赵军,张作衡,戚静洁,张贺,刘敏
(1. 中国人民武装警察部队黄金第八支队,新疆 乌鲁木齐 830057;2. 中国地质科学院矿产资源研究所,北京 100037;
新疆阿吾拉勒山西段群吉萨依铜矿辉绿玢岩脉继承锆石年龄及地质意义
赵军1,张作衡2,戚静洁3,张贺4,刘敏2
(1. 中国人民武装警察部队黄金第八支队,新疆 乌鲁木齐 830057;2. 中国地质科学院矿产资源研究所,北京 100037;
3. 中国人民武装警察部队黄金第七支队,山东 烟台 264004; 4.北京市地质工程设计研究院,北京 101500)
新疆阿吾拉勒山西段是伊犁古裂谷的重要组成部分,出露较多辉绿岩脉,其中,群吉萨依铜矿辉绿玢岩脉受隐爆角砾岩筒控制。笔者对该岩脉开展了锆石U-Pb年龄测试和岩石地球化学分析,分析结果表明:辉绿玢岩中锆石以继承锆石为主,其年龄值主要集中在1 781~1 823Ma, 17个测点的207Pb/206Pb加权平均值为(1 798.9±6.1)Ma,这一年龄值与西天山地区前寒武纪结晶基底形成时代一致。岩石整体高Fe、Ti,富Na,贫K,不相容元素含量较低,具弱Eu异常,富集高场强元素,亏损大离子亲石元素,暗示岩浆来源类似于弱亏损地幔,但受到了少量地壳物质的混染。结合前人研究成果,该辉绿玢岩脉形成于板内裂谷伸展构造环境,可能与上地幔玄武质岩浆底侵作用有关,地幔岩浆上升过程中捕获了大量基底岩石中的岩浆锆石和变质锆石,从侧面证实了伊犁微板块早-中元古代结晶基底的存在。
群吉萨依辉绿玢岩;锆石U-Pb年龄;地球化学;结晶基底;伊犁微板块
天山造山带是中亚造山带的主要组成部分,其构造演化过程一直是地学界的研究热点(Sengör et al. 1993;Jahn et al. 2000,2004;windley et al., 2007; Gao et al., 2009)。已有研究表明,天山造山带是由塔里木、伊犁、哈萨克斯坦-准噶尔等几个古板块(微板块)及其增生边缘拼接、碰撞形成的,具有多板块、多级单元的复杂结构(Kröner et al. 2007;高俊等,2009;xiao et al., 2013)。
其中,伊犁微板块处于塔里木和哈萨克斯坦-准噶尔板块之间,其构造演化过程对于研究天山造山带具有重要意义。然而,对于伊犁微板块的形成和发展过程,一直存在较大争议。一部分学者认为,伊犁微板块是从塔里木板块裂解出来的中间地块,二者具有相似的前寒武纪基底岩石组合和构造-岩浆演化过程(Chen et al.,1999; Khain et al.,2003; Lei et al.,2011;舒良树等,2013;Ma et al., 2013);另一部分学者则认为,伊犁微板块具有独立的前寒武纪结晶基底,基底的时代和后期的地质演化历史,都与塔里木北缘地块截然不同,属于一个独立的古块体(Hu et al., 2000; 李铨等,2002; 刘树文等,2004; 李继磊等,2009;贺振宇等,2012)。还有一些学者认为天山地区的陆壳基底是哈萨克斯坦板块的一部分(肖序常等,1992; 何国琦等,2001; Windley et al.,2007; Xiao et al.,2008)。可见,若要解决伊犁微板块的来源问题,必须加强对伊犁微板块前寒武纪基底岩石的调查研究。
伊犁微板块乃至整个天山(中国境内)地区广泛存在新元古代的岩浆活动,岩石类型以镁铁质杂岩、辉长岩、花岗岩、花岗质片麻岩为主,其形成时代介于700~1 000 Ma,代表了Rodinia超大陆聚合、裂解构造事件(陈义兵等,1999,2000; Zheng et al., 2006; Yang et al., 2008; 陈新跃等,2009;胡霭琴等,2010;Lei et al., 2011;舒良树等,2013)。但是,对于天山地区是否存在新元古代之前的岩浆活动,则一直缺乏有利的岩石学和年代学证据。胡霭琴等(1999)依据中天山星星峡群、温泉群的变质岩和花岗岩Sm-Nd 同位素定年、Nd 同位素示踪,认为天山造山带大陆地壳基底形成于1 800 Ma前。舒良树等(2013)对赛里木地块中温泉群的云母片岩开展碎屑锆石测年,268颗锆石年龄结果表明,其原岩沉积时代不老于中元古代晚期(峰期1 150 Ma),认为难以支持伊犁北缘存在早元古代基底的认识。Lei 等(2011)对星星峡卡瓦布拉克群花岗闪长岩进行锆石U-Pb测年,获得(1 832±48)Ma的上交点年龄;舒良树等(2013)对巴仑台泥盆纪砂岩中碎屑锆石测年,获得了1.9~1.79Ga时段的构造-岩浆活动信息,其峰值为1 858Ma。李继磊等(2009)对出露于阿吾拉勒山西段的长城系特克斯群麻粒岩相片麻岩进行了锆石测年,结果显示其原岩的岩浆结晶年龄为(1 609±40)Ma,并认为该套岩石可能代表了伊犁微板块的中元古代基底。综上所述,关于西天山地区是否存在中元古代-早元古代基底的问题,目前证据偏少,仍需深入研究。
