乳腺弥散加权成像在乳腺疾病中的作用

2015-12-16 06:35闵庆华邵康为朱才松袁立新徐慧玲陆文杰
中国癌症杂志 2015年8期
关键词:磁共振灵敏度恶性

闵庆华,杨 军,邵康为,朱才松,袁立新,徐慧玲,李 彭,陆文杰

上海市同仁医院影像科,上海200336

乳腺弥散加权成像在乳腺疾病中的作用

闵庆华,杨 军,邵康为,朱才松,袁立新,徐慧玲,李 彭,陆文杰

上海市同仁医院影像科,上海200336

背景与目的:乳腺弥散加权成像(diffusion-weighted imaging,DWI)是一种无创伤性的磁共振检查方法,能否替代乳腺磁共振动态增强扫描(dynamic contrast-enhanced,DCE)做为乳腺癌筛查的方法,本研究就此来探讨乳腺弥散加权成像在乳腺良恶性疾病中的作用。方法:74例患者均进行数字乳腺X线、DCE及DWI检查。49例取b值为0、400、600和800 s/mm2。比较DWI和DCE的检出率、灵敏度和特异度;标准化表观弥散系数(apparent diffusion coefficient,ADC)值和ADC绝对值在乳腺癌检出率中的定量分析比较。结果:经手术证实,64/74例病理结果为阳性(38例为恶性病变,26例为良性病变)。经DWI和DCE检查,恶性病变的检出率为100%。b值分别取400、600和800 s/mm2时,DWI在乳腺良恶性病变鉴别中的诊断灵敏度分别为83.33%、90.00%和93.33%,特异度为85.91%、76.19%和72.72%;DCE的灵敏度和特异度分别为86.61%和90.48%;标准化ADC值和ADC绝对值在乳腺癌的检出率中差异无统计学意义(P>0.05)。结论:DWI在乳腺疾病的鉴别诊断中,具有一定的优越性,是继常规乳腺磁共振增强检查的重要补充方法。

弥散加权成像;动态增强扫描;磁共振;乳腺癌

目前,数字乳腺X线摄影作为有效的乳腺癌筛查方法,大大降低了乳腺癌的死亡率;然而,其存在很大的局限性,极度、不均匀致密型纤维腺体均可降低病灶的检出率[1-2]。与欧美国家不同,中国妇女乳腺恰恰由于体积较小、腺体组织致密、脂肪组织较少等原因很容易掩盖肿瘤,使得乳腺X线摄影的灵敏度和特异度均有所下降。乳腺磁共振检查,其灵敏度高,在乳腺疾病良恶

性鉴别中,尤其是在乳腺癌高危人群中扮演着越来越重要的角色,甚至有学者提出可作为早期乳腺癌的筛查方法。目前,乳腺磁共振检查中,应用成熟的技术是动态增强扫描(dynamic contrast-enhanced,DCE),然而,近年来却有报道显示,造影剂具有肾毒性[3-5],因此在国外常规需检查肌酐水平。弥散加权成像(diffusionweighted imaging,DWI)是一种无创伤性的磁共振检查方法,运用正常组织和病变组织间不同的分子运动(布朗运动)而成像。因此,有学者提出将DWI用于乳腺癌筛查[6]。然而,DWI能否替代目前成熟的DCE技术,能否有效地作为继数字乳腺X线检查之后乳腺疾病的重要检查方法,我们进行了如下探讨。

1 资料和方法

1.1 临床资料

本研究属于回顾性分析,收集2011年1月—2013年5月共162例因乳腺不适来上海市同仁医院就诊的患者,共74例纳入本研究组。排除标准为:①只有数字乳腺X线而无磁共振检查(20例);②只行DCE而无DWI、数字乳腺X线检查(44例);③失访(24例)。64例经手术病理证实,而10例数字乳腺X线诊断为异常(BI-RADS为3类),DWI及DCE检查却未发现异常,经2年随访复查无变化而视为正常。所有患者均为女性,年龄为20~86岁,其中绝经后患者42例。所有患者既往均无手术病史,无磁共振造影剂禁忌证。本研究经伦理委员会审批通过。

