常 杰 牛化欣 李树国
(内蒙古民族大学动物科学技术学院,通辽 028000)
冷水性鱼是一种生态类型,包括定居和洄游型鱼类,能适应较低水温,生活于高海拔或高纬度的水域,其常年栖息水温一般不超过20℃,在具有一定流速无污染的水环境中才能生存[1],代表品种鲑鱼是联合国粮食及农业组织(FAO)在全球范围内推广养殖的3种鱼类之一[2]。我国冷水性鱼的主要养殖品种有虹鳟、金鳟、山女鳟、银鲑、大西洋鲑、白点鲑、细鳞鲑、哲罗鲑、高白鲑和鲟鱼的一些种类。冷水性鱼属于高蛋白质、高脂肪的种类,其肌肉中氨基酸种类齐全、矿物质和维生素含量丰富,不饱和脂肪酸(UFA)中二十碳五烯酸(C20∶5n-3,EPA)和二十二碳六烯酸(C22∶6n-3,DHA)含量比其他淡水鱼高数倍,胆固醇含量却几乎为零[3]。EPA和DHA对人类健康具有重要的生理功能,已查明在心血管疾病、风湿性关节炎、抑郁和精神分裂症等疾病防治中起到重要作用[4],因此,冷水性鱼具有很高的营养和食用价值。
随着人工养殖规模地不断扩大,鱼类营养学界越来越重视鱼类不同生长阶段对脂肪酸的营养需求、吸收与代谢调节[5]。而幼鱼阶段的营养需要研究在此领域中居国际前沿,研究结果可以作为养成到可供商业出售规格的参照。目前关于温水性鱼幼鱼阶段脂肪酸需要的研究报道较多,冷水性鱼因其在国内分布较狭窄,种类较少,常见报道大多为养殖技术、肌肉营养组成方面的,除虹鳟和大西洋鲑外,少见代表种类幼鱼阶段的营养生理尤其是脂肪酸的研究。因此,本文现围绕冷水性鱼幼鱼阶段的脂肪酸营养生理及其代谢机制进行阐述,旨在为深入开展冷水性鱼幼鱼阶段的脂肪酸营养需求研究提供参考。
不同的鱼类往往有着不同的生长式型,造成差异的最主要原因就是生活环境的不同,生长情况和营养需求随之有相应的变化。冷水性鱼有较高的饲料脂肪需求量,代表的鲑科类幼鱼对脂肪的需求量在20%~30%,远高于温水性鱼类[6]。鱼类对脂肪的需要本质是对脂肪酸的需要,脂肪酸分为必需脂肪酸(EFA)和非必需脂肪酸(NEFA)。围绕鱼类的EFA需求量已有诸多研究,EFA具有非常重要的生理功能,作为膜中磷脂的组成部分参与体组织构建、结合转运胆固醇,EFA同时也是一系列高活性激素类物质的前体,调控某些重要生理过程[7]。海水鱼类和淡水鱼类所需EFA不同。一般来说,海水鱼类所需的EFA是花生四烯酸(C20∶4n-6,ARA)、EPA 和 DHA[8],海水鱼类普遍不能自行合成EPA和DHA,要通过摄食来满足身体需要[9]。而 EPA、DHA、亚油酸(C18∶2n-6,LA)和亚麻酸(C18∶3n-3,LNA)则是淡水鱼类所需的 EFA[10]。
冷水性鱼类的EFA需求受水温和盐度的影响,对低温的适应和向海水迁移的过程都会导致体内脂肪酸组成发生变化,这也会反映到EFA需求上来。冷水性鱼类中的鲑科类对LNA需求更高[6]。当虹鳟(Oncorhynchus mykiss)饲料中 EFA不足时,添加LA只能在某种程度上改善其生长,却不能防止其EFA缺乏症,而添加LNA才能彻底消除各种EFA缺乏症。虽然C18系列多不饱和脂肪酸(PUFA)通常能满足鲑科鱼类的EFA需求,但比起LNA来说,n-3长链多不饱和脂肪酸(n-3 LC-PUFA)能在更低水平上满足其EFA需求,生长效果也超过单独获得LNA[11]。很可能所有的淡水或洄游鱼类都需要n-3和n-6 PUFA,不过和n-6 PUFA相较而言,这类冷水性鱼可能需要更高水平的n-3 PUFA[6]。这些不饱和程度更高的EFA被认为是在低温条件下保护身体细胞磷脂膜的柔韧性和渗透性所必需的。大西洋鲑(Salmo salar)和褐鳟(Salmo trutta)能够将植物油中的LNA转化为EPA和DHA,但这种转化不是非常充分[12]。所以大西洋鲑的EFA需求不能被单一植物油所满足,其饲料中必须补充EPA和DHA才能达到良好的生长和健康效果[13]。因此,作为冷水性鱼,满足其 EFA,尤其是 LNA、EPA和 DHA需要尤为重要。