阿吾拉勒山是伊犁微板块的重要组成部分,其西段广泛出露与铜矿化有关的二叠纪次火山岩,这些次火山岩的形成可能与前寒武纪基底岩石的重熔有关(赵军等,2013)。笔者对该区群吉萨依铜矿区内出露的辉绿玢岩开展锆石测年和岩石地球化学研究,试图获得伊犁微板块前寒武纪结晶基底的信息。
阿吾拉勒山西段位于伊犁微板块的中东部,是伊犁石炭-二叠纪裂谷的重要组成部分,保留了古裂谷系统的构造格架(张作衡等,2008)。区内出露地层包括中元古界和上古生界,以后者占主导地位(图1)。中元古界长城系特克斯群(ChT)零星出露于阿吾拉勒山西段南坡,面积约2km2,以麻粒岩相片麻岩、麻粒岩、变粒岩和大理岩为主。李继磊等(2009)对其中的含紫苏辉石黑云二长片麻岩进行了锆石测年,认为其原岩年龄为(1 609±40)Ma;晚古生代地层包括石炭系和二叠系,石炭系主要分布于阿吾拉勒山西段西北和东南部,为上石炭统伊什基里克组(C2y),以中酸性火山岩为主。二叠系是区内的主要地层单元,以陆相火山岩、磨拉石建造和河湖相沉积为总体特点。其中下二叠统主要以双峰式火山岩广泛发育为特点。中二叠统主要为磨拉石建造夹极少量双峰式火山岩。上二叠统则为典型的河湖相沉积(宋志瑞等,2005)。该区出露的侵入岩较多,整体规模均不大,以中酸性和酸性岩为主,中性岩次之,基性岩很少,均为浅成、超浅成岩。这些岩体多形成于晚石炭世-早二叠世,年龄介于270Ma~310Ma(李小英等,2012;刘英等,2012;闫永红等,2013;李宁波等,2013)。
群吉萨依铜矿区位于阿吾拉勒山西段中部,出露地层为下二叠统乌郎组(P1w)和塔尔得套组(P1t)(图2)。乌郎组是一套偏基性火山岩与凝灰质砂(砾)岩交互沉积组成的火山岩建造,主要岩性包括:玄武安山玢岩、凝灰质砂砾岩、凝灰质砂岩、凝灰质粉砂岩,局部夹少量火山角砾岩和爆破角砾岩。塔尔得套组在矿区内出露较为完整,且分布面积较大,其火山旋回清楚,爆发相与喷溢相相间出露,具明显的火山韵律,玄武岩类与流纹岩类互层产出,且厚度较大,为典型的双峰式火山岩建造。矿区发育两个隐爆角砾岩筒,直接控制了区内断裂、火山岩和侵入岩的空间展布形态。
区内侵入岩不是太发育,仅出露一花岗斑岩体和辉绿玢岩脉。其中,花岗斑岩体受断裂控制,近东西向展布,南部侵入于下二叠统乌郎组中。闫永红等(2013)测得该岩体的SHRIMP U-Pb年龄为(302±4)Ma。辉绿玢岩脉长约300m,平均宽度小于20m,侵位于下二叠统乌郎组顶部地层中,为群吉萨依铜矿的赋矿岩体,也是笔者研究的对象之一。
Q.第四系;P3b.上二叠统巴斯尔干组;P2t.中二叠统塔姆其萨伊组;P2h.中二叠统哈米提特组;P2x.中二叠统晓山萨伊组;P1t.下二叠统塔尔得套组;P1w.下二叠统乌郎组;C2y.上石炭统伊什基里克组;Pt1-Pt2.长城系特克斯群;λπ.石英钠长斑岩;γπ.花 岗斑岩;δπ.闪长玢岩图1 新疆阿吾拉勒山西段地质简图(据1∶20万巩留幅区调资料修改)Fig.1 Geologic sketch map of western Awulale Mountain in Xinjiang
群吉萨依辉绿玢岩脉整体延伸方向为北东东向,主要受隐爆角砾岩筒控制(图2)。其中,西端的隐爆角砾岩主要分布于岩脉与围岩接触部位,沿走向分布不连续,且水平厚度较小,不超过1 m,以岩脉北侧(上盘)较发育;东端的隐爆角砾岩筒规模较大,角砾岩具有明显的分带性。从围岩到辉绿玢岩,角砾性质呈规律变化:从以凝灰质细砂岩为主→以凝灰质细砂岩和玄武安山玢岩为主→以玄武安山玢岩和辉绿玢岩为主→以粗粒和细粒辉绿玢岩为主→铜矿化细晶辉绿玢岩。辉绿玢岩脉上下盘均发育隐爆角砾岩,但以上盘(北侧)最为明显,宽0.1~1 m不等,角砾以辉绿玢岩为主,少量闪长玢岩,多呈不规则状、近圆状、棱角状(图3a),砾径1~5 cm不等,胶结物以方解石和绿帘石为主,具弱铜矿化。