1.2 磁共振参数

采用GE1.5 T磁共振扫描仪(Sigma ExciteⅡ,GE Medical System,Milwaukee,WI,USA)。患者俯卧位,双乳充分悬于乳腺相控阵线圈内,头、肩膀和腹部尽量抬高以减少呼吸而造成的移动伪影。磁共振扫描序列按照如下顺序排列:

①脂肪抑制T2WI(FSE)序列(矢状位:TR/TE=3 500/85 ms,激励次数:3,层厚:5 mm,感兴趣区:220 mm);②脂肪抑制T2WI横断位:TR/TE=4 000/85 ms,激励次数:3,层厚:4 mm,感兴趣区:160 mm);③脂肪抑制T1WI(FSE)序列(矢状位:TR/ TE=480/10.4 ms,激励次数:2,层厚:5 mm,感兴趣区:220 mm);④动态增强扫描采用一个增强前序列+6个连续动态增强序列(SPGR 3D ),采集时间为450 s,高压注射造影剂,0.2 mmol/kg体重Gd-DTPA (矢状位:TR/TE=6.6/2.2 ms,反转角:15°,3 mm);⑤DWI序列采用平面回波技术(TR/TE= 9 355/78.5 ms,矩阵:128×128,激励次数:4,感兴趣区:280 mm,层厚:5 mm,间距:0 mm,采集时间为245 s,表观弥散系数(apparent diffusion coefficient,ADC)值的定量分析往往受到b值标准的选择以及其他参数的影响,因此,在本研究中,我们在部分病例中进行了多b值的对照分析[6-7],74例采用了b值为800 s/mm2,其中49例取b值分别为400、600和800 s/mm2做对照比较;⑥延迟扫描采用了双乳横断位SPGR T1WI序列。

1.3 乳腺磁共振图像后处理

所有图像均经GE ADW4.1工作站中的Functool 2软件进行后处理。采用双盲法分别由2名乳腺放射医师(从事乳腺放射诊断最少3年)独立先进行DWI数据处理并诊断,然后再进行DCE的数据处理并诊断分析,如意见不一,经讨论后以高年资医师为准,如遇DWI、DCE各自发现的病灶不匹配,则视未发现可疑病灶的检查组为漏诊处理,如遇无论哪组检查发现可疑病灶但不与手术区域匹配者,也视该检查组为漏诊处理。在后处理DWI图像时,以往文献均以DCE发现可疑病灶作为参考[8-11],本研究仅根据临床病史及乳腺X线提供的可疑异常直接在DWI图上找可疑病灶(高信号区)并设感兴趣区,计算ADC绝对值。公式如下:ADC=(1/bi-b0)ln(Si/S0),S0为b=0 s/mm2采集的信号强度,Si为不同梯度条件下的第i采集的信号强度(b值分别为400、600和800 s/mm2)。感兴趣区在可疑病灶的最大层面选取,尽量避开明显的坏死区域,根据病灶

的大小感兴趣区面积取26~100 mm2;如果病灶大小超过两个象限或以上,则采用多个实性成分区域取材然后求平均数的方法。取同侧正常乳腺组织ADC值(乳腺组织同病灶内感兴趣区大小一致),参考Khouli等[12]的方法计算标准化ADC值,公式如下:ADC0=ADCL/ADCN(ADC0为标准化ADC值。ADCL为病灶的ADC绝对值,ADCN为正常乳腺纤维腺体的ADC绝对值)。

DCE诊断参考北美放射学会提出的乳腺图像和数据报告分类系统(Breast Imaging Reporting and Data System,BI-RADS)[13]。BIRADS分类4、5评估为恶性病变、BI-RADS分类1、2、3评估为良性病变,不做0类评估。结合形态学和动态增强曲线综合分析来评估病灶的良恶性。