EFA的需求量随饲料总脂肪含量的变化以及鱼类生长阶段的不同而存有差异[14]。成鱼和仔稚鱼期营养数据和研究方法不能照搬到幼鱼。幼鱼处于快速生长期,相较于成鱼来说,n-3 LC-PUFA包括DHA对于许多淡水种的鲑科类幼鱼来说更为关键,很可能是其 EFA[15]。缺乏 DHA的大西洋鲱(Clupea harengus)幼鱼,视神经发育不良,视力减弱,在弱光的条件下捕捉食物的能力下降[16]。Kanazawa等[17]试图了解 EPA的生理作用,通过EPA外部放射性引起的结果,证明比较大量的外源EPA对幼鱼快速生长是必需的。水产动物体内的EPA和DHA主要以磷脂的形式存在。用极性磷脂,而不是用中性脂肪的形式来添加n-3高不饱和脂肪酸(HUFA),对大西洋鳕(Gadus morhua)幼鱼的生长和骨骼发育更为有利[18]。大西洋鲑幼鱼在向海水过渡和随后渗透压调节阶段会调控对特性食物的选择,目的是为了增加体组织中的ARA及其产生的类花生酸类物质[19]。因此,对于冷水性鱼幼鱼来说,双键数量≥3、碳原子数≥20的这类HUFA更为关键。
温度是鱼类栖息适应的主导因素,也是最重要的非生物生态因子,影响着鱼体的细胞功能和复杂的新陈代谢过程[20]。不同鱼类对EFA的需求不但有质的不同,也有量的差异。研究表明,冷水性鱼幼鱼的EFA需求能被C18 PUFA的LA和LNA满足,适宜含量为占饲料干物质的1%左右[6]。如果饲料中EFA超过需要,则在不利于饲料储藏的同时还会产生抑制生长的效应。当虹鳟饲料中的LNA含量增加至4%或DHA含量增加到2%~3%时,其生长速度和饲料效率显著下降[15]。常见冷水性鱼幼鱼对EFA的需求量见表1。目前,有关冷水性鱼幼鱼对HUFA的需求量数据较少,一方面是因为在配制精确EFA数量的饲料时,要求基础饲料基本无脂,考虑到对幼鱼诱食性和适口性的影响,实际较难操作,另一方面是这类冷水性鱼幼鱼阶段大多生活在淡水中,淡水鱼类可以通过碳链的延长和去饱和作用将LNA转化为EPA,再转化为DHA,还可以将LA转化为ARA,所以较难定量。
在水产饲料中不同脂肪酸种类的添加比例通常用鱼油作为基准,但从养殖鱼类健康和体内的n-3 LC-PUFA沉积等角度来说,这样的照搬不是最为合适的,饲料脂肪酸组成差异会引起鱼类肌肉和肝脏(或肝胰腺)脂肪酸组成的变化,并且通常表现出正相关[23]。对大西洋鲑幼鱼的试验表明,饲料中添加LNA和LA,决定身体组织中最适的EPA和ARA比例,关系到幼鱼能否成功进行银化。鱼油脂肪酸 DHA ∶EPA 通常为 1.0∶1.5,但银化后的大西洋鲑幼鱼饲料中多余的EPA易于β-氧化供能而不是在体内累积[33]。考虑到饱和脂肪酸(SFA)和单不饱和脂肪酸(MUFA)更易于成为β-氧化的底物,大西洋鲑幼鱼(银化后)适宜的饲料应该包含相当比例的SFA和/或MUFA来产生能量,EPA不能添加过量,而DHA能相对高量添加。同样的脂肪酸配比在虹鳟的养殖中也被建议[34]。因此,除了确定 EFA需要量,还有必要考虑添加脂肪酸的比例。Sargent等[7]认为饲料中EFA 的配比,如 n-3∶n-6和 EPA ∶DHA ∶ARA 相对于单独最小添加量来说,在生理和健康角度更为重要。目前海水鱼类幼鱼中有关DHA、EPA和ARA的最适需求情况和比例研究较多,DHA∶EPA∶ARA大致为 10∶5∶1[35]。大西洋鲑幼鱼分别在 2 和 8 ℃ 用鱼油和植物油作为饲料脂肪源,直到在低温下体重增至2倍时结束试验,发现低温使脂肪的消化率显著降低[36]。饲料中n-3 HUFA和SFA的比例影响北极鲑(Salvelinus alpinus)幼鱼在4、10和17℃下的游泳能力[37]。当温度从12℃降至5℃时,大西洋鲑由ARA合成DHA的量增加,和低温情况下细胞磷脂中有较高比例的HUFA相符,而且细胞吸收油酸的能力增强,且油酸的氧化产物增多,表明氧化供能的反应增加[38]。
表1 常见冷水性鱼幼鱼必需脂肪酸需求量Table 1 Essential fatty acid requirements of coldwater fish juveniles