1.第四系;2.下二叠统塔尔得套组;3.下二叠统乌郎组;4.辉绿玢岩;5.花岗斑岩;6.断层;7.隐爆角砾岩筒;8.采样位置及编号图2 群吉萨依铜矿区地质图 (据新疆有色集团703地质队资料修编)Fig.2 Geologic sketch map of Qunjisayi copper deposit (Modified after No.703 Geolgical Party,NMMG of Xinjiang)
辉绿玢岩主体呈灰绿色,辉绿结构,斑状结构,块状构造(图3b)。斑晶为中长石,含量约5%,呈长板状,粒径(长轴)0.5~1.5 mm,多具卡钠复合双晶。基质主要由斜长石、辉石、角闪石等矿物组成。斜长石含量60%~65%,自形-半自形,长条状,粒径(长轴)0.1~0.3 mm,呈架状排列,部分已绿泥石化;辉石含量20%~25%,半自形、他形,短柱状、粒状,多已绿泥石、绿帘石化;角闪石普遍被绿泥石、绿帘石交代,有少量次闪石化,含量5%~10%。副矿物以磁铁矿为主,含量≤5%,呈半自形-他形粒状,粒径0.02~0.05 mm,内部多溶蚀成蜂窝状、网格状。辉石、角闪石和磁铁矿多充填在长石格架中。岩石中发育少量气孔,被方解石充填(图3c)。
本次研究的样品采自岩脉中部无矿化、无蚀变、无杏仁体的地段,共采集1件锆石测年样品和4件岩石地球化学分析样品,岩石较新鲜。
a.辉绿玢岩脉边部隐爆角砾岩;b.辉绿玢岩;c.辉绿玢岩镜下照片(正交偏光;Pl.斜长石; Chl.绿泥石;Cal.方解石图3 群吉萨依辉绿玢岩脉岩石特征及显微照片Fig.3 Specimens and microphotographs showing characteristics of diabase-porphyrite in Qunjisayi copper deposit
岩石样品在室内首先经过机械破碎至80~120目,然后采用常规磁选和重力方法分选出锆石,再在双目镜下挑选出适合测试的锆石并制靶、抛光。在进行年龄测试分析前,需要对锆石进行透射光、反射光和阴极发光显微观察、照相,选取适宜的测试点位,尽量避开内部裂隙和包裹体以及不同成因的区域。锆石定年在中国地质科学院矿产资源研究所LA-ICP-MS实验室完成,测试所用仪器为Finnigan Neptune型ICP-MS,连接的激光剥蚀系统为NewWave UP213。激光剥蚀激光剥蚀采用单点方式,束斑直径为25μm,能量密度约为25J/cm2,频率为10Hz,以He为载气。标准锆石为锆石GJ-1,U、Th含量以锆石M127(Nasdala et al., 2008)为外标进行校正。具体的仪器参数设置、分析技术及实验流程与候可军等(2009)相同,原始数据处理采用ICPMSDataCal程序。年龄计算(95%置信度)及谐和图绘制均采用Isoplot(3.23版本)软件(Ludwig,2003)完成。
群吉萨依辉绿玢岩脉的样品(QJS-63)挑选出的锆石数量较多,大多为岩浆锆石,具有不明显的振荡环带,另有少量变质锆石,锆石粒径50~100μm。锆石多为等轴状和近圆形,少数为柱状,颜色整体较深,无环带—弱环带,破碎强烈,裂隙发育(图4)。根据锆石形态特征判断其为捕获的继承锆石,且经历了较远距离的搬运、磨蚀和较强的震碎作用。笔者对这些继承锆石测试了20个点,其中17个点获得了较好的结果(表1)。
17个测量点的Th/U值介于0.6~1.69,为典型的岩浆锆石特征。U、Th含量较低,分别为17×10-6~110×10-6和25×10-6~148×10-6,Pb含量较高,介于155×10-6~1 045×10-6。绝大多数测点的207Pb/206Pb值>207Pb/235U值>206Pb/238U值,说明岩石后期经历了一定的铅丢失或铀获得事件。其中,10号测点的3个年龄值高度一致,均为1 798 Ma。17个测点的207Pb/206Pb年龄值较集中,介于(1 781.2±7.7)~(1 823.8±11)Ma,谐和年龄为(1 802±13)Ma(MSWD=0.67),加权平均年龄(1 798.9±6.1) Ma(MSWD=3.7)(图5),加权平均年龄与10号测点的年龄值一致,代表了这些继承锆石的年龄。
图4 群吉萨依辉绿玢岩脉中继承锆石CL图像及测点位置Fig.4 Cathodoluminescence images of zircons from diabase-porphyrite in Qunjisayi copper deposit