1.4 统计学处理

运用STATA(12.0版本)统计软件进行分析。P<0.05为差异有统计学意义。用Pearson相关性法分析来比较不同b值情况下正常乳腺的平均ADC值。运用two-sample Wilcoxon ranksum(Mann-Whitney)和Bartlett试验来进行标准化ADC值、ADC绝对值、乳腺纤维腺体分型与病理分型的相关性分析。通过绘制感受性曲线(ROC曲线)来评估标准化ADC值和ADC绝对值在鉴别乳腺良恶性病变中的统计学差异,通过约登指数来计算出乳腺良恶性病变鉴别的阈值。

2 结 果

2.1 病理结果

在74例中,64例由手术病理证实,而10例乳腺X线发现异常(BI-RADS为3类),DWI及DCE检查均未发现可疑病灶,并经随访2年无变化。62例经DCE检出,检出率为96.88%;60例病灶经DWI检出,检出率为93.75%,2例病灶磁共振检查无发现,但临床怀疑有肿块而行手术局部切除(病理为单纯乳腺病)。64例中,38例为恶性肿瘤,26例为良性病变(表1)。DCE和DWI在恶性肿瘤中的检出率为100%(38/38),而数字乳腺X线误诊率为5.2%(2/38),漏诊率为7.8%(3/38)。而在良性病变中,2例单纯性乳腺病仅经DCE检出。

表 1 DCE与DWI的病灶检出率在病理结果中的比较Tab. 1 Comparison of malignant lesions detected by DCE and DWI in pathologic findings (n)

2.2 ADC值

当b值为400、600和800 s/mm2时,正常乳腺组织平均ADC值分别为2.06±0.43、1.89±0.38和1.80±0.41 mm2/s,b值为800 s/mm2时的平均ADC值最高。然而,在乳腺良恶性病变鉴别中,当b值分别为400、600和800 s/mm2时,标准化ADC值与ADC绝对值在ROC曲线面积下,差异均无统计学意义(P均>0.05,图1)。无论是平均ADC绝对值还是平均标准化ADC值,良性和恶性病变的平均ADC值差异有统计学意义(P<0.05),恶性肿瘤ADC值显著低于良性病变(表2)。经约登指数计算出乳腺良恶性病变鉴别的ADC阈值,当b值为400、600和800 s/mm2时,ADC绝对值分别为1.53×10-3、1.51×10-3和1.41×10-3mm2/s,据此DWI灵敏度为83.33%、90.00%和93.33%,特异度为85.91%、76.19%和72.72%。参照BI-RADS分类4、5视为恶性病变为阈值,DCE的灵敏度和特异度分别为86.61%和90.48%。

图 1 分别在不同b值条件下,标准化ADC值和ADC绝对值在乳腺良恶性病变鉴别中的ROC曲线Fig. 1 The ROC curves of standardized ADC values and absolute ADC values at different b-values in differentiating malignant breast lesions from benign lesions

表 2 ADC绝对值与标准化ADC值在良恶性病变中的比较Tab. 2 Comparison of mean absolute ADC and standardized ADC values in benign and malignant lesions

3 讨 论

DCE对于乳腺癌的检出率具有很高的灵敏度,但其缺点是需注射造影剂,有报道称部分肾透析患者在使用造影剂后出现肾功能下降,甚至进展为肾纤维化;因此,无创伤性、无不良反应的技术方法是近年来研究的热点。DWI是唯一利用磁共振观察活体组织水分子扩散运动的成像方法,且无需造影剂的优势越来越受到广大放射学者的关注[14-19]。随着DWI技术的不断改进,从最初的脑检查,尤其是脑缺血等疾病的诊断发展到现在的全身检查,其对乳腺癌诊断的检出率和灵敏度得到了很大的提高,文献报道检出率可达86.2%~91.2%[20-24],灵敏度可达80.0%~97.2%[25-30]。在本研究中,当b值取600和800 s/mm2时,单纯依靠DWI诊断的灵敏度分别是90.0%和93.3%,高于单纯DCE(灵敏度为86.6%),在恶性病变中,DWI和DCE则达到了同样的效果(检出率均为100%),显著优于数字乳腺X线检查。在恶性肿瘤检出率中,本研究结果高于文献报道,但灵敏度和特异度却略低于Palle等[26]的结果,从病例选取分析,Palle等[26]选择的病灶均大于10 mm,并剔除单纯囊性表现而病理证实是恶性的病例,而我们