大西洋鲑幼鱼银化入海期间,会需要更多的ARA和类花生酸衍生物[16]。投喂高 n-6∶n-3饲料的大西洋鲑幼鱼,入海后生长率有所下降[39]。即使投喂高比例的n-3 PUFA饲料,银化入海后的大西洋鲑幼鱼合成LC-HUFA的关键酶基因的表达也会下调,这要归于环境对n-3 LC-PUFA生物合成的影响[40]。水环境盐度升高会导致施氏鲟(Acipenser schrenckii)幼鱼肌肉中EPA与DHA总量增加[41]。温度和盐度影响鱼体的新陈代谢机制,这些都会反映到脂肪酸的需求比例上来。冷水性鱼幼鱼阶段EFA的最佳投饲比例目前结论较少,阐明EFA之间的复杂关系和适宜配比在今后的研究中非常重要。
脂质在鱼体内的吸收和哺乳动物相似[42]。鱼体内的脂肪酸一部分是直接来源于外界摄入的外源性脂肪酸,另一部分是自身合成的内源性脂肪酸,脂肪酸合成酶(FAS)为内源性脂肪酸合成过程的关键酶,它是包括7个以上功能域组成的单链多功能酶[43],食物中不饱和脂肪酸会下调FAS和脂肪酸的合成[44]。Alvarez 等[45]发现,n-3 PUFA抑制虹鳟肝细胞FAS及葡萄糖-6-磷酸脱氢酶(G-6-PD)的活性。鲑鱼幼鱼类似鳟鱼,能够将C18 PUFA延长、去饱和为C20和C22 PUFA,与其自然条件下C18 PUFA含量丰富的天然饵料符合,鱼类这种相对生物转化力(relative bioconversion ability,RBCA)差别很大,冷水性鱼的RBCA远高于淡水温水性鱼,海水鱼最低[10],但这种能力会被直接投喂鱼油降低[6]。从n-3和n-6 PUFA到LC-PUFA所涉及的生物转化酶有Δ6脂肪酰基去饱和酶(Δ6Fad)和 Δ5脂肪酰基去饱和酶(Δ5Fad),以及2个脂肪酰基延长酶(Elovl2和Elovl5)[46]。大西洋鲑体内 C18和 C24 PUFA合成DHA可能都需要Δ6去饱和酶,投喂低脂饲料的大西洋鲑幼鱼(银化后)肝脏脂肪普遍有较高的SFA和LC-PUFA含量,和较低的C18 MUFA和n-6 PUFA含量。与此结果相对应,投喂低脂饲料的鲑鱼肝脏对 Δ6和 Δ5去饱和酶的表达量增加[47]。有充分证据表明,Δ6Fad的转录效果能调节大西洋鲑饲料中EPA和DHA产生的影响[48]。虹鳟体内Δ6去饱和酶活性和C18 PUFA底物比例直接相关,对n-3 PUFA比n-6 PUFA更为亲和,过多的C18 PUFA底物可能会限制Δ6去饱和酶对C24脂肪酸的作用,清除饲料中的n-3 LC-PUFA可上调Δ6去饱和酶的转录[49]。
大西洋鲑有3个功能性Δ6Fad基因,可能对应不同的去饱和步骤[50]。特异性表达表明,只有Δ6Fad-b和Δ6Fad-c 2个基因有Δ6Fad的活性,可以把LNA转化为硬脂四烯酸(C18∶4n-3,SDA),LA 转化为 γ-亚麻酸(C18∶3n-6,γ-LNA)[51]。2个功能型Elovl5(Elovl5a和Elovl5b)已经在大西洋鲑体内被发现。研究表明,Elovl5主要参与延长C18→C20PUFA,而 Elovl2延长的是 C20→C22PUFA[52]。LC-PUFA的生物合成途径不仅依赖现有底物,而且还依赖转录因子(TF),类似固醇调节元件结合蛋白(SREBP)1和2或者参与基因调控的肝 X 受体(liver X receptor,LXR)[53]。LC-PUFA显著影响大西洋鲑幼鱼Δ6和Δ5去饱和酶,延长酶Elovl2、Elovl4和 Elovl5,以及 SREBPs的表达,虽然不同组织之间差异很大,但在肝脏中可以观察到最大影响,其次是头肾,与磷脂脂肪酸的组成类似[54]。比较大西洋鲑幼鱼肝细胞对5种长链脂肪酸的跨膜吸收机制试验表明,EPA和LNA的吸收率分别为最高和最低,对长链脂肪酸的跨膜吸收是膜蛋白介导的主动吸收与被动扩散共同作用的过程。不同链长及饱和性的脂肪酸在肝细胞的吸收及胞内代谢过程有较大差别[55]。一般来说,短链脂肪酸比长链脂肪酸易于被吸收,不饱和脂肪酸比饱和脂肪酸易被吸收。与EPA相比,从脂质中释放DHA的速度慢,吸收DHA用时较长,但二者的吸收率没有显著差异[56]。
