318(1/2):10-14.

[13]SIERSB☞K R,NIELSEN R,MANDRUP S.PPARγ in adipocyte differentiation and metabolism-novel insights from genome-wide studies[J].FEBS Letters,2010,584(15):3242-3249.

[14]TONTONOZ P,SPIEGELMAN B M.Fat and beyond:the diverse biology of PPARγ[J].Annual Review of Biochemistry,2008,77(1):289-312.

[15]SHARMA A M,STAELS B.Review:peroxisome proliferator-activated receptor γ and adipose tissue-understanding obesity-related changes in regulation of lipid and glucose metabolism[J].Journal of Clinical Endocrinology and Metabolism,2007,92(2):386-395.

[16]FARMER S R.Regulation of PPARγ activity during adipogenesis[J].International Journal of Obesity,2005,29:S13-S16.

[17]KERSTEN S,DESVERGNE B,WAHLI W.Roles of PPARs in health and disease[J].Nature,2000,405(6785):421-424.

[18]SHIMANO H.Sterol regulatory element-binding proteins (SREBPs):transcriptional regulators of lipid synthetic genes[J].Progress in Lipid Research,2001,40(6):439-452.

[19]EBERLÉ D,HEGARTY B,BOSSARD P,et al.SREBP transcription factors:master regulators of lipid homeostasis[J].Biochimie,2004,86(11):839-848.

[20]BERNARD L,LEROUX C,CHILLIARD Y.Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland[J].Advances in Experimental Medicine and Biology,2008,606:67-108.

[21]KIM J B,SPIEGELMAN B M.ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism[J].Genes & Development,1996,10(9):1096-1107.

[22]KIM J B,WRIGHT H M,WRIGHT M,et al.ADD1/SREBP1 activates PPARγ through the production of endogenous ligand[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95(8):4333-4337.

[23]GRAUGNARD D E,BERGER L L,FAULKNER D B,et al.High-starch diets induce precocious adipogenic gene network up-regulation in longissimus lumborum of early-weaned Angus cattle[J].British Journal of Nutrition,2010,103(7):953-963.

[24]LEFTEROVA M I,LAZAR M A.New developments in adipogenesis[J].Trends in Endocrinology & Metabolism,2009,20(3):107-114.

[25]PICARD F,GUARENIE L.Molecular links between aging and adipose tissue[J].International Journal of Obesity,2005,29(Suppl.1):S36-S39.

[26]FREYTAG S O,PAIELLI D L,GILBERT J D.Ectopic expression of the CCAAT/enhancer-binding protein α promotes the adipogenic program in a variety of mouse fibroblastic cells[J].Genes & Development,1994,8(14):1654-1663.

[27]MOYNIHAN K A,IMAI S I.Sirt1 as a key regulator orchestrating the response to caloric restriction[J].Drug Discovery Today,2006,3(l):11-17.

[28]QIANG L,WANG L H,KON N,et al.Brown remodeling of white adipose tissue by Sirt1-dependent deacetylation of PPARγ[J].Cell,2012,150(3):620-632.

[29]CHALKIADAKI A,GUARENTE L.High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction[J].Cell Metabolism,2012,16(2):180-188.

[30]COSTA C D S,HAMMES T O,ROHDEN F,et al.SIRT1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis[J].Obesity Surgery,2010,20(5):633-639.

[31]GILLUM M P,KOTAS M E,ERION D M,et al.SIRT1 regulates adipose tissue inflammation[J].Diabetes,2010,60(12):3235-3245.

[32]SEALE P,KAJIMURA S,YANG W L,et al.Transcriptional control of brown fat determination by PRDM16[J].Cell Metabolism,2007,6(1):38-54.

[33]XU C,BAI B,FAN P C,et al.Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with ageing in mice[J].American Journal of Translation Research,2013,5(4):412-426.

[34]ST-PIERRE J,LIN J D,KRAUSS S,et al.Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells[J].Journal of Biological Chemistry,2003,278(29):26597-26603.

[35]LOUET J F,HAYHURST G,GONZALEZ F J,et al.The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4α and cAMP-response element-binding protein (CREB)[J].Journal of Biological Chemistry,2002,277(41):37991-38000.

[36]BOUTANT M,JOFFRAUD M,KULKARNI S S,et al.SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function[J].Molecular Metabolism,2015,4(2):118-131.

[37]BORDONE L,COHEN D,ROBINSON A,et al.SIRT1 transgenic mice show phenotypes resembling calorie restriction[J].Aging Cell,2007,6(6):759-767.

[38]LI X L,ZANG S W,BLANDER G,et al.SIRT1 deacetylates and positively regulates the nuclear receptor LXR[J].Molecular Cell,2007,28(1):91-106.