病灶的选择范围较大,因此更适合于良恶性病灶的筛选。

DCE在乳腺良恶性病变鉴别中都需要结合形态学和动态增强曲线进行综合分析,这在很大程度上依靠阅片者的主观判断和经验,而在DWI诊断中,可用ADC值做定量分析来进行客观的判断。从ADC值的计算公式可以看出,采用低b值还是高b值都会影响ADC值的定量分析[11,31-33],低b值主要反应局部组织的微循环血流灌注效应,不能较好地反映组织内水分子的弥散运动而不被推荐使用,目前广泛应用的b值范围为500~800 s/mm2[14,34-35]。在本研究中,不同b值条件下良、恶性病变的差异有统计学意义,但随着b值的升高,DWI的诊断灵敏度也随之升高,当b值为800 s/mm2,阈值为1.41×10-3mm2/s时,灵敏度为93.33%,同文献报道[14,34-35]基本一致。此外,不同b值条件下正常乳腺平均ADC值也有差异,如本研究统计结果显示,b值为800 s/mm2时,平均ADC值高于b值为400、600 s/mm2时,为了避免不同b值对ADC值的影响,Khouli等[12]曾建议运用标准化ADC值可提高乳腺良恶性病变的诊断正确率。但我们发现,标准化ADC值和ADC绝对值在鉴别乳腺良恶性病变中差异无统计学意义,这可能与我们随机选择的患者有2/3为绝经后患者,而在Khouli等[12]的研究中,绝经前与绝经后患者比例为1∶1有关,因此我们的建议是标准化ADC值和ADC绝对值均可运用于乳腺良恶性病变的鉴别,尤其适用于绝经后患者,但这还需要扩大样本量来进一步证实。

DCE图像的采集时间是DWI的两倍,过长的采集时间可导致患者生理和心理上的不适,尤其是对体弱、噪声敏感的患者。因此,相对于DCE来说,DWI更容易赢得患者的青睐。

DWI在乳腺磁共振检查中有很多的优越性,如在乳腺良恶性病变鉴别中具有很高的灵敏度和检出率、扫描短、无需造影剂、不受主观判断影响诊断,是继常规乳腺增强磁共振检查的重要补充方法。

[1] BURHENNE H J, BURHENNE L W, GOLDBERG F, et al. Interval breast cancers in the Screening Mammography Program of British Columbus: analysis and classification[J]. AJR Am J Roentgenol, 1994, 162(5): 1067-1075.

[2] BOYD N F, LOCKWOOD G A, MARTIN L J, et al. Mammographic densities and breast cancer risk[J]. Breast Dis, 1998, 10(3-4): 113-126.

[3] THOMSEN H S. Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide[J]. Eur Radiol, 2006, 16(12): 2619-2621.

[4] GROBNER T. Gadolinium-a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?[J] . Nephrol Dial Transplant, 2006, 21(4): 1104-1108.

[5] MARCKMANN P, SKOV L, ROSSEN K, et al. Nephrogenic systemic fibrosis: suspected etiological role of gadodiamide used for contrast-enhanced magnetic resonance imaging[J]. J Am Soc Nephrol, 2006, 17(9): 2359-2362.

[6] BRANDÃO A C, LEHMAN C D, PARTRIDGE S C. Breast magnetic resonance imaging: diffusion-weighted imaging[J]. Magn Reson Imaging Clin N Am, 2013, 21(2): 321-336.

[7] ORGUC S, BASARA I, COSKUN T. Diffusion-weighted MR imaging of the breast: comparison of apparent diffusion coefficient values of normal breast tissue with benign and malignant breast lesions[J]. Singapore Med J, 2012, 53(11): 737-743.

[8] CAKIR O, ARSLAN A, INAN N, et al. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions[J]. Eur J Radiol, 2013, 82(12): e801-e806.

