谢荣华
摘要:我国最近几年金融产品程序化交易的比重越来越高,但也存在不少问题,譬如胜率和盈亏比表现不佳,缺乏创新,企图一招鲜吃遍天等。笔者认为,程序化交易策略的创新很重要,而这种创新基于交易哲学的提升。文章对交易技术指标、技术参数和交易周期等提出笔者的看法,尤其是提出了半自动交易的新理念,对程序化交易策略开发者和从业人员有一定参考价值。
关键词:程序化交易;交易哲学;半自动交易系统
程序化交易产生于美国,早期的程序化交易分为程序化买入和程序化卖出两种,用于纽约股票交易所同时买卖15支以上的股票组合的交易。因此,有时也被称为篮子交易。
随着投资管理业的资金管理规模扩大,投资经理和基金经理们发现凭经验和手工操作无法应对市场风险加大、价格变动频繁等挑战,程序化交易刚好可以解决这些难题,因为它具有速度快、避免个人情绪干扰、量化等优势,投资机构纷纷投入重金研发自动交易模型,其在提高投资决策质量和速度、交易辅助等方面大展身手。
时至今日,西方发达国家已经研发出不少成熟的自动化交易系统,譬如美国有70%的交易是由程序化交易完成的,而且交易量占比连年来还有不断上升的趋势,交易模型的功能也日趋强大和完善。量化投资及程序化交易大师西蒙斯默默无闻地在十几年间大量使用量化系统的交易方法,取得了比巴菲特、索罗斯等市场传奇更高的年收益率。譬如海龟交易创始人丹尼斯不断通过自动化交易实现其从400美金到2亿美金的个人传奇,还培训出一支海龟投资团队(现在还活跃在各大投资机构),他们为早期大胆吃螃蟹者的投资客无声无息地带来了可观的投资回报。
我国的程序化交易起步较晚,发展缓慢,开发出来的比较成熟的交易系统也相对缺乏,但最近几年发展也很迅猛,这得益于新的投资理念的导入、应用平台开发迅速成熟,如tb(交易开拓者)、文化财经、金字塔等平台已经深受广大自动交易者所喜爱和认同。由于程序化交易规避了人性中的贪婪和恐惧等弱点,交易速度快、系统性强,国内自动化交易量占比最近几年也在快速上升。据统计,我国当前金融产品的程序化交易占比为20%~30%,程序化交易的发展空间将会越来越广阔。
一、程序化交易策略为什么要创新
(一)策略效用的边际递减
使用策略的人多了效果就会越来越差。细心的投资者会发现,国内的股指期货越来越难做。在2010年国内刚推出股指期货时就有人使用台湾的一些比较成熟的程序化交易策略而大赚其钱,但在最近两年却发现不容易赚钱了,甚至遭到了比较大的回撤。这是什么原因呢?金融市场本身就是一个众多策略博弈的一个场所,某个策略一旦成功并被多人使用了,其有效性就会越来越低,而且道高一尺魔高一丈,市场上会出现针对某种策略的猎杀者。从技术指标层面看,例如20年前,通过一条20天均线的交易策略是有利可图的,紧接着,越来越多人开始使用均线来做投资决策。但是,每个交易策略和买卖机会都是有容量限制的,这使得策略使用的人越多,单个K线的波动则越大,例如突破20天均线的当根K线的波动极大,这使得中间的利润空间迅速收缩,最终使得策略失效。也可以理解成,当一个策略使用的人越多,知道的人越多,它的盈利能力则越低,最终变得无利可图。在基本面分析上,同样存在自毁性,例如20年前,只要买账面有利润的公司都能赚钱,紧接着所有人都认准了公司账面利润进行投资,这使得所有账面有利润的公司股价都很高,这时候,人们只能通过预测未来利润获得投资回报了。而随着越来越多人熟知各种预测利润的方法,导致价值被低估的公司越来越难找了,最终变成了一个均衡市场。笔者认为,这可以认为是交易策略效用的边际递减。
(二)行情特点发生变化
金融市场的复杂性表现在行情的多变性。还是以国内的股指期货为例,在2010年是一个双边大震荡的行情,2011年单边下跌,2012年、2013年宽幅震荡,2014年上半年窄幅震荡,可以看出无论是单边行情还是震荡行情,由于国内A股的市场容量越来越大,股指期货的日内变动幅度呈现出越来越小的特点,这就给日内趋势性交易策略带来不小的挑战。
知名投资人、“悍马理论”的创始人冯正平表示:世界上没有交易圣杯,这是他的悍马定律里的第一条。他说2008年前的市场特征与之后的就很不一样,一些原来赚钱的模型后来都赔钱了,而有一些原来赔钱的反倒变成赚钱了。他打了个比方很生动:“就像我们造一个工具,是拿来切菜的还是砍骨头的,还是拿来修指甲的,这个要想清楚。”意思是设计模型时要清楚自己设计出来的交易模型适用于哪种市场环境,要考虑模型的针对性、适应性。
基于多年期货量化交易的经验,上海泛金投资管理有限公司董事长杭国强认为,程序化的本质是给自己的交易列出一系列规矩,让自己的交易更有规则,并利用计算机提高交易速度,其中成败的关键在于对细节的处理。“利用程序界定、评价和预测未来的收益,建立有效的评估体系,不断适应市场的变化,才是程序化交易的灵魂”。
