杜天宇
摘 要:关节型机械手是一类具有与人手肘类似的“关节”,可以模拟人手操作的自动化装置。它主要以电气结合的方式驱动,再通过齿轮等进行机械传动。但因为机械摩擦较大,传动部位(回转关节)仍有改进的空间。结合开关磁阻电机的原理,该文探讨了一种利用電磁驱动的新型回转关节。这一设计有效地避免了齿轮传动带来的机械摩擦损耗。
关键词:三自由度关节型机械手 开关磁阻电机原理 新型回转关节
中图分类号:TH12 文献标识码:A 文章编号:1672-3791(2015)11(c)-0104-02
机械手是一种智能装置,能够实现模拟人手的所有动作。在实际的工作过程中,机械手会按照预先设计的固定程序进行对工件的工位转移等。关节型机械手是机械手的一种类型,但它具有与人类手肘类似的“关节”,比一般的机械手结构更精巧、操作更灵活,具有广阔的研究与应用前景。
现有的机械手主要以电气(即电动机和气缸)结合的方式进行驱动,应用齿轮等机械装置进行传动。但因为机械摩擦的缘故,传动效率仍有较大的提升空间。该课题在对一种现有“三自由度关节型机械手”[1]的研究基础上,对回转关节部位进行了更深入的调研,并提出通过电磁驱动减小机械摩擦的新型旋转关节设计。
1 三自由度关节型机械手的基本情况
1. 1 整体设计
该关节型机械手为圆柱坐标,包含3个自由度,其中机械手在进行工作时完成对工件的两个方向的回转和实现一个方向的转移。机械手运用回转关节实现所夹持工件的前后和左右的回转运动,而运用移动关键来实现所夹持工件的上下的移动,从而实现整个机械手的运动工作。
机械手的整体设计如图1,主要包括手部、腕部和臂部。
手部(亦称抓取机构)是用来直接握持工件的部件,根据设计要求,利用夹钳式手部结构。其中,夹钳式机械手有两个半圆形或者椭圆形的机械手指,手指由驱动电机通过连接传动装置实现其张合以及闭合,从而实现了机械手对所夹持工件的抓紧动作。这种方式的机械手抓具有很好的通用性,能够实现不同外形结构工件的抓紧,所以适用性比较强。
机械手的主要组成部件为手腕部分,手腕在机械手传动中起到传动中介的作用,其连接机械手的手部以及机械手的臂部,实现机械手在臂部的所有动作的转换,有效地实现了手部动作的完成。另外,机械手手腕还可以实现机械手工作范围的扩大化,使得机械手的工作范围有效提高,并对机械手的灵活度有了明显的提高。手腕的回转动作运用回转液压气缸来实现机械手在空间上270 °的回转动作,液压气缸机构简单,操作方便,很适合机械手的运用,但是,机械手的手腕要求工作严格,不能出现振动等现象。
机械手的臂部主要是对机械手整体起到支撑的作用,机械手在进行工作过程中所有的运动惯性以及自身和工件的所有重量都由臂部来承受,所以,机械手的臂部要求结构强度高、抗疲劳性强等特点。同时,机械手的臂部还能够实现机械手部分动作的实现,一般在机械手的臂部运动采用液压或者气压缸实现。文中所设计的机械手臂部主要包括大臂和小臂。
1.2 回转关节
大臂和小臂的回转运动由回转关节完成。回转关节由45BF005π型步进电机驱动,通过两个啮合的直齿圆柱齿轮进行传动,如图2。当电动机运行时,左侧的齿轮轴发生转动,右侧的啮合齿轮也相应转动起来,再通过轴的带动,与之相连的臂部也发生转动。
2 回转关节的分析