激素敏感脂肪酶(HSL)及脂蛋白脂酶(LPL)主要调控动物体内脂肪的分解。LPL是甘油三酯(TG)降解为甘油和游离脂肪酸(FFA)反应的限速酶。机体各组织的LPL对机体脂质代谢的作用各不相同[57]。用亚麻籽油完全替代饲料中鱼油后,虹鳟内脏脂肪、肌肉及肝脏组织中LPL活性均不受影响[45]。摄食后虹鳟幼鱼通过组织特异性方式调节LPL活性,而胰岛素是调节体脂肪组织LPL活性的重要因素[58]。研究表明,脊椎动物下丘脑不同区域的长链脂肪酸(LCFA)可以作为能量的传感器,脂肪酸及其代谢产物在调节能量动态平衡中扮演着非常重要的角色[59]。从参与鱼类摄食与脂肪代谢的关键功能基因入手,研究食物如何通过调控这些基因的表达影响脂肪代谢很有必要。
因为脂肪酸中的一些 LC-PUFA,如 DHA、EPA及ARA等,在陆地脂肪源中的含量极低,所以养殖鱼类脂质大部分来自饲料中的鱼油。水产养殖业消耗的鱼油在1995—2008年间持续增长,已接近世界鱼油总产量的85%[60],其中冷水性鱼中的鲑科类消耗超过水产饲料工业所用鱼油的66%[61]。可见,研究冷水性鱼饲料的鱼油替代技术是目前产业界关注的重大课题。
冷水性鱼幼鱼具有利用C18 PUFA合成HUFA的能力,它们是研究鱼油替代技术理想的种类。而植物油来源广泛,价格经济适用,是目前替代饲料中鱼油的首选。植物油替代部分或者全部鱼油,生长缺陷的现象在大西洋鲑中没有发现,表明从LNA内生的EPA、DHA可能比较充足,可以保证大西洋鲑对这些脂肪酸的生理需求和防止抑制生长的情况[62]。用亚麻油和葵花油替代鱼油对降海型硬头鳟幼鱼生长的影响不明显[63]。多种植物油替代鱼油对冷水性鱼幼鱼外观生长来说没有不利,但会直接影响到幼鱼的肌肉和肝细胞脂肪酸组成,导致鱼体组织中n-3 PUFA特别是EPA和DHA 含量降低,C18 PUFA——油酸(C18∶1n-9,OA)、LA 和 LNA 含量升高[64],这在虹鳟[65]、大西洋鲑[66]、褐鳟[67]和美洲红点鲑(Salvelinus fontinalis)[68]等几种鲑科鱼上都得到了验证,这种情况对鱼体特定组织功能的发挥会产生非常大的影响,同时会减少消费者的健康福利。但在北极红点鲑幼鱼长期(15月龄)饲养过程中,用菜籽油和南瓜籽饼混合替代鱼油和鱼粉,虽然幼鱼生长率降低,但EPA和DHA含量与对照组相比没有受到显著影响,这可能和同时替代有关[69]。
高水平植物油替代鱼油会降低冷水性鱼幼鱼体内n-3 PUFA的含量,选择合适的方法解决这一问题具有重要的现实意义。目前虹鳟养殖中一个解决策略是先用植物油替代鱼油养殖幼鱼,成鱼期后再投喂鱼油饲料到养殖结束,以提高鱼体内的EPA和DHA的含量[70]。在大西洋鲑幼鱼试验中,饲料中超过50%的鱼油被菜籽油替代投喂16周后,需要12周时间才能恢复其体内EPA和DHA的含量[71]。另外一个解决策略就是考虑特殊植物油源,绝大多数的植物油富含n-6 PUFA,但也有少数富含n-3 PUFA,比如说亚麻荠油,除了高含量的LNA和n-3∶n-6,亚麻荠油还包含通常在鱼油中才会发现的大量长链单烯酸,对于大西洋鳕(Gadus morhua)幼鱼[72]和大西洋鲑[73]是可持续利用的替代油源。近年来,基因工程改造种子油作物取得新进展,能在植物油源中产生n-3 LC-PUFA,可能在不久的将来含有高含量EPA和DHA的植物油源将会出现在市场上,作为水产饲料中鱼油的备选[74]。
选用植物油源时也需要考虑其对幼鱼脂肪酸代谢的影响。高含量的棕榈油在低温下可降低SFA的消化率和随后的能量利用率,这是在鲑鱼饲料中应用棕榈油的主要顾虑[75]。
目前,冷水性鱼幼鱼阶段的脂肪酸研究主要集中在种类和需求量方面,关于它们如何在体内消化、转运、吸收和代谢的研究较少,而这些研究揭示饲料中脂肪酸在幼鱼阶段对于组织器官的构建的作用,探寻脂肪酸之间的合适比例十分有必要。从基因角度研究n-6和n-3 PUFA的转化,了解参与脂肪代谢的分子机制,将是未来的研究方向。植物油替代鱼油是目前水产饲料生产的趋势,如何改善替代后冷水性鱼体内n-3 HUFA含量的降低,更好满足消费者要求,有学术和经济的双重意义。深入开展冷水性鱼幼鱼阶段脂肪酸营养生理研究,可以为冷水性鱼的开发利用提供参考,促进冷水性鱼养殖的健康发展。
[1] 范兆廷,姜作发,韩英,等.冷水性鱼类养殖学[M].北京:中国农业出版社,2008.
