马明圣,肖海鹃,宋红梅
中国医学科学院 北京协和医学院 北京协和医院儿科,北京100730
全身型幼年特发性关节炎的发病机制
马明圣,肖海鹃,宋红梅
中国医学科学院 北京协和医学院 北京协和医院儿科,北京100730
全身型幼年特发性关节炎;细胞因子;炎症
幼年特发性关节炎 (juvenile idiopathic arthritis,JIA)是儿童期常见的结缔组织病,是以慢性关节滑膜炎为主要特征,或伴各组织、器官不同程度损害的慢性、全身性疾病。按照目前的疾病分类,全身型幼年特发性关节炎 (systemic onset juvenile idiopathic arthritis,SoJIA)是JIA的一种特殊形式,与其他JIA亚型不同的是SoJIA起病多急骤,以发热、皮疹以及关节炎、肝和/或脾大、淋巴结肿大、多浆膜炎等多系统受累为特征,其表现与自身炎症性疾病很相似。深入研究发现,与其他JIA亚型相比,SoJIA有着独特的免疫异常,SoJIA可能是独立于JIA之外完全不同的另一类疾病 (症候群)。本文从不同层面对SoJIA发病机制进行分析,以增加临床医生对SoJIA的认识。
经典的自身免疫性疾病主要与自身抗原诱导的T淋巴细胞、高滴度的抗体以及主要组织相容性复合体(major histocompatibility complex,MHC)Ⅱ型有关;而自身炎症性疾病则与固有免疫系统有关[1],主要是单核细胞和中性粒细胞活化,而非自身抗原诱导的T淋巴细胞,不伴有高滴度抗体。其他JIA亚型,如少关节型或多关节型JIA主要为自身抗原诱导的T淋巴细胞性自身免疫性疾病;而多项研究发现SoJIA主要为固有免疫系统异常,中性粒细胞升高,大量可激活的固有免疫系统蛋白 (如CARD12、TLR5)及信号途径 (如TLR-IL-1,PPAR-γ信号)被激活,主要表现为吞噬细胞活化失控,产生大量的炎性因子引起临床多系统炎性反应[2-3],进而在临床上出现与其他JIA亚型不同的表现。
炎症小体是一种由多个蛋白组成的复合物,包含NLR家族或AIM2、接头蛋白ASC(apoptosis-associated speck-like protein containing a CARD)以及效应蛋白pro caspase。NLR家族包括3个亚家族:NODs、NLRP (NOD-like receptor family pyrin domain-containing protein)及IPAF[白细胞介素 (interleukin,IL)-1β converting enzyme(ICE)protease-activating factor,含NLRC4],其显著特点是包含一个中间的NACHT结构域以及C末端的富亮氨酸重复序列 (leucine-rich repeats,LRRs)和N末端的CARD或pyrin结构域[4]。外源性ATP激活P2X7受体及相关的pannexin-1,引起强烈的氧化还原反应,产生活性氧 (reactive oxygen species,ROS)、上调抗氧化体系,并激活炎症小体。TLR信号可引起内源性ATP释放,亦可直接诱导ROS产生,引起炎症小体的激活。作为炎症小体蛋白的组成部分,NLRP3将pro IL-1β、pro IL-18剪切成为有活性的IL-1β和IL-18。IL-1β和IL-18会进一步增强IL-1和IL-18受体信号,激活转录因子核因子 κB(nuclear factor-κB,NF-κB),上调 IL-1、IL-18基因表达[5]。IL-1β是SoJIA炎症瀑布的主要介导者,不仅会引起全身炎症,亦可导致关节和骨的破坏。
单核细胞和中性粒细胞激活,进而分泌更多的S100蛋白,包括S100-A8、S100-A9和S100-A12。在SoJIA,S100蛋白显著升高,其血浆S100蛋白水平与SoJIA疾病活动度密切相关[6]。S100-A8和S100-A9形成复合物 calprotectin,作为 TLR4的内源性兴奋剂,calprotectin可触发 TLR信号通路,激活转录因子NF-κB、上调IL-1β等细胞因子表达。IL-1β则会进一步引起S100蛋白分泌,IL-1β和S100蛋白的正反馈机制可促进SoJIA炎症持续存在[7]。
多项研究发现SoJIA与固有免疫相关的基因有关。巨噬细胞迁移抑制因子 (macrophage migration inhibitory factor,MIF)启动子原件的多态性可增加其表达,进一步诱导促炎细胞因子表达,参与SoJIA的发病过程[8]。近期研究表明,5个家系的13例SoJIA患者均有编码 LACC1蛋白 (laccase domain-containing 1 protein)基因错义突变[9]。Laccase是一种催化多种底物氧化反应的非特异性酶,但目前LACC1的作用尚不明确,可能参与自身炎症的病理过程[10]。Cryopyrin蛋白相关周期热综合征患者和SoJIA患者ALAS2基因高度上调,可促进未成熟细胞激活,导致严重的炎性反应[11]。Ayaz等[12]报道在部分土耳其SoJIA患儿中发现MEFV基因突变,该基因突变可引起家族性地中海热,该基因编码蛋白可上调IL-1激活途径。一项针对英国JIA患者的研究发现SoJIA与IL-1A基因单核苷酸多态性相关[13]。
细胞炎症因子在SoJIA发生发展中发挥重要作用,并且与其他JIA亚型不同,主要表现为IL-6、IL-1和IL-18等异常。
