潘池
[摘要]随着经济的快速发展和科技的不断进步,越来越多的先进技术应用在工程测绘中,GPS技术是现代科学技术中,发展起来的一种先进的卫星系统定位技术,和传统的测绘技术相比较,GPS技术在工程测绘中有很大的优势,能极大的提高工程测绘的准确性。本文针对GPS技术在工程控制测量的应用及测量精度进行详细探究。
[关键词]GPS技术 工程控制 测量 精度
[中图分类号]P258 [文献码] B [文章编号] 1000-405X(2015)-9-152-1
0引言
GPS技术在工程测量中的应用,是对传统工程测量带来了彻底性的革命,并且其具有不受天气和通视条件影响、定位精度高、操作方便、自动化程度高、成本低等众多方面的优点,致使其被广泛的推广和应用在现代工程控制测量中。随着GPS技术在工程控制测量中的应用,人们对工程测量精度提出了更高的要求。
1 GPS测量技术的概述
1.1 GPS系统的组成
GPS系统主要由GPS卫星星座、地面监控系统、GPS信号接收机等三大部分组成,其中GPS卫星星座是由3颗轨备卫星、21颗工作卫星共同组成的,这24颗卫星按照每组4颗卫星平均分配在6条相互成60°的轨道平面上运行,其运行周期为24h,因此无论在地球那个方位,都能在任何时间观测到最少有4颗属于GPS系统的卫星,GPS空间星座的主要作用是观测目标,并将观测信息转换成载波信号,传输到地面监控系统中,实现目标定位。地面监控系统主要由主控制站、监测站、地面天线几部分组成,主要负责收集空间卫星传输回来的信息,然后利用这些数据计算出卫星星历等数据。GPS信号接收机也就是用户端,它能搜索、捕捉卫星,然后卫星传输的数据进行处理,计算出GPS信号接收机所在位置的经纬度及高度。
1.2 GPS工程测量原理
在工程中,GPS测绘技术有两种方法测量出被测对象的信息,一种是测量伪距离,另一种利用载波相位进行测量。测量伪距离是根据接收机接收到的GPS卫星发出的测距码及电文内容,根据信号发射到用户接收信息的时间,计算出卫星与接收机天线之间的距离,由于用户接收机的时钟难以与GPS卫星时钟保持同步,计算出来的数据有一定的误差,因此,称为伪距离。用载波相位进行测量是测定GPS卫星载波信号在传播路径上的相位变化,从而计算出信号传播距离[1]。
2 GPS技术在工程控制测量中的应用优势
2.1自动化程度高
工程控制测量中的GPS技术,采用GPS接收机进行各种测量时,只需要将天线准确的安装在检测站上,并接通电源与启动接收单元,此时仪器就能够自动开始工作,当测量工作结束之后,只需要将电源关闭,接收机就能够自动的完成数据的采集,并采集的定位数据传输至数据处理中心,进而实现GPS自动化的测量以及计算。
2.2适用范围广
GPS技术在国民经济的各个领域中都具有非常广泛的应用,对于从事测绘工作的工程施工人员来说,已经得到广泛的应用,其中涉及到地壳板块运动的检测、大地测量以及各种工程测量,尤其是在工程控制测量中具有非常广泛的应用前景,尤其是GPS技术的自动化检测,对于工程的自动控制系统的研究是GPS技术在未来应用的一个重要发展方向。
2.3测量精度高
GPS技术的短距离的测量精度达到毫米级别,差分导航精度达到厘米级别,对于大型的工程建筑以及构造物的变形监测具有精密的定位测量,在进行合适数据处理的模型和软件之后,其在高程和平面精度都能够达到毫米级别。
3 GPS技术在工程测量中的应用流程
3.1定位测量点
选择测量点时必须遵循便捷、安全的原则,便于布设GPS设备,尽量定位在视野开阔的作业环境内,避免影响GPS设备信号的传输与接收,排除外界电磁的影响,确定GPS的测量点后,需要记录到测绘图纸内,为后期测绘提供图纸依据。
3.2构建测量标志