[9] PINKER K, BICKEL H, HELBICH T H, et al. Combined contrast-enhanced magnetic resonance and diffusionweighted imaging reading adapted to the “Breast Imaging Reporting and Data System” for multiparametric 3-T imaging of breast lesions[J]. Eur Radiol, 2013, 23(7): 1791-1802.

[10] PARTRIDGE S C, MULLINS C D, KURLAND B F, et al. Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: effects of lesion type and size[J]. AJR Am J Roentgenol, 2010, 194(6): 1664-1673.

[11] WOODHAMS R, INOUE Y, RAMADAN S, et al. Diffusionweighted Imaging of the Breast: Comparison of B-values 1000 s/mm2and 1500 s/mm2[J]. Magn Reson Med Sci, 2013, 12(3): 229-234.

[12] KHOULI R H, JACOBS M A, MEZBAN S D, et al. Diffusionweighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging[J]. Radiology, 2010, 256(1): 64-73.

[13] American College of Radiology (ACR). Breast imaging reporting and data system atlas (BI-RADS Atlas)[M]. 4th ed. Reston: American College of Radiology, 2003.

[14] PARTRIDGE S C, DEMARTINI W B, KURLAND B F, et al. Differential diagnosis of mammographically and clinically occult breast lesions on diffusion-weighted MRI[J]. J Magn Reson Imaging, 2010, 31(3): 562-570.

[15] WOODHAMS R, RAMADAN S, STANWELL P, et al. Diffusion-weighted imaging of the breast: principles and clinical applications[J]. Radiographics, 2011, 31(4): 1059-1084.

[16] WOODHAMS R, MATSUNAGA K, KAN S, et al. ADC mapping of benign and malignant breast tumors[J]. Magn Reson Med Sci, 2005, 4(1): 35-42.

[17] DEGANI H, GUSIS V, WEINSTEIN D, et al. Mapping pathophysiological features of breast tumors by MRI at high spatial resolution[J]. Nat Med, 1997, 3(7): 780-782.

[18] PARK S H, MOON W K, CHO N, et al. Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer[J]. Radiology, 2010, 257(1): 56-63.

[19] HATAKENAKA M, SPEDA H, YABUUCHI H, et al. Apparent diffusion coeffients of breast tumors: clinical application[J]. Magn Reson Med Sci, 2008, 7(1): 23-29.

[20] PALLE L, REDDY B. Role of diffusion MRI in characterizing benign and malignant breast lesions[J]. Indian J Radiol Imaging, 2009, 19(4): 287-290.

[21] PARK M J, CHA E S, KANG B J, et al. The role of diffusionweighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors[J]. Korean J Radiol, 2007, 8(5): 390-396.

[22] TOZAKI M, FUKUMA E. 1H MR spectroscopy and diffusionweighted imaging of the breast: are they useful tools for characterizing breast lesions before biopsy?[J]. AJR Am J Roentgenol, 2009, 193(3): 840-849.

[23] YABUUCHI H, MATSUO Y, KAMITANI T, et al. Differential diagnosis capability between benign and malignant breast tumors by the combination of dynamic contrast-enhanced MRI and diffusion-weighted imaging: assessment with ROC analysis[J]. Med Imaging Inf, 2007, 39(10): 930-935.

[24] NAKAJIMA M, NITORI T, MATSUDA M, et al. Clinical application of MRI echoplanar diffusion-weighted imaging (EPI-DWI) for breast cancer diagnosis[J]. Jpn J Med Imaging, 2008, 27(9): 9-21.

[25] MARINI C, IACCONI C, GIANNELLI M, et al. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion[J]. Eur Radiol, 2007, 17(10): 2646-2655.

[26] PALLE L, REDDY B. Role of diffusion MRI in characterizing benign and malignant breast lesions[J]. Indian J Radiol Imaging, 2009, 19(4): 287-290.

[27] GUO Y, CAI Y Q, CAI Z L, et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging[J]. J Magn Reson Imaging, 2002, 16(2): 172-178.

