徐勇明 王宏勤
MicroRNA调控胶质瘤替莫唑胺化疗耐药的研究进展
徐勇明 王宏勤
microRNA是一类非编码的内源性小分子RNA,对基因表达进行转录后水平的调控。国内外学者对miRNA在胶质瘤耐药中的作用做了积极的探索和研究,发现miRNA在耐药中起十分重要的作用。本文将阐述miRNA与胶质瘤替莫唑胺化疗耐药基因的关系,促进在胶质瘤中针对特定通路的新靶向治疗的进一步发展。
microRNA;胶质瘤;替莫唑胺
胶质瘤是颅内最常见的恶性肿瘤,具有复发率高、致死、致残率高的特点,且发病率随着年龄的增加而增加,65~75岁之间为高发年龄段,中位生存期整体为6.1个月[1]。根据世界卫生组织WHO2016年的病理分级又可将神经胶质瘤分为Ⅰ级、Ⅱ级、Ⅲ级和Ⅳ级,其中将胶质瘤母细胞瘤分为IDH突变型和野生型,加入了弥漫型中线胶质瘤-H3K27M突变型(Ⅳ级),Ⅳ级 主要是多形性胶质母细胞瘤(glioblastoma multiforme,GBM)。目前胶质瘤的临床治疗有手术切除、放化疗、疫苗疗法和溶瘤病毒治疗等综合疗法[2],但由于神经胶质瘤具有生长迅速,高度浸润性等临床特点,肿瘤组织和正常脑组织之间无明显界限[3],因此手术很难彻底将癌灶切除,且术后极易复发。另外由于血脑屏障的存在,许多化疗药物难以进入脑内针对性消灭胶质瘤细胞,因此,目前国内外临床上采用的术后加放化疗的联合方案,治疗效果不理想,其中位生存期仍然只有14.25个月[4]。替莫唑胺(Temozolomide,TMZ)是目前国内外临床上治疗胶质瘤最安全的一线化疗药物[5],主要通过在细胞周期的G1晚期、S早期干扰DNA复制及错配修复诱导肿瘤细胞凋亡,进而发挥抗肿瘤效应[6]。但是临床治疗一段时间后,胶质瘤患者会对替莫唑胺产生耐药,从而使疗效大大降低。胶质瘤化疗耐药的机制很复杂,包括人体内环境紊乱、DNA甲基化、基因突变等。研究发现,特异性的microRNA表达异常也与肿瘤细胞对替莫唑胺产生耐药性密切相关[7],目前明确与胶质瘤替莫唑胺化疗耐药相关的microRNA包 括 miR-9、miR-125b、miR-136、miR-181b以及miR-221/222等[8-12]。
MicroRNA是一类长约20~25个核苷酸序列的非编码的内源性单链RNA分子。Lee等[13]首先在线虫胚胎中发现lin-4小分子RNA,并命名为MicroRNA。随着定量的MicroRNA基因表达分析平台(miRQC)及高通量芯片技术的发展,MicroRNA与肿瘤的相关性已成为研究热点[14]。它通过与靶基因mRNA3’UTR区完全或者部分结合,使靶基因mRNA切割或翻译抑制,从而影响细胞生长、分化、凋亡等重要过程[15,16],参与调节转录后水平基因功能的表达[17,18]。它们调节肿瘤新生血管的生成、发生、发展、转移及耐药等多种生物学过程,近代生物信息学数据表明,每个MicroRNA可以控制数百个靶基因,MicroRNA几乎在每一个遗传途径都存在潜在影响。最近的证据表明MicroRNA的突变或错表达与各种人类癌症关联,表明MicroRNA类似于肿瘤的抑癌基因和癌基因。微RNA已显示抑制的重要的癌症相关基因的表达,并可能被证明在诊断和治疗癌症是有用的[19,20]。随着第一个癌症靶向小分子 RNA(MicroRNA)的药物-MRX34,基于脂质体的miR-34模拟物于2013年4月在Ⅰ期肝癌患者身上进行临床试验,标志着MicroRNA和其他非编码RNA已逐渐作为抗癌药物开发的新目标[21]。
