可控药物释放高分子聚合物研究进展

2016-02-08 04:20苏铭吉王治国何培新
粘接 2016年6期
关键词:高分子凝胶载体

纪 萍,詹 园,苏铭吉,王治国,何培新

(有机化工新材料湖北省协同创新中心,有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北 武汉 430062)

可控药物释放高分子聚合物研究进展

纪 萍,詹 园,苏铭吉,王治国,何培新

(有机化工新材料湖北省协同创新中心,有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北 武汉 430062)

癌症是对人类威胁最大的疾病之一。在传统的癌症治疗中, 小分子抗癌药物由于具有缺乏专一选择性、长期使用存在药抗及毒副作用严重等缺点而受到极大限制。聚合物纳米粒子用于给药载体具有广泛的前景。本文重点介绍了可控药物释放高分子聚合物的分类、影响性能的主要因素并对其发展进行了展望。

高分子聚合物;控制药物释放;影响因素

对大部分病人来说,每隔几小时或一天要服用一次药物,药物在体内就会出现浓度的“峰谷”现象。刚服完药时药物浓度最高,处于峰值期,可能会产生毒性和副作用。随着时间延长,药物浓度逐渐降低,最后浓度达到最低,此时药物达不到治疗效果。为了使药物在体内保持恒定浓度、达到最佳治疗效果,需要控制药物释放速度。通常采用的手段有:将药片压实、添加降低药物溶解性的物质、用缓慢溶解的胶囊包复药物、敏感载体包裹药物。

随着高分子聚合物科学和现代医药学的相互渗透,高分子聚合物作为药物控制释放载体已成为最热门的研究方向之一。高分子聚合物作为药物载体的优点有[1]:1)聚合物分子质量大,作为载体可以让药物在病灶部位停留较长时间;2)药物在聚合物粒子内能通过扩散或自降解达到缓释或可控释放的目的;3)可以把具有靶向作用或控制药物释放的功能性组分通过化学键合的方式接枝到纳米粒子表面;4)选用可生物降解聚合物,能避免药物释放后载体聚合物留在人体器官组织内积聚,产生毒副作用。本文综述了可控释放高聚物的种类和影响其载药性能的因素,并对其未来发展做了展望。

1 可控药物释放高分子聚合物分类

1.1 按降解方式

在化学控制药物释放体系中,聚合物基体可在释放环境中降解。当药物释放完毕后,聚合物基材可以完全降解以至消失,在医学上这种体系不需要手术将基材从体内取出,给病人带来很大的方便。所谓降解是指大分子主链断裂并导致聚合度降低的过程。按降解方式高分子聚合物可分为生物降解型和外界触发型[2]。

1.1.1 生物降解型

可生物降解聚合物可用作一些半衰期短、稳定性差、易降解及毒副作用大的药物的控释制剂基材,可有效地拓宽给药途径、减少给药次数和给药量、提高药物的生物利用度、最大程度减少药物对全身特别是肝、肾的毒副作用。可生物降解聚合物作为抗原贮存场所,可增加抗原在体内吸收、运输过程中的稳定性,通过扩散或聚合物降解抗原能在较长时间内缓慢或脉冲释放,单剂接种即能产生与常规多剂免疫相同的效果[3]。

壳聚糖具有良好的生物相容性、生物降解性和药物的吸收性能,是性能优良的高分子材料。Liu等[4]通过自由基聚合的方法用壳聚糖(CS)、单体丙烯酸(AA)、甲基丙烯酸甲酯(MMA)和N-异丙基丙烯酰胺(NIPAM)等单体合成了纳米水凝胶共聚物。通过粒度分析、Zeta电位、红外光谱和扫描电镜对此纳米凝胶进行表征。结果表明,纳米水凝胶大小为140~190 nm,均匀的球形且带明显的正电荷。在更广泛的pH值范围它们表现出良好的溶解行为以及在37 ℃具有很好的温敏性。

1.1.2 外界触发型

随着现代医学及材料科学的快速发展,对生物医学用途的聚合物水凝胶的性能要求也越来越高。理想的生物医用聚合物水凝胶不但要具备良好的生物相容性和生物降解性,而且还应具有降解时间(速率)可调控、降解产物无毒或低毒性、不会引起炎症和致畸反应等特点。常规的生物降解,如酯键的水解和酰胺键的酶解等,一般需要很长的时间才能使整块凝胶降解,且其降解速率往往是不可控的。而向水凝胶中引入可以刺激响应断裂的基团(如可以酸解、光断裂的基团),通过人体外界(或内部)环境变化作为触发开关,引起水凝胶网络发生断链,从而导致降解发生。该智能降解特性通过改变聚合物凝胶自身的物理化学性能(如传质与渗透特性)来达到实际应用目的。作为药物载体,该刺激降解行为能够实现对药物分子可控、靶向释放[5]。

