董方达
【摘要】随着国家环保的日益严格,国华公司提出污染物“近零排放”的要求,为了满足低负荷时氮氧化物排放满足环保要求,需要对现有SCR脱硝进行全负荷SCR脱硝改造。
【关键词】电站燃煤锅炉;全负荷scr;脱硝控制技术
引言
目前国内采用低氮排放控制技术的燃煤机组在额定工况下基本能满足排放要求,但在低负荷时,由于SCR入口烟温低于催化剂正常工作温度窗口而导致脱硝系统无法投运,针对这一问题的主要对策有增加省煤器旁路、提高锅炉给水温度以及开发宽温度窗口SCR脱硝催化剂。目前国内所采用的省煤器旁路烟道等技术是以牺牲一定的经济性为代价的,高效节能的锅炉全负荷低NOx排放控制技术的研究对于逐步改善周围大气环境质量具有显著的经济效益和社会效益。
1、全负荷低NOx排放控制现状
控制NOx排放的技术包括低氮燃烧技术和烟气脱硝技术。目前普遍采用的低氮燃烧技术主要有:低氮燃烧器、燃料分级燃烧技术、空气分级燃烧技术等。应用在电站燃煤锅炉上的成熟的烟气脱硝技术主要有选择性催化还原法(SCR)、选择性非催化还原法(SNCR)以及SNCR/SCR混合烟气脱硝技术。
目前,我国火电行业已形成以低氮燃烧和烟气脱硝相结合的技术路线。截至2010年底,我国已投运的烟气脱硝机组约81675MW,占全国煤电机组容量的12.47%。截至2011年3月底,全国已投运的烟气脱硝容量达96885MW,其中采用SCR工艺的占93.31%,采用SNCR工艺的占6.28%,采用SNCR与SCR组合工艺的占0.41%。“十一五”期间新建燃煤机组全部采用了先进的低氮燃烧技术,烟气脱硝关键技术和设备国产化等方面均取得了重要进展。
催化剂是SCR脱硝系统的核心部件,其性能对脱硝效果有直接影响。而烟气温度对反应速度和催化剂的反应活性及寿命有决定作用,是影响SCR脱硝效率的重要因素之一。目前国内燃煤电站常用的SCR催化剂为中温催化剂,正常活性温度区间一般为320~400℃。锅炉省煤器和空预器之间的烟气温度与这个温度范围接近,因此,国内燃煤电站SCR脱硝装置一般布置在锅炉省煤器和空预器之间。SCR催化剂最佳反应温度窗口为340~380℃,入口烟温在360~380℃以下时,SCR反应效率随着温度的提高而提高,相应的氨逃逸率则逐渐降低。如图1所示为NH3/NOx摩尔比一定时,不同烟气温度下的SCR反应效率。
当烟气温度低于催化剂的适用温度范围下限时,在催化剂上会发生副反应,NH3与SO3和H2O反应生成(NH4)2SO4或NH4HSO4,减少与NOx的反应,降低脱硝效率,生成物附着在催化剂表面,堵塞催化剂通道或微孔,降低催化剂的活性,同时局部堵塞还会造成催化剂的磨损。另外,如果烟气温度高于催化剂的适用温度,会导致催化剂通道和微孔发生变形,有效通道和面积减少,从而使催化剂失活,缩短催化剂的使用寿命。典型燃煤锅炉烟气SCR脱硝工艺流程为:锅炉→省煤器→脱硝反应器→空预器→除尘脱硫装置→引风机→烟囱。 在我国,绝大多数燃煤机组参与电网调度,因此在实际运行过程中,尤其是非用电高峰时,机组常常不能满负荷运行,甚至运行于50%以下的负荷区间。虽然机组在满负荷运行时省煤器出口温度大于350℃,但在中、低负荷下的SCR反应器入口烟温经常会低于SCR催化剂的最佳反应温度窗口,此时氨气将与烟气中的三氧化硫反应生成铵盐,造成催化剂堵塞和磨损,降低催化剂的活性,使SCR脱硝系统无法正常运转,难以满足全负荷下低NOx排放的要求。
2、全负荷SCR脱硝技术
全负荷SCR脱硝技术一般分为两类:(1)催化剂改造为低温催化剂,使得催化剂能够满足低负荷时烟气温度的运行要求。(2)提高进入SCR烟气的温度,控制机组在任意负荷下反应器中烟气温度均在320℃~420℃之间。现在低温催化剂技术尚在实验室阶段,未能工程应用,只能采用低负荷时提高烟气温度的方法,采取的改造方案主要有以下几种:(1)增加省煤器烟气旁路(2)增加省煤器工质旁路(3)省煤器采取分组布置(4)低负荷时提高给水的温度。
2.1 增加省煤器烟气旁路
增加省煤器烟气旁路技术主要是采用减少经过省煤器用于给水加热的烟气,通过旁路直接进入SCR装置的方法,提高进入SCR反应区烟气的温度。在省煤器旁路烟道出口处设置旁路烟气挡板,通过调节旁路挡板的开度可以控制直接进入SCR反应区的烟气量,进而可以控制烟气温度(图1)。
图1 增加省煤器烟气旁路SCR技术
增加省煤器烟气旁路带来的问题如下:(1)由于烟气从省煤器旁路流走,不能给给水加热,必然会降低锅炉的热效率(0.5%~1%),增加煤耗。(2)省煤器旁路烟道挡板经过长期运行可能造成堵灰,影响系统稳定运行。(3)通过省煤器烟气旁路进入SCR反应区的烟气会扰乱烟气流场,干扰脱硝系统运行。(4)由于减少了给水加热量,要对锅炉热平衡及锅炉性能进行充分计算后实施改造。
2.2 增加省煤器工质旁路
增加省煤器工质旁路技术主要是给通过省煤器换热的给水增加一旁路,减少给水在省煤器处的换热,进而减少经过省煤器时烟气的热损失,最终提高进入SCR反应器的烟气温度。该方法可以通过调节给水旁路调节门的开度,调节烟气温度(图2)。增加省煤器工质旁路带来的问题如下:(1)由于给水的换热系数为烟气换热系数的1/83,远远小于烟气的换热系数,通过给水旁路能够提高进入SCR反应器的烟气温度,但是效果不明显,要明显差于省煤器烟气旁路。(2)由于进入省煤器的給水量减少,会导致省煤器出口处给水温度升高,极端情况会造成省煤器出口处给水气化,烧坏省煤器。(3)由于省煤器给水旁路的存在,导致给水换热效果降低,增加排烟热损失,降低锅炉的热效率(0.5%~1.5%)。
图2 增加省煤器工质旁路SCR技术
3、结束语
随着环保标准的日益严格,全负荷脱硝势在必行。本文对SCR脱硝技术进行全负荷SCR脱硝改造的几种方案进行阐述、比较,给出每种方案的优、劣,对要进行全负荷SCR脱硝改造的机组提供改造依据。
参考文献
[1]谭青.汽包锅炉实现低负荷脱硝的烟气升温系统[J].节能工程,2013,10:40-44.
[2]曹丽红.火电行业大气污染集成控制技术研究[J].环境保护,2013,24:58-61.