随着国内外研究的不断深入,发现肿瘤化疗耐药机制十分复杂。目前已明确的化疗耐药机制包括:药物吸收减少、药物排泄增加、细胞解毒系统的活化、药物靶点的改变、药物的改变或失活、DNA损伤修复增强、药物诱导细胞凋亡的减少、药物代谢途径改变以及药物诱导的细胞核型改变等[22,23]。目前研究较多是与药物排泄相关的能量依赖转运体[24],如ABC转运体、DNA错配修复系统、细胞凋亡蛋白及谷胱甘肽S转移酶等。这些重要基因发生的一系列改变是导致肿瘤细胞产生耐药性的主要机制之一。这些基因的改变包括突变、缺失、扩增、转置、DNA的异常甲基化以及microRNA的转录后调节等多种方式。近期有研究表明microRNA与肿瘤细胞对化疗药物的敏感程度密切相关,microRNA的突变、异常表达和异常加工均会影响microRNA的正常功能,进而影响其靶基因的表达水平。若此类靶基因与肿瘤细胞耐药性相关,将改变肿瘤细胞的药物敏感程度。因此microRNA已成为肿瘤耐药研究领域一个热点[25]。例如:miR-21靶向调控MMR导致MMR过表达,MMR通过减少突变失配来抑制大肠癌细胞G/ M期阻滞和细胞凋亡,从而增强大肠癌细胞对5-FU的耐药性[26]。
1.MicroRNA-138与BIM
证据表明,在胶质瘤细胞中,MicroRNA-138通过调节细胞凋亡和自噬介导胶质瘤对替莫唑胺耐药,使其生长和存活[27]。Stojcheva等[28]研究结果表明,胶质瘤细胞长期暴露在替莫唑胺环境下,MicroRNA-138可以通过靶向抑制细胞凋亡蛋白BIM从而抑制自噬介导替莫唑胺化疗耐药,并且发现这种调节作用伴有抑制凋亡因子Bcl-2的参与。
2.MicroRNA-16与Bcl-2
高度保守的MicroRNA-16是第一个被实验验证的与人类恶性肿瘤密切相关的微小RNA[29],它可以调节细胞周期、抑制细胞增殖、促进细胞凋亡和抑制肿瘤发生[30]。MicroRNA-16在许多肿瘤中低表达,如慢性淋巴细胞白血病、前列腺癌、肺癌等[31-33]。Han等[34]通过实验发现,在U251MG细胞中上调MicroRNA-16将导致Bcl-2蛋白表达水平下降,增强胶质瘤细胞对替莫唑胺的敏感性。相反,下调MicroRNA-16,Bcl-2蛋白表达水平上升,将增强胶质瘤对替莫唑胺的耐药性。
3.MicroRNA-125b与Bak1
MicroRNA-125b相当于一个潜在的致癌基因,现已证明其在恶性胶质瘤干细胞和干细胞分裂中是必需的[35],它能影响人类神经胶质瘤细胞的凋亡和扩散。此外,越来越多的研究发现,MicroRNA-125b在某些肿瘤细胞中可能还影响它们的迁移和入侵[36]。前期研究表明,MicroRNA-125b低表达可以抑制U251胶质瘤细胞的增殖,类似癌基因作用[37]。替莫唑胺可以有效地抑制神经胶质瘤细胞生长和诱导细胞凋亡[38],然而100 umol的替莫唑胺不能诱导胶质瘤干细胞生长抑制,但MicroRNA-125b抑制剂可以增加GSC对替莫唑胺的敏感性,抑制GSC的大量增殖和诱导细胞凋亡。Chen等[39]发现下调MicroRNA-125b导致Bak1过表达,此外,MicroRNA-125b抑制剂同样使Bak1表达水平升高,以致提高了恶性胶质瘤干细胞对替莫唑胺的化学敏感性。因此,MicroRNA-125b不仅负调控P53[40],还负向调节Bak1,Bak1是细胞凋亡的调节器,它作用于线粒体,加速压敏电阻器阴离子通道的开放,导致膜电位的损失和细胞色素c的释放。MicroRNA-125b就是通过靶向调控Bak1调节线粒体途径赋予人类恶性胶质瘤干细胞抗替莫唑胺能力的。
4.MicroRNA-203与E2F3
越来越多的证据表明,MicroRNA-203的表达水平与癌细胞增殖、侵袭和耐药性相关[41,42]。Tang等[43]通过实验证明,MicroRNA-203在U87MG细胞中的表达明显比A172低,异位表达的MicroRNA-203显著抑制U87MG细胞的侵袭和增强其对替莫唑胺的敏感性。相反,miR-203抑制剂明显促进A172细胞的侵袭和衰减它们对替莫唑胺的敏感性,MicroRNA-203与肿瘤的生物侵袭性呈负相关。因此,在神经胶质瘤细胞中,MicroRNA-203通过靶向调控E2F3,提高胶质瘤细胞对替莫唑胺的敏感性和抑制其生物侵袭性。
随着国内外学者对MicroRNA的不断深入研究,已取得重大进展。特别是对MicroRNA的作用机制及其在肿瘤临床治疗中的应用。MicroRNA参与人体多种生物学过程及肿瘤的发生、发展、耐药,机制十分复杂,因此,要完全阐明MicroRNA的机制需很长一段时间努力及更进一步的研究。
