“模拟电子线路”中结合数学物理内容的教学方法探索

2016-01-21 22:10方贺男陶志阔
教育教学论坛 2015年40期
关键词:电子信息

方贺男 陶志阔

摘要:“模拟电子线路”是电子信息类一门重要的专业基础课,是电子信息类专业整个知识和能力体系的重要支柱之一。本文针对“模拟电子线路”的教学进行了思考,以具体问题为例,阐述了如何强化数学物理内容,并为“模拟电子线路”的教学服务。

关键词:模拟电子线路;数学物理基础;电子信息

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)40-0180-02

“模拟电子线路”是电子信息类一门重要的专业基础课,是电子信息类专业整个知识和能力体系的重要支柱之一,也是后续“通信原理”、“微型计算机原理与接口技术”等一系列的专业基础课和专业课的基础。该课程具有理论性强、内容较为抽象、逻辑严密、知识点多且杂等特点,更为重要的是,具有与基础数学物理知识联接紧密的特点。

目前,国内的各大院校普遍反映,相比于其他专业基础课,比如“数字线路与逻辑设计”,“模拟电子线路”难教、难学。我们在本课程的教授过程中也充分地感受到了学生的畏难情绪,甚至有些学生产生了放弃学习的想法。职是之故,我们深入地进行了了解、调研,发现出现上述现象的主要原因是学生对于其中涉及的基础数学物理知识掌握较为薄弱。为此,我们提出了对于“模拟电子线路”中结合数学物理内容的教学方法研究。

下面就几个具体的例子来阐述如何在“模拟电子线路”的教学中结合数学物理内容。

一、 半导体物理的基础知识、PN结和二极管的工作原理[1]

半导体二极管及其应用是“模拟电子线路”整门课程学习的基础。后续章节中的双极型晶体管及其放大电路、场效应晶体管及其电路都要运用到PN结和二极管的工作原理。如果对于这部分内容掌握不好,将严重影响该门课程的学习。而这部分内容的掌握主要依赖于学生对于“半导体物理”中的基础物理知识的掌握情况,包括:导体、绝缘体以及半导体的概念;载流子的概念;N型、P型半导体的概念;杂质半导体的载流子浓度的方程;扩散电流和漂移电流的概念;空间电荷区的概念;PN结的单向导电性;PN结的电容特性。同时,一些数学概念的理解对于该部分内容的掌握也很关键,比如PN结的电流方程i=Is(eu/kT-1)的两种极限,即u≥kT和u≤kT时的分析,就与高等数学中的函数的极限的掌握密切相关[2];在半导体二极管的直流电阻和交流电阻内容部分,与物理中的匀速运动速度和变速运动速度的概念十分接近,两者结合起来讲授将有助于学生的理解。不仅如此,在推导交流电阻公式时需要用到电流方程的微分,如果学生很好地掌握了高等数学中的微积分,则可以不用死记硬背交流电阻公式,利于学生掌握。

二、晶体管的交流小信号模型

晶体管的交流小信号模型是分析晶体管放大电路的必备知识。经过反复地思考,我们认为该部分内容的掌握有两个要点:(1)受控电流源的理解和应用,这是前期电路课程中往往被认为是非重点内容甚至被部分教师忽略的知识点;(2)偏微分的理解和掌握,这是因为晶体管是三端口网络,所以不同端口间电压和电流之间的控制关系往往是偏导的关系,比如ube对于ib的控制关系[1]、H参数模型中的四个H参数的定义。这两个要点分属于基础物理和基础数学的范畴,因此晶体管的交流小信号模型问题突出地反映出基础数学物理知识对于“模拟电子线路”课程的作用。

三、放大、反馈电路的分析

在“模拟电子线路”中,晶体管放大和反馈电路的分析是主要和核心内容。然而学生对于这部分内容普遍掌握欠缺,主要原因是对于电路分析中的基本知识,比如电路的等效变换、叠加定理、戴维南定理、多端口网络输入输出电阻的概念等均表现出掌握的薄弱,严重地制约了该课程的学习。这说明学生难以将大学前期电路类课程知识很好地运用到“模拟电子线路”课程中来。解决的方法便是在前期的课程中强化上述基本内容,甚至在传统内容中加入一些常用技巧,比如支点的变换、导线的变换等。

四、放大电路的频率响应中的复数运算和傅里叶变换的概念

放大电路的频率响应是模拟电子线路课程的重要内容,也是一些电子器件研制时重要的理论依据,比如著名的相移反馈振荡器就是利用了频率响应。放大电路的频率响应中需要用到复数的运算和傅里叶变换,同时,对于复变函数和傅里叶变换的理解程度几乎决定了一个电子信息类学生今后对于专业基础课的掌握程度,甚至决定了学生将来是否有可能成为一个出色的电气工程师。上述论断是由《虚数的故事》的作者保罗.J.欣纳所提出的[3],他是美国一位著名的电气工程师。从这本书中,我深刻地领教了他深厚的数学功底,尤其是复变函数方面的知识和运用令人叹为观止。这也从一个侧面说明想做一个出色的电气工程师,理科的基础知识功底也是至关重要的。然而,在教学过程中我们发现学生对于复数的基本运算和傅里叶变换并不是很熟悉,因此在对频率响应的理解上产生了一定的障碍。