[39]PONUGOTI B,KIM D H,XIAO Z,et al.SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism[J].Journal of Biological Chemistry,2010,285(44):33959-33970.

[40]RODGERS J T,PUIGSERVER P.Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin1[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(31):12861-12866.

[41]WALKER A K,YANG F J,JIANG K R,et al.Conserved role of SIRT1 or thologs in fasting-dependent in hibition of the lipid/cholesterol regulator or SREBP[J].Genes & Development,2010,24(13):1403-1417.

[42]KEMPER J K,XIAO Z,PONUGOTI B,et al.FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states[J].Cell Metabolism,2009,10(5):392-404.

[43]PURUSHOTHAM A,XU Q,LU J,et al.Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1α/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice[J].Molecular and Cellular Biology,2012,32(7):1226-1236.

[44]KALAANY N Y,MANGELSDORF D J.LXRS and FXR:the yin and yang of cholesterol and fat metabolism[J].Annual Review of Physiology,2006,68(1):159-191.

[45]GUARENTE L.Sirtuins,aging,and medicine[J].The New England Journal of Medicine,2011,364(23):2235-2244.

[46]KITADA M,KUME S,TAKEDA-WATANABE A,et al.Sirtuins and renal diseases:relationship with aging and diabetic nephropathy[J].Clinical Science,2013,124(3):153-164.

[47]HOU X Y,XU S Q,MAITLAND-TOOLAN K A,et al.SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase[J].Journal of Biological Chemistry,2008,283(29):20015-20026.

[48]STEINBERG G R,KEMP B E.AMPK in health and disease[J].Physiological Reviews,2009,89(3):1025-1078.

[50]CARLING D,ZAMMIT V A,HARDIE D G.A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis[J].FEBS Letters,1987,223(2):217-222.

[51]HARDIE D G,CARLING D,CARLSON M.The AMP-activated/SNF1 protein kinase subfamily:metabolic sensors of the eukaryotic cell[J].Annual Review of Biochemistry,1998,67(1):821-855.

[52]LASS A,ZIMMERMANN R,OBERER M,et al.Lipolysis-a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores[J].Progress in Lipid Research,2011,50(1):14-27.

[53]CHAKRABARTI P,KANDROR K V.FoxO1 controls insulindependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes[J].Journal of Biological Chemistry,2009,284 (20):13296-13300.

[54]CHENG Z Y,WHITE M F.Targeting Forkhead box O1 from the concept to metabolic diseases:lessons from mouse models[J].Antioxidants & Redox Signaling,2011,14(4):649-661.

[55]LOMB D J,LAURENT G,HAIGIS M C.Sirtuins regulate key aspects of lipid metabolism[J].Biochimica et Biophysica Acta:Proteins and Proteomics,2010,1804(8):1652-1657.

[56]CHAKRABARTI P,ENGLISH T,KARKI S,et al.SIRT1 controls lipolysis in adipocytes via FoxO1-mediated expression of ATGL[J].Journal of Lipid Research,2011,52(9):1693-1701.

[57]CHEN W L,KANG C H,WANG S G,et al.α-lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase[J].Diabetologia,2012,55(6):1824-1835.

[58]HUANG C H,SHIN S M,WU M T,et al.Monacolin K affects lipid metabolism through SIRT1/AMPK pathway in HepG2 cells[J].Archives of Pharmacal Research,2013,36(12):1541-1551.

[59]HENIN N,VINCENT M F,GRUBER H E,et al.Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase[J].FASEB Journal,1995,9(7):541-546.

[60]ENDO A,HASUMI K.Biochemical aspect of HMG CoA reductase inhibitors[J].Advances in Enzyme Regulation,1989,28:53-64.

[61]MANNING B D,CANTLEY L C.AKT/PKB signaling:navigating downstream[J].Cell,2007,129(7):1261-1274.

[62]HORTON J D,GOLDSTEIN J L,BROWN M S.SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver[J].Journal of Clinical Investigation,2002,109(9):1125-1131.

[63]PORSTMANN T,GRIFFITHS B,CHUNG Y L,et al.PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP[J].Oncogene,2005,24(43):6465-6481.

[64]DÜVEL K,YECIES J L,MENON S,et al.Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J].Molecular Cell,2010,39(2):171-183.

[65]PORSTMANN T,SANTOS C R,GRIFFITHS B,et al.SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth[J].Cell Metabolism,2008,8(3):224-236.

[66]YEH W C,BIERER B E,MCKNIGHT S L.Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells[J].Proceedings of the National Academy of Sciences of the United States of America,1995,92(24):11086-11090.

[67]ROSEN E D,HSU C H,WANG X,et al.C/EBPα induces adipogenesis through PPARγ:a unified pathway[J].Genes & Development,2002,16(1):22-26.

