郝天轩靳义志
(1.河南省瓦斯地质与瓦斯治理重点实验室—省部共建国家重点实验室培育基地,河南省焦作市,454000;2.河南理工大学安全科学与工程学院,河南省焦作市,454000;3.煤炭安全生产河南省协同创新中心,河南省焦作市,454000)
基于数量化理论的瓦斯涌出量多变量预测*
郝天轩1,2,3靳义志2
(1.河南省瓦斯地质与瓦斯治理重点实验室—省部共建国家重点实验室培育基地,河南省焦作市,454000;2.河南理工大学安全科学与工程学院,河南省焦作市,454000;3.煤炭安全生产河南省协同创新中心,河南省焦作市,454000)
利用数量化理论Ⅰ对煤矿瓦斯涌出量进行了研究。针对某矿C1煤层,利用数量化理论Ⅰ建立了瓦斯涌出量多变量预测模型,根据计算结果满足工程精度要求,说明利用数量化理论预测瓦斯涌出量是可行的,并对未采区的瓦斯涌出量进行了预测,对该矿安全生产起到了一定的指导作用。
数量化理论 预测模型 定性变量 定量变量 基准变量 说明变量
随着煤矿开采地质条件越加复杂以及开采深度不断加大,矿井瓦斯问题越发严重。研究煤层中瓦斯的赋存状况、瓦斯涌出规律是矿井瓦斯研究中的重要内容。在煤矿开采过程中,工作面瓦斯涌出量是一个动态变化的量,受多种变量因素共同作用的影响,包括定量变量和定性变量。数量化理论Ⅰ既能研究定量变量,也能研究定性变量,还能全面地考虑瓦斯涌出量多变量的共同作用影响。因此,本文
1.1兼有定性和定量说明变量的数学模型
设自变量中有h个是定量变量,它们在第i个样品中的数据为xi(u)(u=1,2,…,h;i=1,2,…,n);有m个定性变量,即m个项目,其中第j个项目有rj个类目,它们在第j个样品中的反应是δi(j,k)(j=1,2,…,m;k=1,2,…,rj)。基准变量的数据为yi(i=1,2,…,n)。
假定基准变量与各定量说明变量及项目、类目
的反应间遵从如下线性模型:
式中:bu、bjk——未知系数;
εi——随机误差。
经过推导可以得到bu、bjk的最小二乘估计满足正规方程:
1.2预测方程精度检验
衡量预测效果的一个指标是样本复相关系数R:
式中:σy——原基准变量方差;
R值越接近于1,说明y与m个项目线性关系越密切,方程越显著。
利用剩余标准差s也可估计根据预测方程的精度:
s值越小,说明预测精度越高。
2.1变量的选择和取值
采用数理化理论Ⅰ建立预测瓦斯涌出量的多变量数学模型,把预测的相对瓦斯涌出量作为基准变量,各种影响因素作为说明变量。说明变量按其性质可分为定量变量和定性变量。
2.1.1基准变量的选择和取值
根据某矿相关数据资料表明,影响C1煤层瓦斯涌出量的相关因素主要有煤层埋藏深度、煤层厚度、采煤工作面是否通过断层以及C1与B4煤层间距等。依据该矿的实际情况和生产需要,选择相对瓦斯涌出量作为因变量。选择每个工作面开采年份的各回采月份的相对瓦斯涌出量,把他们平均分成3份,作为该统计单元的因变量数据。
2.1.2说明变量的选择和取值
(1)定量变量的选择和取值:根据对煤矿瓦斯涌出量影响因素的分析,选取煤层埋藏深度、煤层厚度作为定量变量参与到模型的建立过程,取值为对应瓦斯涌出量的实际统计值。
(2)定性变量的选择和取值:在数理化理论Ⅰ中,定性变量是以二态变量来取值的,即用1和0来代表某种属性的有和无。根据对C1煤层瓦斯涌出量影响因素的分析,该工作面是否通过断层作为定性变量,通过工作面有断层为1,无断层为0。C1与B4煤层间距原本是定量变量,但经过实际数据的对比分析发现,其对瓦斯涌出的影响是趋势性的,将其转化为定性变量更合适,因此将C1与B4煤层间距按定性变量进行分析,以5 m和7 m为界,将变量转化为3个类目,即小于5 m、5~7 m、大于7 m。
2.2瓦斯涌出量原始数据的整理
根据上述同一矿井已采工作面的相关统计资料,如瓦斯日报表、产量、风量的统计分析,总共获得27组瓦斯涌出量的相关数据,采用数量化理论Ⅰ建立包含4个变量的数学模型,其中,煤层埋藏深度和煤层厚度作为2个定量变量,工作面是否通过断层和C1与B4煤层间距作为2个定性变量,分别计算各变量同瓦斯涌出量之间的偏相关系数和方差比。从而对预测结果进行精度分析,得出更好的预测效果。相对瓦斯涌出量数量化模型原始数据如表1所示。
表1 相对瓦斯涌出量数量化模型原始数据
2.3瓦斯涌出量多变量数学模型建立
根据表1中的数据,最终建立的瓦斯涌出量预测模型为:
式中:y^——瓦斯涌出量预测值,m3/t;
x(1)——煤层埋藏深度,定量变量,m;
x(2)——煤层厚度,定量变量,m;
δ(1,1)——工作面是否通过断层, “是”类目之反应;
δ(1,2)——工作面是否通过断层, “否”类目之反应;
δ(2,2)——C1与B4煤层间距,“5~7 m”类目之反应;
δ(2,3)——C1与B4煤层间距,“≥7 m”类目之反应。
2.4回代检验
利用所建立的瓦斯涌出量预测模型式(6),把该矿井已知瓦斯涌出量的影响指标统计值分别代入,计算出瓦斯涌出量的预测值,并以此计算瓦斯涌出量实际值与模型预测值之间残差及相对误差值。根据预测模型的回代结果,绘制了模型拟合曲线,见图1。