图5 群吉萨依辉绿玢岩继承锆石U-Pb年龄谐和图Fig.5 Concordia diagram of U-Pb zircon analytical results fordiabase-porphyrite in Qunjisayi copper deposit
主量和微量元素分析均在中国地质科学院国家地质测试中心完成。主量元素采用X射线荧光法(XRF)在X荧光光谱仪(3080E)上测定,微量元素和稀土元素利用电感耦合等离子体质谱法(ICP MS)在离子质谱仪(X series)上测试完成。分析结果见表2。
群吉萨依辉绿玢岩的SiO2含量介于46.08%~46.79%之间,全铁(TFeO)和TiO2含量高,可能与岩石含较多磁铁矿、暗色矿物多发生绿泥石化有关。MgO、CaO含量中等。岩石明显富Na,K2O含量很低,里特曼指数(σ43)较高,介于5.29%~6.53%之间,为钠质碱性系列, 与该区广泛出露的二叠纪次火山岩特征相似(赵军等,2013)。
岩石的∑REE介于86.68×10-6~107.58×10-6之间,LREE/HREE和(La/Yb)N值分别为3.41~3.95、3.02~3.86,(La/Sm)N和(Ho/Yb)N值分别为1.56~2和1.17~1.24。说明轻重稀土之间分馏较弱,轻稀土内部和重稀土内部也没有发生较明显的分馏作用。岩石的稀土元素配分曲线呈很缓的右倾型(图6a),具有较弱的负铕异常,δEu介于0.75~0.91,表明岩浆形成时可能仅有少量的斜长石作为残留相(Rollinson, 1993)或在岩浆演化过程中发生了一定的分离结晶作用,另外也暗示着基性岩浆可能受到了地壳混染。
从微量元素含量及蛛网图来看,岩石中相容元素Cr、Co、Ni、V含量较高,不相容元素含量整体较低(表3,图6b)。不相容元素中,相对富集高场强元素Th、U、Zr、Hf、Nb、Ta和元素P,亏损大离子亲石元素K、Rb、Ba、Sr、Cs。岩石的Mg*值[Mg/(Mg+Fe2+)]较低,介于0.45~0.51之间。Nb/Ta值为14.7~16.3,介于玄武质岩石与花岗质岩石之间。岩石的微量元素含量及蛛网图特征反映出其形成与消减作用无关,不相容元素含量和Mg*值较低暗示其岩浆来源类似于弱亏损地幔,但受到了少量地壳物质的混染。
图6 (a)群吉萨依辉绿玢岩稀土配分曲线和(b)微量元素蛛网图Fig.6 (a)REE distribution patterns and (b)trace element spider diagrams of diabase-porphyrite in Qunjisayi copper deposit
5.1 岩石形成环境及成因
已有的研究表明,西天山地区在晚石炭世完成了增生造山过程,进入后碰撞演化阶段,构造应力环境由挤压转为伸展(朱永峰等,2004;李锦轶等,2006;Sun et al.,2008;高俊等,2009;Han et al., 2011)。从二叠纪开始,阿吾拉勒山西段发生了岩石圈减薄和陆壳拉张,形成陆内裂谷环境,广泛出露双峰式火山岩、浅成-超浅成侵入岩和陆相碎屑沉积(姜常义等,1995;车自成等,1996;夏林圻等,2008;赵军等,2013)。笔者研究的群吉萨依辉绿玢岩就是这一阶段的产物。在Pearce和Cann(1973)提出的Ti/100-Zr-Y×3构造环境判别图中(图7),4件样品落在板内玄武岩区,紧邻B区。B区是MORB、岛弧拉斑玄武岩和钙碱性玄武岩的混合区,根据岩石的微量元素具有弱亏损地幔源的特征,说明辉绿玢岩具有板内环境与洋中脊的共同特征,暗示其形成于陆内裂谷拉伸环境,与区内下二叠统火山岩的形成环境一致(姜常义等,1992;赵军等,2013)。
A.岛弧拉斑玄武岩;B.MORB、岛弧拉斑玄武岩和钙碱性玄武 岩;C.钙碱性玄武岩;D.板内玄武岩图7 群吉萨依辉绿玢岩Ti/100-Zr-Y×3构造环境判别图 (Pearce and Cann, 1973)Fig.7 Ti/100-Zr-Y×3 diagram of diabase-porphyrite in Qunjisayi copper deposit