普天投资机构创始人吴转普也认为:自动化交易不存在永远的圣杯,不可能做出一个类似印钞机一样让交易者获利的程序化交易模型,自动化交易更多地被看成是一种管理控制系统,要加入对基本面和技术面的理解,要考虑市场参与者结构的变化,交易程序要不断优化和创新。
在国外,一些成熟的投资公司配备了众多数学和计算机专业人才,他们的主要任务就是针对市场的变化不断完善模型,这正体现了金融机构存在的必要性与重要性。80%~90%的工作人员是在做量化模型的建模、数据处理工作,交易执行人员比较少。由于要处理庞杂的数据,在量化交易中,团队的价值得到充分体现。每隔一段时间他们就会开发出新的交易模型。
即使在高性能硬件与软件结合的高频交易领域,也不存在可以长久不变的“交易圣杯”。高频交易策略对技术要求比较高,在网络速度、硬件反应速度及网络监测等方面都有近乎苛刻的要求。作为高频程序化交易者,Cyc partner公司创始人柳峰介绍说,高频交易者对市场的监测,以及对策略的修改一直不曾停止,“只有不断发现并保持自己的比较优势,才可能在变化的市场中保持盈利”。而高频交易背后的逻辑结构相对来说是简单的,盈利率比较高,有些策略在三年之内运行会比较适用。但是,在市场中采用同种高频交易策略的数量增加之后,交易者必须对策略加以改进。
二、程序化交易策略创新的思路
(一)交易哲学的革新
程序化交易本质上是交易者交易思想的体现,程序化是一种控制手段。有什么样的交易哲学就有什么样的程序化交易策略,所以审视自己的交易哲学的逻辑性就显得尤为重要。策略的优劣对比实际上是背后交易哲学的较量。优秀的交易策略创新来自于交易哲学的突破与革新,而做到这一点并不容易,需要交易者对世界、对自然、对市场有一种深邃的洞察力并能理解转换成为市场语言,物化为交易指标体系。笔者几年来一直致力于对市场背后推动力的研究,市场的上涨和下跌并非随机和无序。比如说,我们可以把市场按照形态分为单边和震荡,在单边市中趋势性模型就能大显身手,而趋势性模型在震荡市中由于来回止损会产生比较大的回撤。而震荡模型策略的表现刚好相反,所以用什么模型不是关键,判断对时段性的单边行情还是震荡行情成为交易策略提高胜率和盈亏比的关键。至于用什么模型来判断单边和震荡是笔者多年研究的成果,有比较高的准确性。
(二)从全自动到半自动的尝试
笔者认为,交易策略不易过于死板。众多程序化交易策略坚持不下去的原因是全自动带来的众多劣质交易,频繁止损。其实法无定法,笔者认为可以半自动化交易提高胜率和盈亏比,至于何时开启程序化何时关闭程序化背后的规则和逻辑也必须是严密的、一贯的,譬如在背后规则市场进入单边市时开启程序,市场重归震荡市时关闭程序,需要一切有章可循。正如世上没有永动机一样,没有一个自动化交易策略能一如既往地战胜市场,能够在资本市场有骄人业绩的一定是半自动交易程序策略。
(三)交易周期、参数的调整
可以针对不同金融市场的特点,变革不同的交易周期,充分认识到金融市场博弈的本质。当多数人使用某个交易周期的时候,我们可以回避它改变交易周期,比如在股指期货中大家常用1分钟图、10秒钟图,笔者觉得不烦尝试15秒图,既保持了一定的反应速度,又能减少频繁交易的问题,对于大家在交易中常用的macd指标、dmi指标、均线指标,我们可以通过测试调整其参数设置以达到阶段性优化交易的目的,更重要的是避开了大众常用参数,可以避开程序化交易猎杀者的屠刀。建议策略框架的核心参数不要超过三个,超过三个以上的参数有拟合历史行情的嫌疑。著名的海龟策略创始人也曾在海龟策略遭受比较大的亏损时修改技术参数才渡过难关的。
(四)创新交易技术指标
使用独创的交易技术指标来设计交易系统能在金融市场上提高交易胜率和盈亏比,其原因在于创新的交易技术指标相对保密,不具有从众性,相反具有出其不意的优势。比如在趋势交易系统里面大家认为均线是一个很好的趋势跟踪指标,但它的缺点也很突出,除具有其他趋势跟踪指标一样的滞后性外,对付慢涨急跌或者慢跌急涨的行情是一个弱项,所以有人创造了自适应均线来对付这种行情,这就是创新交易指标的做法。笔者举出这个例子意在抛砖引玉,创新和改良指标的方法和技术有赖于开发者的细心、耐心和汗水。
三、程序化交易策略创新后测试要注意的问题
首先,避免对交易策略的参数过度优化。过度优化是以拟合历史取得比较高的胜率和盈亏比的,这种过度优化的策略对付现实或者未来变化的行情反倒会产生比较大的回撤甚至亏损,这是由于形态的周期性反复原理产生的。
其次,核心框架策略可以试着应用于其他金融交易品种,观察其表现。
再次,某一参数取值的盈利远远高于或低于附近的参数值就要引起高度警惕。
最后,不要对一两次巨亏或比较长的连续亏损单独做优化,否则即使减小了最大回撤也是不可靠的。
参考文献:
[1](美)里什﹒纳兰.打开量化投资的黑箱[M].郭剑光,译.北京:机械工业出版社,2012.
[2](美)迈克尔·卡沃尔.趋势跟踪:顶尖交易大师的操盘获利策略[M].吴飞,译.北京:中国青年出版社,2013.
(作者单位:广州市广播电视大学财经学院)