从表1及图1可看出,该煤矿基于数量化理论Ⅰ的瓦斯涌出量预测模型的预测误差在0.09%~39.98%,平均值16.65%,其预测拟合曲线与实际曲线除个别点以外,总体上吻合程度较好。
2.5模型预测精度评价
经计算,所建立的瓦斯涌出量预测模型复相关系数R为0.910342,剩余标准差s为2.987726,精度基本能够满足工程的要求,说明利用数量化理论Ⅰ建立的数学模型预测某矿瓦斯涌出量是可行的。
图1 数量化理论预测模型拟合曲线
另外,计算埋藏深度、煤层厚度、工作面是否通过断层、C1与B4煤层间距与瓦斯涌出量之间的偏相关系数分别为0.714057、0.472809、0.214076、0.460338,方差比分别为0.227064、0.097961、0.021005、0.087967,说明煤层埋藏深度、煤层厚度和C1与B4煤层间距3个因素对瓦斯含量涌出量的影响最显著,是主要控制因素。
2.6未采区瓦斯涌出量预测
在该煤矿C1煤层使用与预测模型相同的划分方法对未采区域进行预测。根据预测模型中确定的定性变量和定量变量,按与已知统计单元相同的自变量取值方法,将各数据带入到预测方程,便可计算出每个预测单元的相对瓦斯涌出量预测值。
数量化理论最大的优点就是能同时考虑定性变量和定量变量的影响,而且还能将某些定量变量转化为定性变量进行研究,此方法比较适合对瓦斯涌出量进行研究。本文针对某矿C1煤层,利用数量化理论Ⅰ建立了瓦斯涌出量多变量预测数学模型,对未采区的瓦斯涌出量进行预测,对该矿安全生产起到了一定的指导作用。
[1] 张子敏,张玉贵.瓦斯地质规律与瓦斯预测 [M].北京:煤炭工业出版社,2006
[2] 周世宁,林柏泉.煤层瓦斯赋存与流动理论 [M].北京:煤炭工业出版社,1999
[3] 李国祯,李希建,孟昭君等.基于灰色理论的矿井未开采区瓦斯涌出量预测 [J].煤炭工程,2010(9)
[4] 董文泉,周光亚,夏立显.数量化理论及其应用[M].长春:吉林人民出版社,1979
[5] 孟德顺.多对多的数量化理论(Ⅰ)的数学模型及解法探讨[J].西北林学院学报,1994(3)
[6] 郭峰,郝天轩.基于数量化理论的瓦斯含量预测模型研究[J].中国煤炭,2008(11)
[7] 武亚遵,潘国营,张子戌.矿井未采区瓦斯涌出量预测[J].中州煤炭,2006(6)
(责任编辑 张艳华)
Multiple variables prediction of the quantity of gas emission based on the quantitative theory
Hao Tianxuan1,2,3,Jin Yizhi2
(1.State Key Laboratory Cultivation Base for Gas Geology and Gas Control Co-founded by Henan Province and the Ministry of Science and Technology,Jiaozuo,Henan 454000,China;2.College of Safety Science and Engineering of Henan Polytechnic University,Jiaozuo,Henan 454000,China;3.Henan Province Co-Innovation Center of Coal Safety Production,Jiaozuo,Henan 454000,China)
The quantity of gas emission was studied by applying the quantitative theory I and the multiple variables prediction model of the quantity of gas emission was built for the C1 coal seam in certain mine.The calculated results by the prediction model meet the requirements of engineering accuracy and show that prediction of quantity of gas emission by applying the quantity theory is feasible and helpful to guide the coal mine safety production.
quantitative theory,prediction model,categorical variable,quantitative variable,reference variable,explanatory variable
TD712.5
A
郝天轩(1976-),男,河南孟州人,教授,博士,研究方向:瓦斯灾害预测与防治。
*资助项目:长江学者和创新团队发展计划资助(IRT1235),河南省高等学校青年骨干教师资助计划(649083),河南理工大学博士基金(B2008-16)针对某矿C1煤层建立了基于数量化理论Ⅰ的瓦斯涌出量多变量预测模型进行矿井瓦斯涌出量的预测。