[2] FAO.The state of world fisheries and aquaculture[M].Rome:FAO,2008:1-99.
[3] 于庆华.冷水鱼类在北方地区的发展现状[J].黑龙江水产,2013(6):9-10.
[4] SCHRAM L B,NIELSEN C J,PORSGAARD T,et al.Food matrices affect the bioavailability of(n-3)polyunsaturated fatty acids in a single meal study in humans[J].Food Research International,2007,40(8):1062-1068.
[5] 薛敏,李爱杰,张显娟.牙鲆幼鱼对EPA和DHA的营养需求[J].水产学报,2004,28(3):285-291.
[6] Committee on the Nutrient Requirements of Fish and Shrimp.Nutrient requirements of fish and shrimp[M].Washington,D.C.:The National Academies Press,2011.
[7] SARGENT J,BELL G,MCEVOY L.Recent developments in the essential fatty acid nutrition of fish[J].Aquaculture,1999,177(2):191-199.
[8] SARGENT J,MCEVOY L,ESTEVEZ A,et al.Lipid nutrition of marine fish during early development:current status and future directions[J].Aquaculture,1999,179(3):217-229.
[9] SARGENT J R,MCEVOY L A,BELL J G.Requirements,presentation and sources of polyunsaturated fatty acids in marine fish larval feeds[J].Aquaculture,1997,155(2):117-127.
[10] 麦康森,陈立侨,陈乃松,等.水产动物营养与饲料学[M].2 版.北京:中国农业出版社,2011:46-50.
[11] RUYTER B,RØSJØ C,EINEN O,et al.Essential fatty acids in Atlantic salmon:effects of increasing dietary doses of n-6 and n-3 fatty acids on growth,survival and fatty acid composition of liver,blood and carcass[J].Aquaculture Nutrition,2000,6(2):119-127.
[12] BELL J C,TOCHER D R,HENDERSON R J,et al.Altered fatty acid compositions in Atlantic salmon(Salmo salar)fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet[J].The Journal of Nutrition,2003,133(9):2793-2801.
[13] RUYTER B,RØSJØ C,EINEN O,et al.Essential fatty acids in Atlantic salmon:time course of changes in fatty acid composition of liver,blood and carcass induced by a diet deficient in n-3 and n-6 fatty acids[J].Aquaculture Nutrition,2000,6(2):109-117.
[14] IZQUIERDO M S.Essential fatty acid requirements of cultured marine fish larvae[J].Aquaculture Nutrition,1996,2(4):183-191.
[15] WIRTH M,STEFFENS W,MEINELT T,et al.Significance of docosahexaenoic acid for rainbow trout(Oncorhynchus mykiss)larvae[J].Lipid/Fett,1997,99(7):251-253.
[16] BELL M V,BATTY R S,DICK JR,et al.Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring(Clupea harengus L.)[J].Lipids,1995,30(5):443-449.
[17] KANAZAWA A,TESHIMA S,ONO S.Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids[J].Comparative Biochemistry and Physiology:Biochemistry and Molecular Biology,1979,63(3):295-298.
[18] KJØRSVIK E,OLSEN C,WOLD PA,et al.Comparison of dietary phospholipids and neutral lipids on skeletal development and fatty acid composition in Atlantic cod(Gadus morhua)[J]Aquaculture,2009,294(3/4):246-255.
[19] BELL J G,TOCHER D R,FARNDALE B M,et al.The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon(Salmo salar)undergoing parr-smolt transformation[J].Lipids,1997,32(5):515-525.