GPS技术中的测量标志,主要是起到指示、提示的作用,待测量点定位完成后,需要安置测量标志,用于指导GPS测量的整个过程。由于工程测绘环境的影响,测量标志的构建并没有统一的方法,基本按照测量人员的经验设置,比较常见的方法时埋入标石,既可以发挥标识作用,又可以稳定标志。
3.3测量观测
测量观测是GPS技术中的重要环节,GPS测量属于室外作业,促使GPS需要严格遵循室外观测的要求。例如:某地籍项目测绘中,在GPS室外观测中增加卫星导航,两者需在协调状态下才能实现高质量的测绘服务,该项目人员设置到GPS技术后,利用卫星收集测量信息,通过导航系统观测GPS接收的卫星信号,充分利用开机观测的方法,保障测量观测的技术性[2]。
3.4数据分析
GPS测量数据的分析,基本是由计算机完成,利用计算机中的外业检测,确保数据分析的准确度,确保数据结果贴近工程实际,完善GPS测量中的数据库。
4工程测绘中的GPS测量技术分析
4.1水下测绘
水下测绘一直是我国工程测绘中的难点,因为水下的情况复杂,而且受到水位影响,所以水下测绘的难度系数比较高,如果在水下工程中采用人工测绘,必须要排除流速、压强等因素的干扰,无法保障测绘结果的准确度。我国水下工程的发展速度越来越快,对水下测绘的依赖性也逐渐提高,促使水下测绘成为水下工程的重要部分。GPS测量技术具有显著的优点,可以在横、纵两个方向,实现精准测绘,GPS测量设备的体积非常小,不会对水下测绘区域产生影响,其在测量过程中,将收集到的水下资料迅速传递到地面的计算机系统内,通过软件分析得出最终的数据结果,排除水下环境的干扰,降低水下测绘的难度。水下测绘在GPS测量技术的推动下,取得良好的测量结果,如超生测量等,优化水下测绘的环境[2]。
4.2形变测量
形变是工程测绘中的主体项目,大部分工程内都存有形变影响,尤其是受到地质、人为等因素的影响,更是增加形变控制的难度。针对形变控制,需通过GPS提供测量信息,便于提出科学的控制途径。例如:某矿业现场的地基出现形变,表现出严重的沉降危害,该矿业人员通过GPS测量技术,及时分析引发地基变形的原因,同时测量地基沉降的基础参数,有效控制形变发生,降低地基形变对整个矿业现场的危害,GPS测量技术在该矿业中发挥定位与监测的作用,利用三维定位的方式,监测地基形变中的细微变化,控制在安全范围内,避免出现大规模的形变或沉降,保障该矿业现场的安全运营,而且提高了矿业现场抵御变形风险的能力。
4.3城市测绘
城市建设是我国经济发展的重点项目,多样化的城市建筑投入施工,由此必须保障测绘达到规范的标准。GPS测量技术在城市测绘中的使用频率最高,其与GIS、RS组合,高效完成城市测绘的定位、遥感等,提高城市测绘数据的准确度。例如:某城市测绘时,涉及到大面积的控制网,总共包括三级导线测绘,需要GPS的准确测绘,该城市测绘过程中,受到基础建筑的影响,导致不同层次的导线测绘均遭受不同程度的破坏,增加GPS测量技术的压力,此时该城市选择GPS静态测绘,同时利用GPS中的RTK技术,排除城市两个测绘基点的通视,完成直接性的测量连接,不会破坏该城市原本设定好的测绘基点,还可以高效率的完成城市测绘,方便建筑施工和城市规划[3]。
4.4网点控制
网点控制主要体现在大地测量中,传统的测量技术耗时、耗力,影响网点的控制。我国在工程建设中,重新规划了控制网点,为保障网点控制的精准度,需要利用GPS测量技术,完成长距离的准确测绘。GPS测量技术在网点控制中,能够适应大规模的大地测量,在保障效率的基础上,快速完成网点测绘。GPS测量技术在网点控制中的应用,还要避免对城市控制产生影响,以免干扰整体测绘的精度,造成数据误差。
5 GPS技术在工程控制测量中的应用