[28] ZHANG Y L, HUANG X Y, DU H W, et al. The value of diffusion-weighted imaging in assessing the ADC changes of tissues adjacent to breast carcinoma[J]. BMC Cancer, 2009, 9: 18.

[29] WOODHAMS R, MATSUNAGA K, IWABUCHI K, et al. Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension[J]. J Comput Assist Tomogr, 2005, 29(5): 644-649.

[30] PEREIRA F P, MARTINS G, FIGUEIREDO E, et al. Assessment of breast lesions with diffusion-weighted MRI: comparing the use of different b values[J]. AJR Am J Roentgenol, 2009, 193(4): 1030-1035.

[31] ZHAO H L, WEI M,WANG D B, et al. Analysis of MRI misdiagnosis in malignant or benign mammary lesions[J]. J Diagn Concepts Pract, 2009, 8(3): 309-311.

[32] BYDLON T M, KENNEDY S A, RICHARDS L M, et al. Performance metrics of an optical spectral imaging system for operative assessment of breast tumor margins[J]. Opt Express, 2010, 18(8): 8058-8076.

[33] HAKA A S, VOLYNSKAYA Z, GARDECKI J A, et al. In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy[J]. Cancer Res, 2006, 66(6): 3317-3122.

[34] BOGNER W, GRUBER S, PINKER K, et al. Diffusionweighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis[J]. Radiology, 2009, 253(2): 341-351

[35] KUROKI Y, NASU K. Advances in breast MRI: diffu sionweighted imaging of the breast[J]. Breast Cancer, 2008, 15(3): 212-217.

The role of diffusion-weighted imaging for breast MRI

MIN Qinghua, YANG Jun, SHAO Kangwei,

ZHU Caisong, YUAN Lixin, XU Huiling, LI Peng, LU Wenjie (Department of Image, Shanghai Tongren Hospital, Shanghai 200336, China)

YANG Jun E-mail: yj_shtr@163.com

Background and purpose: Diffusion-weighted imaging (DWI) is a non-invasive technique of breast magnetic resonance imaging (MRI). DWI is an alternative to dynamic contrast-enhanced (DCE) MRI for differentiating malignant from benign lesions in breast screening or not. This study aimed to evaluate the potential role of DWI in differentiating malignant breast lesions from benign lesions. Methods: Seventy-four patients underwent digital mammography, DCE and DWI (49 patients’ b-value of 0, 400, 600 and 800 s/mm2). The detectability, sensitivity and specificity of DWI and DCE were compared. Absolute apparent diffusion coefficient (ADC) was compared with standardized ADC for quantitative analysis. Results: Sixty-four of 74 patients had positive pathologic findings (38 malignant, 26 benign). All of the malignant lesions were detected on DWI and DCE. The sensitivity of DWI was 83.33%, 90.00% and 93.33%, and the specificity was 85.91%, 76.19% and 72.72%, for b-value of 400, 600 and 800 s/mm2, respectively. The sensitivity and specificity of DCE were 86.61% and 90.48%. There was no significant difference between absolute and standardized ADC in detecting breast cancer (P>0.05). Conclusion: DWI is an important complemented technique to DCE-MRI for differentiating malignant from benign lesions in breast MRI.

Diffusion-weighted imaging; Dynamic contrast-enhanced; Magnetic resonance imaging; Breast cancer

10.3969/j.issn.1007-3969.2015.08.007

R730.44

A

1007-3639(2015)08-0602-06

2015-02-06

2015-04-15)

杨军 E-mail:yj_shtr@163.com

猜你喜欢
磁共振灵敏度恶性
基于机电回路相关比灵敏度的机电振荡模式抑制方法
恶性胸膜间皮瘤、肺鳞癌重复癌一例
磁共振成像不同扫描序列诊断肛瘘诊断价值
基于灵敏度分析提升某重型牵引车车架刚度的研究
磁共振有核辐射吗
卵巢恶性Brenner瘤CT表现3例
磁共振有核辐射吗
磁共振弥散加权成像对急性脑梗死的诊断作用探讨
复合数控机床几何误差建模及灵敏度分析
穿甲爆破弹引信对薄弱目标的灵敏度分析