IL-6在SoJIA发病机制中具有至关重要的作用。IL-6由单核巨噬细胞、Th2细胞、血管内皮细胞、成纤维细胞产生,主要功能是刺激活化B细胞,分泌抗体刺激T细胞增殖及细胞毒性T淋巴细胞 (cytotoxic T lymphocyte,CTL)活化,刺激肝脏合成急性期蛋白,参与炎症反应。SoJIA的很多临床特点和IL-6直接相关,如C反应蛋白及白细胞升高、血小板增多、高丙种球蛋白、肝脾增大以及骨质疏松[14]。另外,IL-6转基因小鼠的IL-6水平明显升高,小鼠出生后生长速度明显降低,其生长激素在正常水平,但胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)水平降低;同样,SoJIA患儿生长发育也会受损[15]。目前已有多项临床试验证实,托珠单抗 (人源化IL-6受体单抗,可阻止IL-6和IL-6受体复合物形成,抑制IL-6生物活性)治疗SoJIA有效[16-19],进一步验证了IL-6在SoJIA发病机制中的重要意义。
IL-1在SoJIA发病机制中的作用通过观察阿那白滞素 (IL-1受体拮抗剂)的临床疗效而被发现,观察结果显示部分SoJIA患儿应用阿那白滞素后疗效明显,提示IL-1在该部分SoJIA患儿发病机制中具有重要作用[20-21]。疾病活动期SoJIA患儿血清髓样蛋白8(myeloid-related proteins 8,MRP-8)和MRP-14明显升高,且患儿血清MRP-14能够诱导吞噬细胞表达IL-1[22]。IL-1诱导关节基质细胞产生卵泡抑制素相关蛋白-1 (follistatin-related protein 1)导致软骨、骨破坏,且卵泡抑制素相关蛋白-1和 SoJIA疾病的活动情况相关[23]。但目前尚无证据提示SoJIA患儿血清IL-1升高,源自SoJIA患儿单核细胞的体外实验亦未发现IL-1表达增加,推测SoJIA患儿体内IL-1分泌状况可能与其所处的微环境有关,在身体某特定部位可能存在IL-1高水平分泌。
IL-18主要由巨噬细胞产生,其产生被视为是固有免疫系统激活的开始。IL-18作为IL-1的超家族成员,储存在炎症小体中,是调节自然杀伤细胞 (natural killer cell,NK细胞)活性最有效的细胞因子。SoJIA患儿血清及关节液IL-18浓度与C反应蛋白、关节受累数量、IL-6水平呈正相关,血清IL-18水平高度升高提示SoJIA疾病活动,SoJIA病情平稳则IL-18水平呈轻到中度升高[24]。尽管IL-18在所有JIA患儿的血清中均升高,但SoJIA患儿血清IL-18升高更明显。有研究发现以IL-6水平升高为主的SoJIA患儿可能伴有更多的关节受累,而IL-18升高患儿则可能发生巨噬细胞活化综合征 (macrophage activation syndrome,MAS)[25]。
SoJIA患儿发生MAS的比例高于其他亚型的JIA患儿[26],MAS是威胁SoJIA患儿生命的严重并发症,主要表现为发热、肝脾大、出血及神经系统症状,是由不可控制的CTL产生大量炎症因子引导噬血细胞性巨噬细胞 (CD163+)过度激活所引起。噬血细胞性巨噬细胞过度激活会导致一些受体脱落,如可溶性CD163和白细胞介素2受体α(interleukin-2 receptor α,IL-2Rα)。并发MAS的SoJIA患儿血清中可溶性CD163(>1800 ng/ml)和CD25(>7500 pg/ml)水平明显高于无MAS的SoJIA,提示并发MAS的SoJIA患儿血清可溶性CD163和CD25水平可以反映T细胞和巨噬细胞激活程度[27]。另一个潜在的MAS生物标志物是新喋呤 (neopterin),其是三磷酸鸟苷(guanosine triphosphate,GTP)分解产物,由干扰素刺激巨噬细胞而产生。最近一项研究表明,通过新喋呤水平监测可以将SoJIA并发MAS患者和活动性SoJIA而未并发MAS患者区分开来[28]。血清铁蛋白水平迅速升高是考虑MAS的特点之一,但有相当比例未并发MAS的SoJIA患者铁蛋白水平也会显著升高,一旦明确MAS诊断,铁蛋白水平即可用于评估患者对治疗的反应。
SoJIA并发MAS部分患儿与家族性噬血细胞综合征相关的基因突变 (UNC13D、PRF1)有关,研究表明超过50%SoJIA并发MAS患儿有UNC13D基因突变,而仅10%未并发MAS的SoJIA患儿存在该基因突变[29]。另一项研究发现约20%SoJIA患儿存在PRF1错义突变,PRF1和穿孔素功能相关[30]。同样在并发MAS的SoJIA患儿中发现了IRF5多态性,IRF5可以编码Toll样受体信号途径中的转录因子[31-32]。
SoJIA发病以固有免疫系统激活为主,多种细胞因子参与,且更易并发MAS。虽然目前针对相关细胞因子的生物制剂对SoJIA治疗有明显效果,但其费用昂贵。对SoJIA发病机制的继续研究有利于发现新的治疗方案,改善SoJIA患儿的生活质量。
[1]Park H,Bourla AB,Kastner DL,et al.Lighting the fires within:the cell biology of autoinflammatory diseases[J].Nat Rev Immunol,2012,12:570-580.
[2]Vastert SJ,Kuis W,Grom AA.Systemic JIA:New developments in theunderstanding of the pathophysiology and therapy[J].Best Pract Res Clin Rheumatol,2009,23:655-664.
