刘立民
摘要:目前在国内煤炭行业电力电子技术已在部份矿务局得到推广。在现代化矿井中,由于设备大型化,自动化水平较高,吨煤人工费用所占比例不大,而电费所占比例增加,要降低成本,增强竞争力,应重视利用现代调速技术节约能量,例如在风机、水泵、带式输送机等设备上实现调速。下面分别谈变频器在煤矿带式输送机、矿井提升绞车、乳化。
关键词:变频器;带式输送机;矿井提升设备
前 言
随着煤矿向大型化方向发展,新型电力电子器件和高性能微处理器的应用以及控制技术的应用越来越广泛,设备也向大型化、大功率化方向发展,因而对电能提出了新的更高的要求。电力电子技术较早用于煤矿是矿井提升机,并且发展迅速。此外,电力电子技术在先进国家已普遍用于带式输送机的调速或带式输送机起动控制、风机调速(包括主通风机和局部通风机)和水泵的调速。上述设备多采用现代交流调速,除了可以提高调速的性能外,更主要可以节省能源。液泵站的应用。
一、带式输送机
变频器在国内煤矿的应用主要集中在带式输送机上。变频技术在最近二十年飞速发展,在部分煤矿企业获得了广泛应用,例如双鸭山矿业集团新安矿、七星矿等。运用变频器对带式输送机的驱动进行改造,将给用户带来极大的社会和经济效益:第一,真正实现了带式输送机系统的软起动。运用变频器对带式输送机进行驱动,运用变频器的软起动功能,将电机的软起动和皮带机的软起动合二为一,通过电机的慢速起动,带动皮带机缓慢起动,将皮带内部贮存的能量缓慢释放,使皮带机在起动过程中形成的张力波极小,几乎对皮带不造成损害。第二,实现皮带机多电机驱动时的功率平衡。应用变频器对皮带机进行驱动时,一般采用一拖一控制,当多电机驱动时,采用主从控制,实现功率平衡。在双鸭山矿业集团新安矿顺槽皮带为2×200KW/660V电机驱动,采有主从控制后,轻载时主从电机电流相差5A左右,满载时相差2A左右。第三,降低皮带带强。采用变频器驱动之后,由于变频器的起动时间可在1S~3600S可调,通常皮带机起动时间在60S~200S内根据现场设定,皮带机的起动时间延长,大大降低对皮带带强的要求,降低设备初期投资。
1.提高系统功率因数
通常情况下,煤矿用电机在设计过程中放的裕量比较大,工作时绝大部分不能满载运行,电机工作于满电压、满速度而负载经常很小,也有部分时间空载运行。由电机设计和运行特性知道,电机只有在接近满载时才是效率最高、功率因数最佳,轻载时降低,造成不必要的电能损失。这是因为当轻载时,定子电流有功分量很小,主要是励磁的无功分量,因此功率因数很低。采用变频器驱动后,在整个过程中功率因数达0.9以上,大大节省了无功功率。
2.提高系统效率
采用变频器驱动之后,电机与减速器之间是直接硬联接,中间减少了液力偶合器这个环节。而液力偶合器本身的传递效率是不高的,并且液力偶合器主要是通过液体来传动,而液体的传动效率比直接硬联接的传动效率要低许多,因而采用变频器驱动后,系统总的传递效率要比液力偶合器驱动的效率要高5%~10%。另外,矿井通常离变电站距离较远,不同时段电压波动较大,利用变频器的自动稳压功能,也有部份节能作用。 综上所述,采用变频器这种技术来改造传统的带式输送机驱动系统,不仅在技术的先进性还是带来的社会及经济效益方面都是巨大的。
二、矿井提升
矿井提升设备是沿井筒提升煤炭、矿石、升降人员和设备、下放材料的大型机械设备。因此,矿井提升设备在矿井生产的全过程中占着极其重要的地位,其安全可靠尤为突出。在矿井生产过程中,如果提升设备出了故障,必然造成停产。此外,矿井提升设备是一大型的综合机械——电气设备,其成本和耗电量比较高,所以,在新矿井的设计和老矿井的改建设计中,确定合理的提升系统时,必须经过多方面的技术经济比较,结合矿井的具体条件,保证提升设备在选型和运转两个方面都是合理的,即要求矿井提升设备具有经济性。传统的提升系统中,电机的调速方式为电机转子串电阻分级调速。随着电力电子技术的发展,电机转子串电阻分级调速的方式其弊端越来越明显:第一,控制精度差。第二,工作可靠性不高。第三,维护工作量大。第四,耗能。电机转子串电阻调速是一种转差功率消耗型的调速方式,在整个调速过程中,大量的电能被消耗在电阻上,非常不经济。第五,稳定性较差。电机转子串电阻调速,当在低速段运行时,稳定性差。在整个调速过程中其节能方式表现为两个方面:
1.提升状态的节能
当提升绞车处于向上提升状态时,电机工作于电动状态,由于提升绞车属于恒转矩负载,其转速降低多大比例节能就为多大比例。
2.下放状态
当提升绞车处于下放状态时,此时电机工作于发电状态,将势能转化为电能。如果变频器采用的是能量回馈型变频器,变频器将会把这种电能回饋回电网。一台无极绳绞车采用变频改造后,其节能效果达30%左右。此变频器为能耗制动型,如果采用能量回馈型,其节能效果将更好。煤矿企业中有许多提升绞车,采用变频改造后,其节能效果将十分明显,现在,许多新上的绞车系统均已采用变频驱动。
3.乳化液泵站
乳化液泵站主要为液压支架提供恒定的液体压力。平时液压支架基本不动,但乳化液泵仍长时工作,耗能巨大。如果采用变频驱动,采用压力传感器形成闭环恒压控制,当移动液压支架时,乳化液泵提高液体流量,维持变力不变;当不移动液压支架时,乳化液泵提供小流量液体维持压力不变,实现恒压控制。采用变频器驱动乳化液泵,节能效果明显。例如煤矿井下一台55KW/660V变频器用于乳化液泵,经测算,其节能效果达50%左右。另外,采用变频器之后,降低了电机和泵的转速,对机械部份的磨损将减小许多,延长了设备检修期。在部分煤矿,主扇也已采用了变频技术,但目前变频器在煤矿的应用主要还是集中在皮带机和绞车上。随着技术的发展,相信变频技术将象国外发达国家一样在煤矿得到广泛应用。
参考文献:
[1]《变频器原理及应用(第2版)》.机械工业出版社,编者:王廷才.
[2]《变频器控制技术》.电子工业出版社,作者:李方园.
[3] 参考了现场调研有关技术资料等.