[20] HOCHACHKA PW,SOMERO G N.Biochemical adaptation:mechanism and process in physiological evolution[M].Oxford:Oxford University Press,2002:466.
[21] TAKEUCHI T,WATANABE T,NOSE T.Requirement for essential fatty acids of chum salmon(Oncorhyncus keta)in freshwater environment[J].Bulletin of the Japanese Society of Scientific Fisheries,1979(45):1319-1323.
[22] YU T C,SINNHUBER R O.Effect of dietary omega-3 and omega-6 fatty acids on growth and feed conversion efficiency of coho salmon (Oncorhynchus kisutch)[J].Aquaculture,1979,16:31-38.
[23] YANG X,TABACHEK J L,DICK T A.Effect of dietary polyunsaturated fatty acids on lipid and fatty acid feed composition and hematology of juvenile Aretic charr Salvelinus alpinus(L.)[J].Fish Physiology and Biochemistry,1994,12:409-420.
[24] 周继术,叶元土,林仕梅,等.脂质在淡水鱼中营养研究进展[J].饲料研究,2000(6):13-15.
[25] RUYTER B,ROSJO C,EINEN O,et al.Essential fatty acids in Atlantic salmon(Salmo salar):time course of changes in fatty acid composition of liver,blood and carcass induced by a diet deficient in n-3 and n-6 fatty acids[J].Aquaculture Nutrition,2000,6:109-118.
[26] RUYTER B,ROSJO C,EINEN O,et al.Essential fatty acids in Atlantic salmon:effects of increasing dietary doses of n-6 and n-3 fatty acids on growth,survival and fatty acid composition of liver,blood and carcass[J].Aquaculture Nutrition,2000,6:119-127.
[27] CASTELL J D,SINNHUBER R O,WALES J H,et al.Essential fatty acids in the diet of rainbow trout:lipid metabolism and fatty acid compostion[J].Journal of Nutrition,1972,102:77-86.
[28] TAKEUCHI T,WATANABE T.Nutritive value of n-3 highly unsaturated fatty acids in pollock liver oil for rainbow trout[J].Journal of the Japanese Society for Horticultural Science,1976,42:907-919.
[29] 许永安.鱼的必需脂肪酸和脂肪需求量[J].福建水产,1993(2):65-67.
[30] THONGROD S T,TAKEUCHI T,SATOH S,et al.Requirement of Yamane(Oncorhynchus masou)for essential fatty acids[J].Nippon Suisan Gakk,1990,56:1255-1262.
[31] ZHENG F,TAKEUCHI T,YOSEDA K,et al.Requirement of larval cod for arachidonic acid,eicosapentanoic acid,and docosahexaenoic acid using by their enriched Aremia nauplii[J].Nippon Suisan Gakk,1996,62:669-676.
[32] TAKEUCHI T,FENG Z,YOSEDA K,et al.Nutritive value of DHA-enriched rotifer for larval cod[J].Nippon Suisan Gakk,1994,60:641-652.
[33] CODABACCUS B M,CARTER C G,BRIDLE A R,et al.The“n-3 LC-PUFA sparing effect”of modified dietary n-3 LC-PUFA content and DHA to EPA ratio in Atlantic salmon smolt[J].Aquaculture,2012,356/357:135-140.
[34] TURCHINI G M,FRANCIS D S.Fatty acid metabolism(desaturation,elongation and β-oxidation)in rainbow trout fed fish oil-or linseed oil-based diets[J].British Journal of Nutrition,2009,102(1):69-81.
[35] 谭肖英.黄颡鱼脂类营养生理研究[D].博士学位论文.武汉:华中农业大学,2012.
[36] BENDIKSEN E,ÅBERG O K,JOBLING M,et al.Digestibility,growth and nutrient utilisation of Atlantic salmon parr(Salmo salar L.)in relation to temperature,feed fat content and oil source[J].Aquaculture,2003,224(3):283-299.
[37] PETTERSSON A,PICKOVA J,BRÄNNÄS E.Swimming performance at different temperatures and fatty acid composition of Arctic charr(Salvelinus alpinus)fed palm and rapeseed oils[J].Aquaculture,2010,300(1):176-181.
[38] MOYA-FALCÓN C,HVATTUM E,TRAN T N.Phospholipid molecular species,β-oxidation,desaturation and elongation of fatty acids in Atlantic salmon hepatocytes:effects of temperature and 3-thia fatty acids[J].Comparative Biochemistry and Physiology:Biochemistry and Molecular Biology,2006,145(1):68-80.
[39] BERGE G M,WITTEN P E,BAEVERFJORD G.Diets with different n-6/n-3 fatty acid ratio in diets for juvenile Atlantic salmon,effects on growth,body composition,bone development and eicosanoid production[J].Aquaculture,2009,296(3):299-308.