文章以工程为例,该工程采用了6台Ashtech型静态单频GPS接收机(测量精度为5mm±1ppm)采集野外信息,作业基本要求包括:数据采样率(S)不超过30s;时段长度不小于60min;同时观测有效卫星数量不小于4;平均重复设站数不小于1.6;同时观测有效卫星书不小于4;卫星截止高度不小于15°。每时段观测都采用测量天线高两次的方式,相差小于3mm,天线高为测量的平均值。GPS观测数据采用Ashtechsolutoons2.5进行基线解算,以此保证每一个基线都能求出整周模糊度。GPS技术在工程控制测量中的应用主要表现为以下几个方面:
5.1静态定位
静态定位需要在每个流动站内设置GPS接收机,一边静止观测,另一边接收太空卫星以及基准站的同步观测信息,并对测站一周的未知数以及三维坐标进行解算,当测量的精度满足相关的要求之后,才能停止测量工作。由于影响测量精度的因素相对较多,该种测量方式主要采用加密控制,这样即使在一些恶略的环境和地形中,同样能够保证测量的精度。
5.2动态定位
在进行动态定位测量之前,必须做好前期准备工作,即先在控制点观察一段时间,然后采用提前设定好的流动站进行实地自动测量,然后结合基准站的同步观测数据,最终确定测量点的位置坐标。当前工程测量对于精度的要求相对较高,通常要求测量精度达到厘米级别,动态定位能够独立完成桩测量、地形图测绘、纵横断面测量等,并且具有非常高的测量精度,致使动态定位技术在工程测量中具有非常好的应用前景。
5.3测绘大比例尺地形图
传统的测法测站与碎部点之间必须通视,不仅拼图环节的精度不能保证,并且还需要至少两人进行工作,花费较长的时间。采用GPS技术,仅仅需要一台机器和一个人,并且花费几秒钟的时间,就能够完成碎部点高程以及坐标的测绘工作,然后输入特征编码,能够迅速成图,显著的降低了绘图难度,提高测绘速度。
5.4选线以及放样
将GPS的接收机作为流动站,在一定的距离接收测量数据,对重要的物质进行定位,然后将获得的信息输入接收机,并利用CAD绘图软件进行选线。采用GPS技术进行放样测量,仅需输入点位坐标,接收机能够将提醒信息准确的传输至任何放样点,这样不仅能够提高放样精度,还能够降低劳动量,加快放样速度[3]。
6提高GPS技术在工程控制测量精度的措施
6.1创建工程控制测量网络
工程控制测量网络是工程管理、维护工作开展的基础,同时也是提高工程测量精度的重要措施。通常状况下,工程控制测量网络的覆盖面积相对较小,占位密度相对较大,对测量的精度要求相对较高,采用边角网的方式,创建工程控制网络,在采用GPS定位技术时,能够充分的体现GPS技术精度高、作业时间短、工程耗费低等优势。
6.2 PTK碎部测晕以及放样
PTK技术,即载波相位差分技术,采用PTK技术对相位的测量进行处理,能够将基准站收集的载波相位信息传输给用户,用户通过对基准站差分信息进行求差解算,能够准确的找到用户的位置坐标,并将定界标点标出,采用PTK碎部测晕和放样,能够提高测量精度和标定的准确性。
6.3区域差分网络的碎部测量以及放样
当碎部测量出现在区域性的GPS的差分系统中时,基准网和放样会对所有基准站提供差分信息的权,并实现差分的定位,提高PTK接收机标称精度,能够提高PTK测量点的精度,进而提高测量精度。
6.4测量精度评定
采用平面平差基线相对精度统计、基线残差统计、环闭合差统计进行GPS定位中误差统计,100%的点位精度控制在1cm以内,甚至控制在0.5cm以内,如果测量数据合格,则表明基线解算质量良好,GPS技术的测量精度能够满足工程测量的实际要求。
7结束语
总而言之,GPS技术在工程控制测量中具有测量精度高、自动化程度高、适用范围广、费用低等众多优点,致使其被广泛的推广和应用在工程控制测量中。但是,GPS技术在工程控制测量的实践应用中,对操作要求相对较高,并且随着现代工程测量对精度要求的不断提高,工程控制测量人员应该熟练的掌握GPS技术在工程控制测量中的应用流程,并采取有效的措施提高测量精度,进而为工程的控制测量提供更好的服务。