现阶段,手术切除加化疗是治疗胶质瘤的主要手段,而化疗常用药物是替莫唑胺,多个实验已证实,MicroRNA在对抗胶质瘤化疗药物替莫唑胺的敏感性及耐受性中发挥重要作用。但是MicroRNA在胶质瘤耐药性中的研究尚处于萌芽阶段,到目前为止,只发现少数耐药基因,且功能及机制尚不清楚,匮乏的理论基础不足于表明其能在临床中发挥重要作用。
因此,从分子细胞生物学方面着手,找到影响胶质瘤对替莫唑胺敏感程度的关键MicroRNA,这不仅有利于胶质瘤细胞对替莫唑胺耐药机理的的深入分析,更有利于寻找新的药物作用靶标及避免对药物产生耐药的关键点,更好地服务于临床治疗。相信随着胶质瘤耐药机制的不断深入研究,恶性胶质瘤耐药问题将逐步得到解决,胶质瘤治愈将成为可能。
[1]Brodbelt A,Greenberg D,Winters T,et al.Glioblastoma in England:2007-2011[J].Eur J Cancer,2015,51(4):533-542.
[2]Desjardins A,Vlahovic G,Friedman HS.Vaccine Therapy, Oncolytic Viruses,and Gliomas[J].Oncology(Williston Park),2016, 30(3):211-218.
[3]Zhou X,Ren Y,Moore L,et al.Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status[J].Lab Invest, 2010,90(2):144-155.
[4]Miglierini P,Bouchekoua M,Rousseau B,et al.Impact of the per-operatory application of GLIADEL wafers(BCNU,carmustine) in combination with temozolomide and radiotherapy in patients with glioblastoma multiforme:efficacy and toxicity[J].Clin Neurol Neurosurg,2012,114(9):1222-1225.
[5]Plowman J,Waud WR,Koutsoukos AD,et al.Preclinical antitumor activity of temozolomide in mice:efficacy against human brain tumor xenografts and synergism with 1,3-bis(2-chloroethyl)-1-nitrosourea[J].Cancer Res,1994,54(14):3793-3799.
[6]McFaline-Figueroa JL,Braun CJ,Stanciu M,et al.Minor Changes in Expression of the Mismatch Repair Protein MSH2 Exert a Major Impact on Glioblastoma Response to Temozolomide [J].Cancer Res,2015,75(15):3127-3138.
[7]Feng R,Dong L.Knockdown of micro RNA-127 reverses adriamycin resistance via cell cycle arrest and apoptosis sensitization in adriamycin-resistant human glioma cells[J].Int J Clin Exp Pathol,2015,8(6):6107-6116.