[40] CODABACCUS B M,BRIDLE A R,NICHOLSPD,et al.An extended feeding history with a stearidonic acid enriched diet from parr to smolt increases n-3 long-chain polyunsaturated fatty acids biosynthesis in white muscle and liver of Atlantic salmon(Salmo salar L.)[J].Aquaculture,2011,322-323:65-73.
[41] 侯俊利.施氏鲟(Acipenser schrenckii)幼鱼对盐度的适应性及其脂肪营养需求研究[D].博士学位论文.上海:华东师范大学,2006.
[42] LEAVER M,BAUTISTA J M,BJÖRNSSON B T,et al.Towards fish lipid nutrigenomics:current state and prospects for fin-fish aquaculture[J].Reviews in Fisheries Science,2008,16(1):73-94.
[43] SMITH S.The animal fatty acid synthase:one gene,one polypeptide,seven enzymes[J].The FASEB Journal,1994,8(15):1248-1259.
[44] CHIRALA SS,WAKIL S J.Structure and function of animal fatty acid synthase[J].Lipids,2004,39(11):1045-1053.
[45] ALVAREZ M J,DÍEZ A,LÓPEZ-BOTE C,et al.Short-term modulation of lipogenesis by macronutrients in rainbow trout(Oncorhynchus mykiss)hepatocytes[J].British Journal of Nutrition,2000,84(5):619-628.
[46] COOK H W.Fatty acid desaturation and chain elongation in eukaryotes[M]//VANCE D E,VANCE J E.Biochemistry of lipids,lipoproteins and membranes.Amsterdam:Elsevier Science,1996:129-152.
[47] MARTINEZ-RUBIO L,WADSWORTH S,GONZÁLEZ VECINO J L,et al.Effect of dietary digestible energy content on expression of genes of lipid metabolism and LC-PUFA biosynthesis in liver of Atlantic salmon(Salmo salar L.)[J].Aquaculture,2013,384:94-103.
[48] ZHENG X Z,LEAVER M J,TOCHER D R.Longchain polyunsaturated fatty acid synthesis in fish:comparative analysis of Atlantic salmon(Salmo salar L.)and Atlantic cod(Gadus morhua L.)Δ6 fatty acyl desaturase gene promoters[J].Comparative Biochemistry and Physiology:Biochemistry and Molecular Biology,2009,154(3):255-263.
[49] THANUTHONG T,FRANCIS D S,MANICKAM E,et al.Fish oil replacement in rainbow trout diets and total dietary PUFA content:Ⅱ.Effects on fatty acid metabolism and in vivo fatty acid bioconversion[J].Aquaculture,2011,322:99-108.
[50] MONROIG Ó,ZHENG X Z,MORAIS S M,et al.Multiple genes for functionalΔ6 fatty acyl desaturases(Fad)in Atlantic salmon(Salmo salar L.):gene and cDNA characterization,functional expression,tissue distribution and nutritional regulation[J].Biochimica et Biophysica Acta:Molecular and Cell Biology of Lipids,2010,1801(9):1072-1081.
[51] XIE D Z,CHEN F,LIN S Y,et al.Cloning,functional characterization and nutritional regulation ofΔ6 fatty acyl desaturase in the herbivorous euryhaline teleost scatophagus argus[J].PLoSOne,2014,9(3):e90200.
[52] MORAISS,MONROIG O,ZHENG X,et al.Highly unsaturated fatty acid synthesis in Atlantic salmon:characterization of ELOVL5-and ELOVL2-like elongases[J].Marine Biotechnology,2009,11(5):627-639.
[53] CARMONA-ANTOÑANZAS G,TOCHER D R,MARTINEZ-RUBIO L,et al.Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals[J].Gene,2014,534(1):1-9.
[54] BETANCOR M B,HOWARTH F J E,GLENCROSS B D,et al.Influence of dietary docosahexaenoic acid in combination with other long-chain polyunsaturated fatty acids on expression of biosynthesis genes and phospholipid fatty acid compositions in tissues of postsmolt Atlantic salmon(Salmo salar)[J].Comparative Biochemistry and Physiology:Biochemistry and Molecular Biology,2014,172-173:74-89.
[55] 周继术.鲤及大西洋鲑脂质营养代谢的研究[D].博士学位论文.杨凌:西北农林科技大学,2010.
[56] 许友卿,张海柱,丁兆坤.二十二碳六烯酸和二十碳五烯酸研究进展(2)[J].生物学通报,2007,42(11):13-15.
[57] FAULCONNIER Y,GUILLON L,CHILLIARD Y.Lipoprotein lipase and glucose-6-phosphate dehydrogenase activities in bovine and ovine adipose tissue incubated for 7 days:effects of insulin and/or dexamethasone[J].Comparative Biochemistry and Physiology:Biochemistry and Molecular Biology,1996,113(2):421-426.