Anseth等[6]合成了一种基于PEG和O-NB基团的光降解型水凝胶。当光照强度为10 mW/ cm2时,该凝胶在10 min内能够完全降解,且随着光照强度以及波长的增加,降解速率分别呈现出加快、减慢的趋势,随着光照的停止,凝胶降解也停止。人体叶干细胞(human mesenchymal stem cells,hMSCs)能够很好地包载进紧密的凝胶网络中,且光照条件下该细胞又能因凝胶网络降解而扩散且保持其活性不变。因此该凝胶可作为药物控释和组织修复材料应用。

1.2 按响应形式

1.2.1 单一响应型

与正常组织相比,肿瘤细胞在无氧状态下糖降解速率很高,产生的大量乳酸堆积在肿瘤部位,使得细胞周围处于弱酸环境(pH值=6.0~7.0),同时肿瘤组织淋巴回流系统缺失,纳米颗粒和大分子表现出滞留现象,无法及时疏散细胞产生的热量,温度也比正常组织偏高。根据肿瘤组织这些特异性,研究了模拟肿瘤组织微环境敏感的高分子聚合物。按照微环境的的不同,可为pH敏感、温度敏感、还原敏感、光敏感、磁敏感、酶敏感、离子敏感等,以及对多种微环境敏感的多重敏感高分子聚合物。

1)pH敏感型

一般来说,具有pH响应型的聚合物大分子网络通常是通过交联而形成的,网络中一般含有酸性或碱性基团,随着介质pH值、离子强度的改变,这些基团发生电离,导致网络内分子链间氢键解离,引起体积不连续的溶胀变化。韩等[7]采用可逆加成-断裂链(RAFT)聚合法,以丙烯酸异丁酯(IBA)、丙烯酸(AA)无规共聚物与聚丙烯酸-2-羟丙酯(PHPA)反应,制备了具有pH敏感性的两亲性嵌段共聚物[P(IBA-co-AA)-b-PHPA]。实验结果表明,P(IBA-co-AA)-b-PHPA是一种新型纳米材料,可以包载紫杉醇,载药胶束的体外释放呈明显pH依赖性,并且体外抗肿瘤活性也较好,有望成为理想的抗肿瘤药物载体。

2)热敏感型

随着温度的变化温敏性高分子聚合物能发生体积的溶胀或收缩,从而控制药物的释放。水凝胶的温敏性主要来源于结构中含有对温度敏感的非共价键作用,如氢键、疏水作用、主客体识别作用等。Ha等[8]设计、制备了疏水药物喜树碱(CPT)修饰的低分子质量聚乙二醇单甲醚(mPEG2000)两亲性聚合物(CPT-PEG2000)。该两亲性聚合物在水溶液中由于疏水药物分子的疏水聚合而形成胶束结构。之后处于外壳的亲水性mPEG2000链与α-CD通过主客体识别作用形成PPR,利用PPR之间的氢键作用和疏水药物的疏水聚合成功制备了含有疏水药物分子的超分子水凝胶。该水凝胶的相转变温度为37 ℃。在37℃下,凝胶发生凝胶—溶胶的转变,加速了药物的释放。因此温度可以作为刺激信号来触发此类水凝胶中药物的释放。

3)还原敏感型

还原响应高分子聚合物逐渐成为药物载体领域研究的热点之一。Yin等[9]将紫杉醇(PTX)与透明质酸(HA)用共价键连接起来合成了一种新型的偶联物HA-ss-PTX。该偶联物具有主动靶向性和选择性细胞内药物释放的协同双重特性。氧化还原反应的二硫键被引入到共轭物中来阻止药物在血液循环中的泄漏,在还原剂如谷胱甘肽反应肿瘤部位达到快速释药。这项研究被认为为未来进一步探索临床应用的智能给药系统提供了可能性。

4)酶敏感型

酶敏感型聚合物是一种新型的智能药物载体材料,它的原理主要是在具有一定选择性催化酶存在的条件下,利用生物酶独特的水解蛋白质分子酰胺键的这个特性,从载体材料中释放出药物。通常情况下,如果没有蛋白酶的存在,蛋白质的水解速率相当缓慢。然而,肿瘤细胞与正常细胞相比,因为控制酶活性的机制出现问题,酶的表达是无法控制的,这就导致肿瘤细胞和正常细胞在很多酶的表达上有显著差异[10]。Aimetti等[11]报道了使用肽交联剂端巯基硫醇烯聚合所形成的一种可降解的四臂聚乙二醇冰片烯水凝胶。形成的水凝胶能够封装在光聚合之前加入的罗丹明标记的牛血清白蛋白,在用人中性粒细胞弹性蛋白质酶的酶处理之后可释放蛋白质。