以上的4个问题是“模拟电子线路”教学中与基础数学物理内容相结合的实例。纵观“模拟电子线路”,还有很多内容是与基础数学物理相结合的,比如差动放大电路的传输特性、积分和微分运算电路等。因此,高等数学的教学需要教师有针对性地精心挑选和设计有助于学生理解和掌握高等数学内容的各种有启发作用的实际应用问题,这里就不一一赘述。

根据上述问题,我们提出以下五点具体的教学方法建议。

1.合理地分配课时用于“模拟电子线路”中相关基础数学物理知识的回顾。在“模拟电子线路”课程的教学中,合理地穿插一定的课时用于半导体物理、电路分析、复数运算以及傅里叶变换等知识的回顾。在这种“温故”的过程中也要做到可以“知新”,即在回顾的过程中渗透之后所需学习的内容加以联系,进而自然地过渡到新的知识体系中。

2.与前期课程教师沟通。与前期课程,比如“半导体物理”、“高等数学”的教师进行充分的沟通。据此可以在前期课程中强化“模拟电子线路”中所需的基础知识,甚至可以将“模拟电子线路”中的内容转换为前期课程的扩展习题,令学生预先进行了自然的“预习”,从而有利于“模拟电子线路”的学习。

3.以“透彻理解基本概念和原理”为目标,加强学法、教法研究。基本概念和原理是知识体系中的地基,无地基无以立。因此,以“透彻理解基本概念和原理”为目标,制订相应的教学计划,将部分精力用于强化基本概念和原理的理解,不断提高教学的质量和效果。

4.加强以具体的科学历史人物为背景的教学,激发学生学习的积极性。“模拟电子线路”中的很多内容,尤其是与数学物理相关的内容,容易引起学生们枯燥无味的感受。但同时,这部分内容在历史上也有很多科学故事和伟大的人物值得我们学习。比如,发明二极管的肖克莱、巴丁和布拉顿曾经凭借此项发明荣获诺贝尔物理学奖,其中巴丁之后还凭借BCS超导理论再次获得诺贝尔物理学奖,是历史上唯一一个两次获得诺贝尔物理学奖的科学家。这些科学故事与人物可以有效地激发学生对于学习该内容的兴趣和积极性,使学生在学习过程中有“感同身受”的感觉。

5.组织兴趣小组,参与课题研究。依据因材施教原则、普遍教育和个别教育相结合原则,选拔部分学有余力的学生组成兴趣小组。教师从自己的科研攻关课题中分出一部分内容让学生承担,充分发挥学生的创新能力,教师仅仅给予适当的指导、启发,学生亲自实践科研攻关的全过程。在整个科研过程中,让学生能充分利用基础的数学物理知识解决实际的科研问题,进而加强了这部分学生对于“模拟电子线路”中相关的数学物理知识的理解。由于基础的数学物理知识往往是科学向前发展的原动力,因此在这个过程中甚至能够激发出学生的潜力,促进相关学科的发展。

上述提出的教学方法具有重要的实践意义和推广价值。首先,强化基础数学物理知识可以巩固夯实学生的理论基础,培养学生踏实的学习态度和严谨的科学精神。其次,增加具有一定科研背景的教学可以激发学生的学习兴趣和动力,使学生们可以学以致用,理论联系实际。复次,与前期课程的交流沟通可以使整个本科阶段的课程设计具有整体性、连贯性以及创新性。最后,上述提出的教学方法具有普适性,不仅可以针对各个专业“模拟电子线路”的教学,甚至可以推广到电子信息类专业基础课乃至于理工科专业基础课的教学中去。

当然,在实施上述教学方法的同时要注意以下几点:(1)合理地分配课时,使得在强化相关数学物理知识的同时,仍能将“模拟电子线路”的核心知识讲解清楚透彻。(2)与前期课程教师的沟通可能需要学院乃至学校的支持与帮助,以交流会的形式来完成。(3)教师要对所指导的课题的先进性、应用性和可行性进行充分的论证,只有选取合适的课题,才能激发学生的学习动力。

综上所述,我们认为“模拟电子线路”难教、难学的根本原因在于学生对于其中涉及的基础数学物理知识掌握薄弱,以至于“巧妇难为无米之炊”。为此,我们提出了与基础数学物理内容相结合的教学方法,该教学方法可以巩固学生们的数理基础,促进“模拟电子线路”乃至所有理工类课程的学习。我们也相信,随着理工科专业对于基础数理的重视,教育质量会迈上一个新的台阶。

参考文献:

[1]黄丽亚.模拟电子技术基础[M].第2版.机械工业出版社,2012.

[2]仇庆久.高等数学[M].第1版.北京:高等教育出版社,2003.

[3]保罗·J·纳欣.虚数的故事[M].第1版.上海教育出版社,2008.

猜你喜欢
电子信息
以创新力为导向的电子信息类人才培养模式探索
面向创新能力培养的电子信息类实践课程改革
电子信息与物理系简介
电子信息工程系
电子信息科学与技术
浅析电子信息科学与技术专业
针对电子信息隐藏技术的研究
浅谈电子信息的安全存储和有效利用
闽台电子信息制造业转移的研究
电子信息发展过程中的有效应用初探