[8]Munoz JL, Rodriguez-Cruz V,Ramkissoon SH,et al. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1,independent of sonic hedgehog level[J]. Oncotarget,2015,6(2):1190-1201.
[9]Shi L,Zhang S,Feng K,et al.MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis[J].Int J Oncol,2012,40(1): 119-129.
[10]Wu H,Liu Q,Cai T,et al.MiR-136 modulates glioma cell sensitivity to temozolomide by targeting astrocyte elevated gene-1 [J].Diagn Pathol,2014,9:173.
[11]Li P,Lu X,Wang Y,et al.MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells[J].J Biomed Res,2010,24(6):436-443.
[12]Quintavalle C,Mangani D,Roscigno G,et al.MiR-221/222 target the DNA methyltransferase MGMT in glioma cells[J].PLoS One, 2013,8(9):e74466.
[13]Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.
[14]Mestdagh P,Hartmann N,Baeriswyl L,et al.Evaluation of quantitative miRNA expression platforms in the microRNA quality control(miRQC)study[J].Nat Methods,2014,11(8):809-815.
[15]Stahlhut Espinosa CE,Slack FJ.The role of microRNAs in cancer[J].Yale J Biol Med,2006,79(3-4):131-140.
[16]Shen J,Hung MC.Signaling-mediated regulation of MicroRNA processing[J].Cancer Res,2015,75(5):783-791.
[17]Khorkova O,Myers AJ,Hsiao J,et al.Natural antisense transcripts[J].Hum Mol Genet,2014,23(R1):R54-R63.
[18]Garajova I,Le Large TY,Giovannetti E,et al.The Role of MicroRNAs in Resistance to Current Pancreatic Cancer Treatment:Translational Studies and Basic Protocols for Extraction and PCR Analysis[J].Methods Mol Biol,2016,1395: 163-187.
[19]Esquela-Kerscher A,Slack FJ.Oncomirs-microRNAs with a role in cancer[J].Nat Rev Cancer,2006,6(4):259-269.
[20]Weber F,Teresi RE,Broelsch CE,et al.A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma[J].J Clin Endocrinol Metab,2006,91(9):3584-3591.
[21]Ling H,Fabbri M,Calin GA.MicroRNAs and other non-coding RNAs as targets for anticancer drug development[J].Nat Rev Drug Discov,2013,12(11):847-865.
[22]Gottesman MM.Mechanisms of cancer drug resistance[J].Annu Rev Med,2002,53:615-627.
[23]Khamisipour G,Jadidi-Niaragh F,Jahromi AS,et al.Mechanisms of tumor cell resistance to the current targeted-therapy agents[J]. Tumour Biol,2016.
[24]Rigalli JP,Ciriaci N,Mottino AD,et al.Modulation of expression and activity of ABC transporters by the phytoestrogen genistein. Impact on drug disposition[J].Curr Med Chem,2016,23(13): 1370-13789.
[25]Berman M,Mattheolabakis G,Suresh M,et al.Reversing epigenetic mechanisms of drug resistance in solid tumors using targeted microRNA delivery[J].Expert Opin Drug Deliv,2016,13 (7):987-998.
[26]Tomimaru Y,Eguchi H,Nagano H,et al.MicroRNA-21 induces resistance to the anti-tumour effect of interferon-alpha/5-fluorouracil in hepatocellular carcinoma cells[J].Br J Cancer, 2010,103(10):1617-1626.
[27]Chan XH,Nama S,Gopal F,et al.Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas[J].Cell Rep,2012,2(3):591-602.
[28]Stojcheva N,Schechtmann G,Sass S,et al.MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM[J].Oncotarget,2016,7(11): 12937-12950.
[29]Calin GA,Dumitru CD,Shimizu M,et al.Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J].Proc Natl Acad Sci USA,2002,99(24):15524-15529.
[30]Aqeilan RI,Calin GA,Croce CM.miR-15a and miR-16-1 in cancer:discovery,function and future perspectives[J].Cell Death Differ,2010,17(2):215-220.