这种传动方式本身所需要的传动扭矩比较小,并且传动精度也比较低,所以在选择驱动的方式时应该考虑驱动源的误差积累等问题,研究者采用的驱动源为步进电机。经过查询资料《机电综合设计指导》中的表格2-11,关于步进电机的相关参数可以看出,此文选择的电机型号为:45BF005π型,其中,这种步进电机的主要参数包括如下:步矩角为1.5°,其中电机的额定电压为27 V,总体质量为0.4 kg,该电机具有外形结构比较紧凑,结构简单,控制方便等优点。
通过精度验证,机械手在传动过程中,如果只依靠步进电机的传动精度是远远不够的,还需要运用不同的传动机构以及变速机构等进一步实现传动精度的提高。文章中所提及的机械手的传动采用一级减速齿轮的传动,其中主动轮的传动齿数为20,从动齿轮的传动齿数为70,经过查询资料可以得到,该齿轮传动的传动模数应该选择m=1,齿轮的宽度应该设计为20 mm,在传动过程中,由于齿轮传动会有一定的振动,所以此文设计的齿轮的宽度为24 mm。
3 新型回转关节的研究与设计
3.1 电磁驱动的可行性探讨
通过查阅文献,利用开关磁阻电机原理进行电磁旋转的理论已经比较成熟。
开关磁阻电机的工作机理基于“磁通总是沿磁导最大的路径闭合”的原理。当定、转子齿中心线不重合、磁导不为最大时,磁场就会产生磁拉力,形成磁阻转矩,使转子转到磁导最大的位置。当向定子各项绕组中依次通入电流时,电机转子将进一步沿着通电相序相反的方向转动。如果改变定子各相的通电次序,电机将改变专向,但相电流同流方向的改变是不会影响转子的转向的。
一类新型的磁旋转地球仪[2]就是依据该原理设计而成的。
该地球仪沿赤道线每隔一段距离会贴上永磁片,通过FEMM软件仿真,可见永磁片的磁场呈对称周期排列,如图3。具体的磁场分布可以通过对永磁体本身的磁感应强度的检测进行分析确定,从而实现所设计的悬浮球体的旋转动作。
综上所述,利用开关磁阻电机原理,借鉴磁旋转地球仪的设计,可以利用电磁驱动替代回转关节本来的电机驱动和齿轮传动。这样的设计避免了齿轮传动机械摩擦的损耗,也避免了电机精度不高的缺陷。
3.2 新型回转关节的设计
新型回转关节利用贴永磁片的圆柱体和电磁线圈替代发电机和直尺圆柱齿轮。
圆柱体的设计尺寸参考原有的右侧齿轮大小,R=35 mm,h=24 mm。
沿圆柱体圆周中线每隔一段距离贴上小铁片,每个铁片上贴有一圆形的永磁片。在圆柱体周围安装两组电磁线圈。这两个电磁线圈组成一个弧度,弧度的圆心与圆柱体的柱心尽量保持重合。其中一个线圈正对一个永磁片,另一个电磁线圈正对相邻的另一个永磁片,如图4。正常工作时,通过检测永磁片位置,两个线圈同时通电使电磁线圈同时产生相同的极性。通过对流入线圈的电流进行控制,使得圆柱体实现了旋转。若要使圆柱体停止旋转,切断线圈中的电流即可。
旋转的圆柱体与原有的右侧的轴相连,如图5。当线圈通电时,圆柱体带动轴旋转,与轴相连的臂部也随之发生转动。
4 结语
新型回转关节利用电磁驱动的原理,用带永磁片的圆柱体替代本来的电机和直齿圆柱齿轮。这样的设计避免了齿轮传动机械摩擦的损耗,也避免了电机精度不高的缺陷,具有很高的研究价值。但是囿于研究者现阶段的知识储备与精力,该种设计仍存在许多待进一步讨论的问题。比如电磁驱动能否带来足够的驱动力、回转的精度是否能有效地控制等。
参考文献
[1] 刘祖涛.平面关节型机械手设计[D].广东海洋大学,2003.
[2] 石燕.倾斜式电磁、永磁混合悬浮地球仪及旋转系统的研究[D].山东大学,2010.