[58] ALBALAT M, SÁNCHEZ-GURMACHES J,GUTIÉRREZ J,et al.Regulation of lipoprotein lipase activity in rainbow trout(Oncorhynchus mykiss)tissues[J].General and Comparative Endocrinology,2006,146(3):226-235.
[59] 张志岐,束刚,江青艳.下丘脑对脂类的营养感应及其参与食欲调控的机制[J].动物营养学报,2013,25(7):1395-1405.
[60] FAO.The state of world fisheries and aquaculture[M].Rome:FAO Fisheries and Aquaculture Department,Food and Agriculture Organization of the United Nations,2008:176.
[61] FAO.The Trade and Markets Division.Market Assessments,Food Outlook[M].Rome:FAO Fisheries and Aquaculture Department,Food and Agriculture Organization of the United Nations,2012.
[62] TORSTENSEN B E,BELL J G,ROSENLUND G,et al.Tailoring of Atlantic salmon(Salmo salar L.)flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend[J].Journal of Agricultural and Food Chemistry,2005,53(26):10166-10178.
[63] WIJEKOON M P A,PARRISH C C,MANSOUR A.Effect of dietary substitution of fish oil with flaxseed or sunflower oil on muscle fatty acid composition in juvenile steelhead trout(Oncorhynchus mykiss)reared at varying temperatures[J].Aquaculture,2014,433:74-81.
[64] BRANSDEN M P,CARTER C G,NICHOLS P D.Replacement of fish oil with sunflower oil in feeds for Atlantic salmon(Salmo salar L.):effect on growth performance,tissue fatty acid composition and disease resistance[J].Comparative Biochemistry and Physiology:Biochemistry and Molecular Biology,2003,135(4):611-625.
[65] GREENE D H S,SELIVONCHICK D P.Effects of dietary vegetable,animal and marine lipids on muscle lipid and hematology of rainbow trout(Oncorhynchus mykiss)[J].Aquaculture,1990,89(2):165-182.
[66] WAAGBØ R,SANDNES K O,SANDVIN A,et al.Chemical and sensory evaluation of fillets from Atlantic salmon(Salmo salar)fed three levels of n-3 polyunsaturated fatty acids at two levels of vitamin E[J].Food Chemistry,1993,46(4):361-366.
[67] ARZEL J,LOPEZ F X M,MÉTAILLER R,et al.Effect of dietary lipid on growth performance and body composition of brown trout(Salmo trutta)reared in seawater[J].Aquaculture,1994,123(1/2/3/4):361-375.
[68] GUILLOU A,SOUCY P,KHALIL M,et al.Effects of dietary vegetable and marine lipid on growth,muscle fatty acid composition and organoleptic quality of flesh of brook charr(Salvelinus fontinalis)[J].Aquaculture,1995,136(3/4):351-362.
[69] MURRAY D S,HAGER D R,TOCHER M J,et al.Effect of partial replacement of dietary fish meal and oil by pumpkin kernel cake and rapeseed oil on fatty acid composition and metabolism in Arctic charr(Salvelinus alpinus)[J].Aquaculture,2014,431:85-91.
[70] CODABACCUS M B,NG W K,NICHOLS P D,et al.Restoration of EPA and DHA in rainbow trout(Oncorhynchus mykiss)using a finishing fish oil diet at two different water temperatures[J].Food Chemistry,2013,141(1):236-244.
[71] BELL JG,MCGHEE F,CAMPBELL PJ,et al.Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon(Salmo salar):changes in flesh fatty acid composition and effectiveness of subsequent fish oil“wash out”[J].Aquaculture,2003,218(4):515-528.
[72] MORAIS S,EDVARDSEN R B,TOCHER D R,et al.Transcriptomic analyses of intestinal gene expression of juvenile Atlantic cod(Gadus morhua)fed diets with Camelina oil as replacement for fish oil[J].Comparative Biochemistry and Physiology:Biochemistry and Molecular Biology,2012,161(3):283-293.
[73] PETROPOULOS I K,THOMPSON K D,MORGAN A,et al.Effects of substitution of dietary fish oil with a blend of vegetable oils on liver and peripheral blood leucocyte fatty acid composition,plasma prostaglandin E2 and immune parameters in three strains of Atlantic salmon(Salmo salar)[J].Aquaculture Nutrition,2009,15(6):596-607.
[74] VENEGAS-CALERÓN M,SAYANOVA O,NAPIER J A.An alternative to fish oils:metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids[J].Progress in Lipid Research,2010,49(2):108-119.
[75] NG W K,TOCHER D R,BELL J G.The use of palm oil in aquaculture feeds for salmonid species[J].European Journal of Lipid Science and Technology,2007,109(4):394-399.