[3]Yokota S,Kikuchi M,Nozawa T,et al.Pathogenesis of systemic inflammatory diseases in childhood:“Lessons from clinical trials of anti-cytokine monoclonal antibodies for Kawasaki disease,systemic onset juvenile idiopathic arthritis,and cryopyrin-associated periodic fever syndrome”[J].Mod Rheumatol,2015,25:1-10.
[4]Mellins ED,Macaubas C,Grom AA,et al.Pathogenesis of systemic juvenile idiopathic arthritis:some answers,more questions[J].Nat Rev Rheumatol,2011,7:416-426.
[5]Barker BR,Taxman DJ,Ting JP.Cross-regulation between the IL-1beta/IL-18 processing inflammasome and other inflammatory cytokines[J].Curr Opin Immunol,2011,23: 591-597.
[6]Kessel C,Holzinger D,Foell D.Phagocyte-derived S100 proteins in autoinflammation:putative role in pathogenesis and usefulness as biomarkers[J].Clin Immunol,2013,147:229-241.
[7]Mellins ED,Macaubas C,Grom AA.Pathogenesis of systemic juvenile idiopathic arthritis:some answers,more questions[J].Nat Rev Rheumatol,2011,7:416-426.
[8]Llamas-Covarrubias MA,Valle Y,Bucala R,et al.Macrophage migration inhibitory factor(MIF):genetic evidence for participation in early onset and early stage rheumatoid arthritis[J].Cytokine,2013,61:759-765.
[9]Wakil SM,Monies DM,Abouelhoda M,et al.Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis[J].Arthritis Rheumatol,2015,67:288-295.
[10]de Jesus AA,Goldbach-Mansky R.Newly recognized Mendelian disorders with rheumatic manifestations[J].Curr Opin Rheumatol,2015,27:511-519.
[11]Balow JE Jr,Ryan JG,Chae JJ,et al.Microarray-based gene expressionprofiling in patients with cryopyrin-associated periodic syndromes defines adisease-related signature and IL-1-responsive transcripts[J].Ann Rheum Dis,2013,72: 1064-1070.
[12]Ayaz NA,Ozen S,Bilginer Y,et al.MEFV mutations in systemic onset juvenile idiopathic arthritis[J].Rheumatology (Oxford),2009,48:23-25.
[13]Hinks A,Martin P,Thompson SD,et al.Autoinflammatory gene polymorphisms and susceptibility to UK juvenile idiopathic arthritis[J].Pediatr Rheumatol Online J,2013,11: 14.
[14]Sikora KA,Grom AA.Update on the pathogenesis and treatment of systemic idiopathic arthritis[J].Curr Opin Pediatr,2011,23:640-646.
[15]Gaspari S,Marcovecchio ML,Breda L,et al.Growth in juvenile idiopathic arthritis:the role of inflammation[J].Clin Exp Rheumatol,2011,29:104-110.