1.2.2 复合响应型

单一响应型药物载体材料所能实现的功能也比较单一,仅可以实现基因的靶向传递或药物的靶向释放,已经远远不能满足药物载体的需求。而多重响应型载体在未来的实际应用中具有更加重要的意义,因为它可同时对多种刺激进行响应,更加有利于实现其功能即使是在复杂的生理环境下[12]。当高分子聚合物链由多功能嵌段组成时还可以对2种或者2种以上外界环境变化作出响应,就能形成多重响应高分子聚合物,如pH/温度、还原/温度、温度/pH/磁敏感、温度/还原/pH敏感等。

1)pH/温度敏感型

近几年pH/温度敏感水凝胶的研究十分活跃,已经成为国内外众多研究者关注的热点。这些刺激敏感型水凝胶在生物材料培养、分离、蛋白酶的活性控制、药物控制释放等方面具有潜在的应用价值。苟等[13]用海藻酸钠和聚N-丙烯酰基甘氨酸酯为单体制备了一系列pH/温度双重敏感半互穿网络水凝胶小球型药物释放载体。以吲哚美辛作为药物模型,研究了不同pH、不同温度和不同的海藻酸钠/聚N-丙烯酰基甘氨酸酯比例的条件下小球的药物释放行为。实验结果表明其载药凝胶对药物的释放行为具有很好的智能响应性,载药小球基本上可以通过胃液,保证药物主要集中于小肠部位释放,显示出一定的应用前景。

2)还原/温度敏感型

詹等[14]以丙烯酸(AA)和N-异丙基丙烯酰胺(NIPAM)为单体,N,N'-双丙烯酰胱胺(BAC)为交联剂,采用自由基沉淀聚合方法制备了一系列还原和温度敏感聚N-异丙基丙烯酰胺-丙烯酸(PNA)纳米凝胶。利用红外光谱、紫外-可见光谱、拉曼光谱、扫描电子显微镜和动态光散射等方法表征了纳米凝胶的结构、粒径、形貌和Zeta电位等,研究了PNA纳米凝胶对阿霉素盐酸盐(DOX)的负载和释放行为。研究表明PNA纳米凝胶有一定的还原和温度敏感性,能够很好地控制药物释放,比较适合作为药物载体。

3)温度/pH/磁敏感

温度/pH/磁敏感是指该高分子聚合物在具有温度敏感和pH敏感的同时还具有一定的磁敏感。磁性对于生命体的影响是很重要的。血液中的血红蛋白因为本身就含铁因而具有磁响应性。同时,无数证据表明在所有的生命体包括人与动物体内,存在着大量的磁性受体,这些磁性受体主要是一些磁性微粒。Yuan等[15]将药物通过腙键与Fe O连接,

34腙键在酸性条件下是可以发生断裂的,因此该体系就具备了pH响应性。在Fe3O4纳米微粒表面包覆一层具有温度响应性的聚合物-聚(N-异丙基丙烯酰胺-co-N,N-二甲基丙烯酰胺)接枝的壳聚糖分子,该分子的LCST为38℃。因而这个体系具备了磁场、温度和pH三重响应性。当pH<5.3时,同时温度达到较低温度(低于38 ℃),药物的释放效率可以达到最高。

4)温度/还原/pH敏感

近年来,人们对温度/还原/pH敏感性聚合物纳米颗粒作为药物控释载体材料也产生了很大的兴趣。这些多重响应性纳米材料能够拓宽载体的刺激-响应范围,并提高载体的生物相容性、多功能性而进一步提高聚合物纳米在药物控释中应用的潜力。张等[16]用二甲氨基乙基甲基丙烯酸酯(DMAEMA)为单体,利用2-(2-甲氧基乙氧基)乙基甲基丙烯酸酯(MEO2MA)与含二硫键的自引发单体进行自缩合乙烯基共聚合得到的超支化PMEO2MA(H-PMEO2 MA)为大分子引发剂,引发进行原子转移自由基聚合,合成了具有pH、氧化还原以及温度多重响应性的超支化星形聚合物H-PMEO2 MA-star-PDMAEMA。证明了HPMEO2MA有低临界溶液温度(LCST)。胶束形成过程中,用这种聚合物胶束中装载尼罗红,形成药物释放系统,实验结果表明,该载药体系具有pH、温度和氧化还原响应性释放的特性,在生物医药领域有着潜在的应用价值。

2 展望

聚合物纳米粒子用作给药载体前景广阔。选用的聚合物材料要具有良好的生物相容性,特别是释放药物后能生物降解,排出人体内,而天然高分子材料具有明显的优势。聚合物纳米粒子的单分散性要好,设计合成结构规整的聚合物,再自组装形成纳米粒子,是一条有效途径,可采用核或壳交联的方法提高自组装纳米粒子的稳定性。延长聚合物纳米粒子在体内的循环时间也是一种很好的方法。今后医药发展的主要方向具有生物活性的大分子药物,但这类药物存在稳定性差、难以被人体吸收等问题,而聚合物载体给药是比较理想的解决方法。

[1]田威,范晓东,陈卫星,等.药物控制释放用高分子载体的研究进展[J].高分子材料科学与工程,2006,22(4):19-23.