[68]ZHANG H H,HUANG J X,DÜVEL K,et al.Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway[J].PLoS One,2009,4(7):e6189.

[69]POLAK P,CYBULSKI N,FEIGE J N,et al.Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration[J].Cell Metabolism,2008,8(5):399-410.

[70]KIM J E,CHEN J.Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis[J].Diabetes,2004,53(11):2748-2756.

[71]YU W H,CHEN Z G,ZHANG J L,et al.Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells[J].Molecular and Cellular Biochemstry,2008,310(1/2):11-18.

[73]LE BACQUER O,PETROULAKIS E,PAGLIALUNGA S,et al.Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2[J].Journal of Clinical Investigation,2007,117(2):387-396.

[74]LAPLANTE M,HORVAT S,FESTUCCIA W T,et al.DEPTOR cell-autonomously promotes adipogenesis,and its expression is associated with obesity[J].Cell Metabolism,2012,16(2):202-212.

[75]CHAKRABARTI P,ENGLISH T,SHI J,et al.Mammalian target of rapamycin complex 1 suppresses lipolysis stimulates lipogenesis and promotes fat storage[J].Diabetes,2010,59(4):775-781.

[76]SOLIMAN G A,ACOSTA-JAQUEZ H A,FINGAR D C.mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes[J].Lipids,2010,45(12):1089-1100.

[77]KUMAR A,LAWRENCE J C,Jr.,JUNG D Y,et al.Fat cell-specific ablation ofrictorin mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism[J].Diabetes,2010,59(6):1397-1406.

[78]WANG H,ECKEL R H.Lipoprotein lipase:from gene to obesity[J].American Journal of Physiology:Endocrinology and Metabolism,2009,297(2):E271-E288.

[79]UM S H,FRIGERIO F,WATANABE M,et al.Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity[J].Nature,2004,431(7005):200-205.

[80]HAY N,SONENBERG N.Upstream and downstream of mTOR[J].Genes & Development,2004,18(16):1926-1945.

[81]WULLSCHLEGER S,LOEWITH R,HALL M N.TOR signaling in growth and metabolism[J].Cell,2006,124(3):471-484.

[82]GHOSH H S,MCBURNEY M,ROBBINS P D.SIRT1 negatively regulates the mammalian target of rapamycin[J].PLoS One,2010,5(2):e9199.

[83]赵涛涛,赵霞,景旭斌,等.雷帕霉素靶蛋白(mTOR)信号通路参与沉默信息调节因子1(Sirt1)抑制小鼠脂肪沉积[J].农业生物技术学报,2012,20(4):404-410.

(责任编辑武海龙)

Regulation of Silent Information Regulator 1 on Lipid Metabolism

WU TiemeiYAN Sumei*Gerelmaa

(College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

Abstract:Silent information regulator 1 (SIRT1) can inhibit the transcription activity of lipogenic-related genes peroxisome proliferator-activated receptors gamma (PPARγ) and sterol regulatory element binding factor 1 c (SREBP1c) through the deacetylation, resulting in inhibiting anabolism of lipid and promoting catabolism. In addition, SIRT1 reduces lipid anabolism, accelerates lipolysis and reduces fat deposition, which may be associated with regulating the SIRT1-adenosine 5′-monophosphate-activated protein kinase (AMPK) and SIRT1-mammalian target of rapamycin (mTOR) signaling pathways. This review summarizes the regulation of SIRT1 on animal lipid metabolism via related transcription factors and signaling pathways, which provides the basis for the further investigation of animal lipid metabolism and improving meat quality.[Chinese Journal of Animal Nutrition, 2016, 28(5):1285-1293]

Key words:silent information regulator 1; lipid metabolism; transcription factors; signaling pathway

doi:10.3969/j.issn.1006-267x.2016.05.001

收稿日期:2015-11-17

基金项目:国家公益性行业(农业)科研专项经费(201003061)

作者简介:吴铁梅(1988—),女,内蒙古通辽人,博士,从事动物营养与饲料领域研究。E-mail: wuyuyan0820@126.com *通信作者:闫素梅,教授,博士生导师,E-mail: yansmimau@163.com

中图分类号:S811.2

文献标识码:A

文章编号:1006-267X(2016)05-1285-09

*Corresponding author, professor, E-mail: yansmimau@163.com

猜你喜欢
信号通路
有氧运动对慢性脑缺血小鼠的PI3K/Akt信号通路的影响
心肌缺血再灌注损伤的发生机制及其防治策略
P2X7受体与中枢神经系统疾病的研究进展
乌骨鸡黑色素的研究进展
基于“肾主生殖” 理论探讨卵巢颗粒细胞增殖机理研究
干细胞在肝损伤中的机制研究
动物体型大小调控分子机制研究进展
栽培稻抽穗期多样性影响机制