近年来,对阿吾拉勒山西段玄武岩和花岗岩类的Sr-Nd同位素研究表明,岩石整体具有相对低的(87Sr/86Sr)i值和正的εNd(t)值,与北疆地区广泛出露的后碰撞花岗岩一致,反映了该区在碰撞造山结束之后,地壳以垂向生长为特征,普遍发生了地幔玄武岩浆的底侵作用(韩宝福等,1998;洪大卫等,2000;徐学义等,2005;Zhao et al., 2008)。上地幔玄武岩浆底侵下地壳,导致下地壳熔融,形成了该区广泛分布的浅成-超浅成侵入岩。同时,上地幔玄武岩浆滞留在壳幔边界,随着陆壳拉伸减薄,便沿着深大断裂喷出地表,形成该区大面积分布的下二叠统玄武岩。由于玄武岩浆不断融熔和喷发,导致残留岩浆逐渐亏损不相容元素,尤其是大离子亲石元素。随着岩浆喷发作用逐渐减弱,晚期的残留岩浆无法喷出地表,便在火山通道和隐爆角砾岩筒中形成小规模的辉绿玢岩脉。
5.2 继承锆石年代意义
以上研究结果表明,伊犁微板块确实存在早-中元古代基底岩石。虽然笔者获得了较好的年龄结果,但这些锆石毕竟是继承锆石,只能间接反映早-中元古代基底的存在。若要进一步了解基底性质及起源问题,有必要对伊犁地区出露的早-中元古代地层开展调查和年代学研究,尤其是温泉群和特克斯群,以期获得更加直接的年龄证据和构造演化信息。关于伊犁微板块基底的归属问题,前人存在不同的认识(李春昱等,1983;舒良树等,2013;Hu et al., 2000; Xiao et al.,2008),主要原因是出露地表的基底岩石较少,且研究还不够系统、深入,仅依靠岩石组合和年龄对比来做出判断可能还略显不足。所以,笔者认为,由于目前还缺乏翔实的古地磁数据、足够多的基底年龄数据和岩石证据,仅仅通过对比研究,可能还无法确认伊犁微板块是独立存在的古块体,还是由塔里木板块或哈萨克斯坦-准噶尔板块裂解出来的。
(1)阿吾拉勒山西段群吉萨依辉绿玢岩脉受隐爆角砾岩筒控制,主量元素具有高Fe、Ti,富Na,贫K的特征。岩石中不相容元素含量较低,具弱Eu异常,富集高场强元素,亏损大离子亲石元素,暗示岩浆来源类似于弱亏损地幔,但受到了少量地壳物质的混染。
(2)岩石形成于板内裂谷环境,与上地幔玄武质岩浆的底侵作用有关,形成于该区裂谷火山作用的晚期。
(3)辉绿玢岩中含大量继承锆石,其年龄值为(1 798.9±6.1)Ma,是伊犁地区目前获得的最老的锆石年龄数据,表明伊犁微板块确实存在早-中元古代基底。
致谢:衷心感谢匿名审稿人对笔者提出的修改意见和重要指正。野外考察得到了新疆维吾尔自治区有色集团703地质队及群吉萨依矿区有关领导和同仁的大力支持。实验测试得到了中国地质科学院国家地质测试中心、成矿作用与资源评价重点实验室的帮助,在此一并感谢!
车自成,刘良,刘洪福,等.论伊犁古裂谷[J].岩石学报,1996, 12(8):478-490.
CHE Zicheng, LIU Liang, LIU Hongfu, et al. Review on the antient Yili Rift, Xinjiang, China[J]. Acta Petrologica Sinica, 1996, 12(8): 478-490.
陈新跃,王岳军,孙林华,等.天山冰达坂和拉尔敦达坂花岗片麻岩SHRIMP锫石年代学特征及其地质意义[J].地球化学,2009,38(5):424-431.
CHEN Xinyue, WANG Yuejun, SUN Linhua, et al. Zircon SHRIMP U-Pb Dating of The Granitic Gneisses from Bingdaban and Laerdundabon(Tianshan Orogen)and Their Geological Significances[J]. Geoehimica, 2009, 38(5):424-431.
陈义兵,胡霭琴,张国新,等.西天山前寒武纪天窗片麻岩的锆石U-Pb年龄及Nd-Sr 同位素特征[J].地球化学,1999, 28(6):515-520.
CHEN Yibing,HU Aiqin, ZHANG Guoxin, et al. Zircon U-Pb age and Nd-Sr isotopic composition of granitic gneiss and its geological implications from Preoambrian window of western Tianshan, NW China[J]. Geochimica, 1999, 28(6):515-520.
陈义兵,胡霭琴,张国新,等.西南天山前寒武纪基底时代和特征:锆石U-Pb 年龄和Nd-Sr 同位素组成[J].岩石学报,2000,16(1):91-98.
