高中数学教学中重视数形结合思想

2016-01-14 22:48陈劲松
中学生数理化·教与学 2016年1期
关键词:数形运算图形

陈劲松

数形结合思想是数学思想的一种.数形结合的思想,不仅可以应用在解决数学问题的过程中,还可以应用到数学学习过程中.数学教师要多引导学生用数形结合的思想学习数学知识.如果学生能用这种宏观的数学思想来看待数学知识,就会对数学知识有更深刻的理解.

一、应用数形结合的思想,帮助学生理解数学概念

概念教学是数学教学中的重要内容之一,部分教师在概念教学中常常给学生灌输抽象的概念,部分学生不能完全理解教师所说的数学概念,或者对数学概念的理解有岐义.如果学生不能正确理解数学概念,在应用数学概念知识时就会犯下错误.图形直观性强,数学教师可用数形结合的方法,帮助学生理解数学概念.

例如,在讲“集合”时,教师可提出问题:现在有一个班级,所有的学生都参加了学习小组,其中数学小组的学生有28人、参加物理小组的学生有25人、参加化学小组的学生有25人,而其中同时参加数学小组和化学小组的学生有6人、同时参加数学小组和物理小组的学生有8人、同时参加物理小组和化学小组的学生有7人.请问:同时参加了数、理、化小组的学生有多少人?如果教师应用数形结合的方法引导学生理解这一概念,学生便能清晰地了解集合的概念.如图1.教师可引导学生了解到,每一个集合可以绘制为封闭的图形,这是由于集合的范围有确定性的缘故,集合里的元素有互异性的特质,比如A集合里有28个完全不同的元素……学生一边听教师的讲解,一边可对比图形了解教师所说的意思.教师还可引导学生用图片来归纳学习过的知识点.思维导图的方式,就是应用图片帮助学生把知识整理成一套有序系统的图形工具.

二、应用数形结合的思想,帮助学生分析运算规律

高中数学与初中数学的区别为,高中数学的运算不再着重于数据与数据的运算,而着重于一个数学运算规律与另一个数学运算规律的计算,这种计算抽象性强,十分复杂,有时学生难以迅速理解计算的方法.假设教师能够引导学生化抽象为具体,就能让学生迅速找到运算规律.

高中数学运算问题规律性很强,如果学生不能了解其中的规律,可能根本不知道如何着手数学运算,教师可引导学生用数形结合思想突破这一学习难关,提高学生的数学运算水平.

三、应用数形结合的思想,帮助学生拓展发散范围

高中数学问题具有综合性强的特点,有时学生应用一个角度不能有效解决数学问题时,将这个数学问题转换成另一个数学问题,切换解决数学问题的角度,可能就会找到答案.图形可以成为一个数学思路和另一个数学思路之间的桥梁,学生应用图形发散思维,能够激发解题的想象力.

科学研究证明,人们面对图形时,会有较强的发散思维能力.教师可引导学生在解决数学问题时应用数形结合的方法帮助发散思维,拓宽解决数学问题的切入点.

总之,教师可通过数学教学引导学生理解数形结合思想,不仅是一种解决数学问题的思想,更是一种理解科学问题的思想.如果学生能应用数形结合的方法突破学习数学知识的障碍,就能提高学习数学知识的效率,高中数学教师也就能提高数学教学效率.

猜你喜欢
数形运算图形
数形结合 理解坐标
重视运算与推理,解决数列求和题
数形结合 相得益彰
数形结合百般好
有趣的运算
“整式的乘法与因式分解”知识归纳
分图形
找图形
图形配对