[31]Kasar S,Underbayev C,Hassan M,et al.Alterations in the mir-15a/16-1 Loci Impairs Its Processing and Augments B-1 Expansion in De Novo Mouse Model of Chronic Lymphocytic Leukemia(CLL)[J].PLoS One,2016,11(3):e149331.
[32]Porkka KP,Ogg EL,Saramaki OR,et al.The miR-15a-miR-16-1 locus is homozygously deleted in a subset of prostate cancers[J]. Genes Chromosomes Cancer,2011,50(7):499-509.
[33]Lan F,Yue X,Ren G,et al.miR-15a/16 enhances radiation sensitivity of non-small cell lung cancer cells by targeting the TLR1/NF-kappaB signaling pathway[J].Int J Radiat Oncol Biol Phys,2015,91(1):73-81.
[34]Han J,Chen Q.MiR-16 modulate temozolomide resistance by regulating BCL-2 in human glioma cells[J].Int J Clin Exp Pathol,2015,8(10):12698-12707.
[35]Shi L,Zhang S,Feng K,et al.MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis[J].Int J Oncol,2012,40(1): 119-129.
[36]Cairo S,Wang Y,de Reynies A,et al.Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer[J].Proc Natl Acad Sci USA,2010,107(47):20471-20476.
[37]Shi L,Zhang J,Pan T,et al.MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation[J]. Brain Res,2010,1312:120-126.
[38]Kim JT,Kim JS,Ko KW,et al.Metronomic treatment of temozolomide inhibits tumor cell growth through reduction of angiogenesis and augmentation of apoptosis in orthotopic models of gliomas[J].Oncol Rep,2006,16(1):33-39.
[39]Chen J,Fu X,Wan Y,et al.miR-125b inhibitor enhance the chemosensitivity of glioblastoma stem cells to temozolomide by targeting Bak1[J].Tumour Biol,2014,35(7):6293-6302.
[40]Le MT,Teh C,Shyh-Chang N,et al.MicroRNA-125b is a novel negative regulator of p53[J].Genes Dev,2009,23(7):862-876.
[41]Zhang Z,Zhang B,Li W,et al.Epigenetic Silencing of miR-203 Upregulates SNAI2 and Contributes to the Invasiveness of Malignant Breast Cancer Cells[J].Genes Cancer,2011,2(8):782-791.
[42]Li Y,Yuan Y,Tao K,et al.Inhibition of BCR/ABL protein expression by miR-203 sensitizes for imatinib mesylate[J].PLoS One,2013,8(4):e61858.
[43]Tang G,Wu J,Xiao G,et al.MiR-203 sensitizes glioma cells to temozolomide and inhibits glioma cell invasion by targeting E2F3 [J].Mol Med Rep,2015,11(4):2838-2844.
Advances in Glioma Temozolomide-Resistance Regulated by MicroRNA
Xu Yongming,Wang Hongqin.Department of Neurosurgery,First Hospital of Shanxi Medical University,Taiyuan 030001, China
Wang Hongqin,Email:whq1968hq@163.com
MicroRNAs(miRNA)are small non-coding RNAs of endogenous small molecules, which are important to regulate the post-transcription of gene expression.MiRNAs in glioma drug resistance has been explored and researched,found that the miRNA plays an important role in drug resistance.Currently,we made a systematic review of the miRNA and Glioma for Temozolomide(TMZ) chemotherapy drug resistance gene for promoting specific pathways in Glioma of new targeted therapy of the further development.
MicroRNA;Glioma;Temozolomide
2016-03-18)
(本文编辑:张丽)
10.3877/cma.j.issn.2095-9141.2016.04.012
国家自然科学基金(NO:81470115)
030001太原,山西医科大学第一临床医学院神经外科
王宏勤,Email:whq1968hq@163.com
徐勇明,王宏勤.MicroRNA调控胶质瘤替莫唑胺化疗耐药的研究进展[J/CD].中华神经创伤外科电子杂志,2016,2(4):241-244.