CHEN Yibing, HU Aiqin, ZHANG Guoxin, et al. Precambrian basement age and characteristics of Southwestern Tianshan: Zircon U-Pb geochronology and Nd-Sr isotopic compositions[J]. Acta Petrologica Sinica, 2000, 16(1) : 91-98.
高俊,钱青,龙灵利,等.西天山的增生造山过程[J].地质通报,2009,28(12):1804-1816.
GAO Jun, QIAN Qing, LONG Lingli, et al. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China, 2009, 28(12):1804-1816.
韩宝福,何国琦,王式洸,等.新疆北部后碰撞幔源岩浆活动与陆壳纵向生长[J].地质论评,1998,44(4):396-404.
HAN Baofu, HE Guoqi, WANG Shiguang. et al. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xinjiang[J]. Geological Review, 1998,44(4):396-404.
何国琦,李茂松,韩宝福.中国西南天山及邻区大地构造研究[J].新疆地质,2001,19( 1) :7 -11.
HE Guoqi , LI Maosong, HAN Baofu, Geotectonic Research of Southwest Tianshan and it’s West Adjacent Area, China[J]. Xinjiang Geology, 2001,19(1):7-11.
贺振宇,张泽明,宗克清,等.星星峡石英闪长质片麻岩的锆石年代学: 对天山造山带构造演化及基底归属的意义.岩石学报,2012,28(6):1857-1874.
HE Zhenyu, ZHANG Zeming, ZONG Keqing, et al. Zircon Geochronology of Xingxingxia Quartz Dioritic Gneisses: Implications for the Tectonic Evolution and Precambrian Basement Affinity of Chinese Tianshan Orogenic Belt[J]. Acta Petrologica Sinica, 2012, 28(6):1857- 1874.
洪大卫,王式洸,谢锡林,等.兴蒙造山带ε(Nd)t值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441-456.
HONG Dawei, WANG Shiguang, XIE Xilin, et al. Genesis of Positive ε(Nd)tGranitoids in the Dahinggan MTS.-Mongolia Orogenic Belt and Growth Continental Crust[J]. Earth Science Frontiers(China University of Geosciences, Beijing). 2000, 7(2):441-456.
侯可军,李延河,田有荣. LA-MS-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492.
HOU Kejun, LI Yanhe, TIAN Yourong. Insitu U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS [J] . Mineral Deposits. 2009,28(4):481-492.
胡霭琴,王中刚,涂光炽,等.新疆北部地质演化及其成岩成矿规律[M].北京:科学出版社,1997:9-105.
HU Aiqin, WANG Zhonggang, TU Guangchi, et al. Geological Evolution and Diagenic and Metallogenetic Regularity in Northern Xinjiang[M]. Beijing: Science Press, 1997: 9-105.
姜常义,吴文奎,谢广成,等.阿吾拉勒山西段二叠纪火山岩组合与构造环境分析[J].西安地质学院学报,1992,14(4):1-8.
JIANG Changyi, WU Wenkui, XIE Guangcheng, et al. The Permian period volcanic rock association in the western Awulale mountainous region and tectonic environment analysis[J]. Journal of Xi’an College of Geology, 1992, 14(4): 1-8.
姜常义,吴文奎,张学仁,等.从岛弧向裂谷的变迁——来自阿吾拉勒地区火山岩的证据[J].岩石矿物学杂志,1995,14(4):289-300.
JIANG Changyi, WU Wenkui, ZHANG Xueren, et al. The change from island arc to rift valley—evidence from volcanic rocks in Awulale area[J]. Acta Petrologica Et Mineralogica, 1995, 14(4): 289-300.
李继磊,苏文,张喜,等.西天山阿吾拉勒西段麻粒岩相片麻岩锆石Cameca U-Pb年龄及其地质意义[J].地质通报,2009,28(12):1852-1862.
LI Jilei, SU Wen, ZHANG Xi, et al. Zircon Cameca U-Pb Dating and Its Significance for Granulite-facies Gneisses from The Western Awulale Mountain, West Tianshan, China[J]. Geological Bulletin of China, 2009,28(12):1852-1862.
李锦轶,王克卓,李亚萍,等.天山山脉地貌特征、地壳组成与地质演化[J]. 地质通报,2006,25(8):895-909.
LI Jingyi, WANG Kezuo, LI Yaping, et al. Geomorphological Features, Crustal Composition and Geological Evolution of The Tianshan Mountain[J]. Geological Bulletin of China, 2006,25(8):895-909.
李宁波,牛贺才,单强,等.新疆尼勒克县圆头山后碰撞花岗斑岩的同位素年代学及地球化学特征[J].岩石学报,2013,29(10):3402-3412.