[16]Yokota S,Imagawa T,Mori M,et al.Longterm safety and effectiveness of the anti-interleukin 6 receptor monoclonal antibody tocilizumab in patients with systemic juvenile idiopathic arthritis in Japan[J].J Rheumatol,2014,41:759-767.
[17]Kostik MM,Dubko MF,Masalova VV,et al.Successful treatment with tocilizumab every 4 weeks of a low disease activity group who achieve a drug-free remission in patients with systemic-onsetjuvenile idiopathic arthritis[J].Pediatr Rheumatol Online J,2015,23:13-17.
[18]Izumi K,Kaneko Y,Yasuoka H,et al.Tocilizumab is clinically,functionally,and radiographically effective and safe either with or without low-dose methotrexate in active rheumatoid arthritis patients with inadequate responses to DMARDsand/or TNF inhibitors:a single-center retrospective cohort study(KEIO-TCZ study)at week 52[J].Mod Rheumatol,2015,25:31-37.
[19]De Benedetti F,Brunner HI,Ruperto N,et al.Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis[J].N Engl J Med,2012,367:2385-2395.
[20]Ilowite NT,Prather K,Lokhnygina Y,et al.Randomized,double-blind,placebo-controlled trial of the efficacy and safety of rilonacept in the treatment of systemic juvenile idiopathic arthritis[J].Arthritis Rheumatol,2014,66:2570-2579.
[21]Rossi-Semerano L,Fautrel B,Wendling D,et al.Tolerance and efficacy of off-label anti-interleukin-1 treatments in France:a nationwide survey[J].Orphanet J Rare Dis,2015,15:10-19.
[22]Frosch M,Ahlmann M,Vogl T,et al.Themyeloid-related proteins 8 and 14 complex,a novel ligand of toll-like receptor4,and interleukin-1beta form a positive feedback mechanism in systemic-onsetjuvenile idiopathic arthritis[J].Arthritis Rheum,2009,60:883-891.
[23]Wilson DC1,Marinov AD,Blair HC,et al.Follistatin-like protein 1 is a mesenchyme-derived inflammatory protein and may represent a biomarker for systemic-onset juvenile rheumatoid arthritis[J].Arthritis Rheum,2010,62:2510-2516.
[24]deJager W,Hoppenreijs EP,Wulffraat NM,et al.Blood and synovial fluid cytokine signatures in patients withjuvenile idiopathic arthritis:a cross-sectional study[J].Ann Rheum Dis,2007,66:589-598.
[25]Shimizu M,Nakagishi Y,Yachie A.Distinct subsets of patients with systemicjuvenile idiopathic arthritis based on their cytokine profiles[J].Cytokine,2013,61:345-348.
[26]Ravelli A,Minoia F,Davì S,et al.Development of new classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis[S/OL].Arthritis Rheumatol,2015,8.http://www.researchgate.net/publication/281325601.doi:10.1002/art.39332.
[27]Reddy VV,Myles A,Cheekatla SS,et al.Soluble CD25 in serum:a potential marker for subclinical macrophage activation syndrome in patients with active systemic onset juvenile idiopathic arthritis[J].Int J Rheum Dis,2014,17: 261-267.
[28]Ibarra MF,Klein-Gitelman M,Morgan E,et al.Serum neopterin levels as a diagnostic marker of hemophagocyticlymphohistiocytosis syndrome[J].Clin Vaccine Immunol,2011,18:609-614.
[29]Hazen MM,Woodward AL,Hofmann I,et al.Mutations of thehemophagocytic lymphohistiocytosis-associated gene UNC13D in a patient with systemic juvenile idiopathic arthritis[J].Arthritis Rheum,2008,58:56-570.
[30]Zhang K,Biroschak J,Glass DN,et al.Macrophage activation syndromein patients with systemic juvenile idiopathic arthritis is associated with MUNC13-4 polymorphisms[J].Arthritis Rheum,2008,58:2892-2896.
[31]Yanagimachi M,Goto H,Miyamae T,et al.Association of IRF5 polymorphisms with susceptibility to hemophagocytic lymphohistiocytosis in children[J].J Clin Immunol,2011,31:946-951.
[32]Yanagimachi M,Naruto T,Miyamae T,et al.Association of IRF5 polymorphisms with susceptibility to macrophage activation syndrome in patients with juvenile idiopathic arthritis[J].J Rheumatol,2011,38:769-774.
宋红梅 电话:010-69156276,E-mail:songhm1021@hotmail.com
R593.2;R596.3
A
1674-9081(2016)02-0128-04
10.3969/j.issn.1674-9081.2016.02.010
2014-08-15)