[2]金丽霞.药物缓释载体材料在医药领域中的研究及应用[J].中国组织工程研究与临床康复,2011,15(25) :4699-4702.

[3]李孝红,袁明龙,郝建原,等.生物降解聚合物的研究和产业化进展及展望[J].高分子通报,2008,20(8) :109-119.

[4]Liu S,Zhang J,Cui X,et al.Synthesis of chitosan-based nanohydrogels for loading and release of 5-fluorouracil[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,490:91-97.

[5]程新峰,金勇,漆锐,等.刺激响应降解型聚合物水凝胶[J].化学进展,2015,27(12):1784-1798.

[6]Kloxin A M,Kasko A M,Salinas C N,et al.Photodegradable hydrogels for dynamic tuning of physical and chemical properties [J].Science,2009,324(5923):59-63.

[7]韩晗,李营,袁金芳,等.pH敏感两亲性嵌段共聚物胶束的制备及其负载紫杉醇体外药效的研究[J].高分子学报,2015,(9):1100-1106.

[8]Ha W,Yu J,Song X,et al.Prodrugs forming multifunctional supramolecular hydrogels for dual cancer drug delivery[J].Journal of Materials Chemistry B,2013,1(41):5532-5538.

[9]Yin S,Huai J,Chen X,et al.Intracellular delivery and antitumor effects of a redoxresponsive polymeric paclitaxel conjugate based on hyaluronic acid[J].Acta biomaterialia, 2015,26:274-285.

[10]杨扬,佘汶川,罗奎,等.基于聚合物的环境敏感型纳米抗肿瘤药物传输系统的研究[J].生物化学与生物物理进展,2013,40(10):1039-1048.

[11]A A Aimetti,A J Machen,K S Anseth. Poly(ethylene glycol) hydrogels formedby thiolene photopolymerization for enzyme-responsive protein delivery[J].Bio-materials,2009,30 (30):6048-6054.

[12]张文晶,高长有.智能响应型聚合物微粒及其与细胞的相互作用[J].中国材料进展,2012,31(6):19-30.

[13]苟宇博.pH/温度响应聚N-丙烯酰基甘氨酸酯-海藻酸钠水凝胶的药物控制释放[D].河北大学,2011.

[14]詹园,何培新,孙争光,等.还原和温度双重敏感P(NIPAM-AA)纳米凝胶的合成及载药性能[J].高等学校化学学报,2015,36(12):2563-2568.

[15]Yuan Q,Venkatasubramanian R,Hein S,et al.A Stimulus-Responsive Magnetic Nanoparticle Drug Carrier:Magnetite Encapsu-lated by Chitosan-Grafted-Copolymer[J].Acta Biomaterialia,2008,4(4):1024-1037.

[16]张文建,范溦,李敏,等.多重响应性超支化星形聚合物的合成与组装以及控制释放研究[J].化学学报,2012,70(16):1690-1696.

Research progress of polymers for controlled drug release

JI Ping, ZHANG Yuan, SU Ming-ji, WANG Zhi-guo, HE Pei-xin
(Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei 430062, China)

This paper focuses on the classification of polymers for controlled drug release, the main factors affecting polymers performance and the prospects of the polymers for controlled drug release.

high molecular polymer; controlled drug release; influence factor

636.1

A

1001-5922(2016)06-0075-04

2016-03-07

纪萍(1990-),女,硕士研究生,主要从事药物载体的研究与应用。E-mail:774742703@qq.com。

王治国(1977-),男,讲师。主要从事功能高分子的制备与性能研究。E-mail:wzg96513@hubu.edu.cn。

猜你喜欢
高分子凝胶载体
《功能高分子学报》征稿简则
创新举措强载体 为侨服务加速跑
《功能高分子学报》征稿简则
纤维素气凝胶的制备与应用研究进展
坚持以活动为载体有效拓展港澳台海外统战工作
悬浮聚合法制备窄尺寸分布聚甲基丙烯酸甲酯高分子微球
超轻航天材料——气凝胶
保暖神器——气凝胶外套
“冻结的烟”——气凝胶
精细高分子课程教学改革