LI Ningbo, NIU Hecai, SHAN Qiang, et al. Zircon U-Pb Geochronology and Geochemistry of Post-collisional Granitic Porphyry from Yuantoushan, Nileke, Xinjiang[J]. Acta Petrologica Sinica, 2013, 29(10):3402-3412.
李铨,于海峰,修群业.东天山前寒武纪基底若干问题的讨论[J]. 新疆地质,2002,20:346-351.
LI Quan, YU Haifeng, XIU Qunye. Discussion of Several Problems about Precambrian Basement of Eastern Tianshan[J]. Xinjiang Geology, 2002,20:346-351.
李晓英,徐学义,孙吉明,等.西天山尼勒克地区浅成花岗质侵入体的地球化学特征及形成时代[J].地质通报,2012,31(12):1939-1948.
LI Xiaoying, XU Xueyi, SUN Jiming, et al. Geochemistry and Dating of The Hypabyssal Granite Body in Nilka County of Western Tianshan Mountains[J]. Geological Bulletin of China, 2012,31(12):1939-1948.
刘树文,郭召杰,张志诚,等.中天山东段前寒武纪变质地块的性质: 地质年代学和钕同位素地球化学的约束[J].中国科学( D 辑) ,2004,34(5):395-403.
LIU Shuwen, GUO Zhaojie, ZHANG Zhicheng, et al. The Property of Precambrian Metamorphic Terrain in Western Area of Middle Tianshan: Constraints of Geochronology and Nd Isotopic Geochemistry[J]. Scientia Sinica Terrae, 2004, 34(5):395-403.
刘新,钱青,苏文,等.西天山阿吾拉勒西段木汗巴斯陶侵入岩体的地球化学特征、时代及地质意义[J].岩石学报,2012,28(8):2401-2413.
LIU Xin, QIAN Qing, SU Wen, et al. Pluton from Muhanbasitao in The Western of Awulale, Western Tianshan: Geochemistry, Geochronology and Geological Implications[J]. Acta Petrologica Sinica, 2012, 28(8):2401-2413.
舒良树,朱文斌,王博,等.新疆古块体的形成与演化[J].中国地质,2013,40(1):43-60.
SHU Liangshu, ZHU Wenbin, WANG Bo, et al. The Formation and Evolution of Ancient Blocks in Xinjiang[J]. Geology In China, 2013, 40(1):43-60.
宋志瑞,肖晓林,罗春林,等.新疆伊宁盆地尼勒克地区二叠纪地层研究新进展[J].新疆地质,2005,23(4):334-338.
SONG Zhirui, XIAO Xiaolin, LUO Chunlin, et al. New advances in the study of Permian stratigraphy at Nileke in the Yining basin, Xinjiang[J]. Xinjiang Geology, 2005, 23(4): 334-338.
夏林圻, 夏祖春, 徐学义,等.天山及邻区石炭纪—早二叠世裂谷火山岩岩石成因[J]. 西北地质,2008,41(4):1-68.
XIA Linqi, XIA Zuchun, XU Xueyi, et al. Petrogenesis of Carboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and its Neighboring Areas, Northwestern China[J]. Northwestern Geology, 2008, 41(4):1-68.
肖序常,汤耀庆,冯益民,等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992,1-169.
XIAO Xuchang, TANG Yaoqing, FENG Yimin, et al. Tectonic Evolution of The Northern Xinjiang and its Adjacent Regions[M]. Beijing: Geological Publishing House, 1992: 1-169.
徐学义,马中平,夏祖春,等. 天山石炭—二叠纪后碰撞花岗岩的Nd、Sr、Pb同位素源区示踪[J]. 西北地质,2005,38(2):1-18.
XU Xueyi, MA Zhongping, XIA Zuchun, et al. Discussion of The Sources and Characteristics on Sr、Nd、Pb Isotopes of The Carboniferous to Permian post-collision granites from Tianshan[J]. Northwestern Geology, 2005, 38(2):1-18.
闫永红,薛春纪,张招崇,等.西天山阿吾拉勒西段群吉萨依花岗斑岩地球化学特征及其成因[J].岩石矿物学杂志,2013,32(2):139-153.
YAN Yonghong, XUE Chunji, ZHANG Zhaochong, et al. Geochemistry and Genesis of The Qunjisayi Granite Porphyry in The West of Awulale Area, Western Tianshan Mountains[J]. Acta Petrologica et Mineralogica, 2013,32(2): 139-153.
张作衡,王志良,左国朝.新疆西天山地质构造演化及铜金多金属矿床成矿环境[M].北京:地质出版社,2008,1-14.
ZHANG Zuoheng, WANG Zhiliang, ZUO Guochao. Tectonic Evolution and Metallogenic Settings of The Copper and Gold Polymetallic Ore Deposits in West Tianshan, Xinjiang[M]. Beijing: Geological Publishing House, 2008: 1-14.
赵军,张作衡,张贺,等.新疆阿吾拉勒山西段穷布拉克铜矿床流体包裹体和碳氧硫同位素研究[J].中国地质,2012,39(5):1345-1358.
ZHAO Jun, ZHANG Zuoheng, ZHANG He, et al. Fluid inclusion and stable isotope studies of Qiongbulake copper deposit in Wstern Awulale Mountains,Xinjiang[J]. Geology in China, 2012, 39(5):1345-1358.
赵军,张作衡,张贺,等.新疆阿吾拉勒山西段下二叠统陆相火山岩岩石地球化学特征、成因及构造背景[J].地质学报,2013,87(4):525-541.
ZHAO Jun, ZHANG Zuoheng, ZHANG He, et al. Petrogenesis and Tectonic Settings of the Lower Permian Series Volcanic Rocks from Western Awulale Mountain, Xinjiang: Constraints from Petrology and Geochemistry[J]. Acta Geologica Sinica, 2013, 87(4):525-541.
朱永峰,何国琦.西南天山大地构造框架与早石炭世火山活动[A].何国琦,徐新.中国新疆天山地质与矿产论文集[C].北京:地质出版社,2004:29-39.
ZHU Yongfeng, HE Guoqi. The Early Carboniferous volcanism and tectonic frame in the southwest Tianshan Mountains[A]. He Guoqi, Xu Xin. The Collected Papers on Geology and Minerals of Tianshan Mountain,Xinjiang Area, China[C]. Beijing: Geological Publishing House, 2004:29-39.
CHEN C, LU H, JIA D, et al.Closing history of the southern Tianshan oceanic basin, western China: An obliquecollisional orogeny[J]. Tectonophysics, 1999, 302(1-2) : 23-40.
GAO J, LONG L L, KLEMD R, et al. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 2009, 98(6): 1221-1238.
HAN B F, HE G Q, WANG X C, et al. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth Science Reviews, 2011, 109: 74-93.
HU A Q., JAHN B M., ZHANG G X, et al. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks[J]. Tectonophysics, 2000, 328:15-50.
JAHN B M, GRIFFIN W L, WINDLEY B F. Continental growth in the Phanerozoic: evidence from Central Asia[J]. Tectonophysics, 2000, 328:7-10.
JAHN, B M, WINDLEY B, NATAL’IN B,et al. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 2004, 23: 599-603.
KHAIN E, BIBIKOVA E, SALNIKOVA E, et al. The Palaeo-Asian ocean in the Neoproterozoic and Early Palaeozoic: New geochronologic data and palaeotectonic reconstructions[J]. Precambrian Research, 2003, 122(1) : 329-358.
KRÖNER A, WINDLEY B F, BADARCH G, et al. Accretionary growth and crustformation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. In: Hatcher J, Carlson M P, McBride J H, et al. (Eds.), 4-D Framework of Continental Crust: Geological Society of America Memoir,2007, 200: 181-209.
LEI R X, WU C Z, GU L X, et al. Zircon U-Pb chronology and Hf isotope of the Xingxingxia granodiorite from the Central Tianshan zone ( NW China ) : Implications for the tectonic evolution of the southern Altaids[J]. Gondwana Research, 2011, 20: 582- 593.
LUDWIG K R. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center, Special Publication,2003, 4: 70.
MA X X, SHU L S, SANTOSH M,et al. Paleoproterozoic collisional orogeny in Central Tianshan: Assembling the Tarim Block within the Columbia supercontinent[J]. Precambrian Research, 2013, 228: 1-19.
NNSDALA L, HOFMEISTER W, NOBERG N, et al. Zircon M257-a homogeneous natural reference material for the Ion microprobe U-Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 2008, 32(3):247-265.
PEARCE J A, CANN J R. Tectonic setting of basic volcanic rocks determined using trace element analysis[J]. Earth and Planetary Science Letters, 1973, 19: 290-300.
ROLLINSON H. R. Using geochemical data: evaluation, presentation, interpretation[M]. London: Longman Scientific & Technical,1993, 1-352.
SENGÖR A M C, NATAL’IN B A, BURTMAN U S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 1993, 364, 209-304.
SUN L H, WANG Y J, FAN W M, et al. Post-collisional potassic magmatism in the Southern Awulale Mountain,western Tianshan Orogen: Petrogenetic and tectonic implications[J]. Gondwana Research, 2008, 14: 383-394.
WINDLEY B F, ALEXEIEV D, XIAO W, et al. Tectonic models for accretion of the Central Asian Orogenic belt[J]. Journal of the Geological Society of London, 2007, 164: 31-47.
XIAO W J, HAN C M, YUAN C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia[J]. Journal of Asian Earth Sciences, 2008, 32( 2-4) : 102-117.
XIAO W J, WINDLEY B F, ALLEN M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 23: 1316-1341.
YANG T N, LI J Y, SUN G H, et al. Mesoproterozoic continental arc type granite in the Central Tianshan Mountains: Zircon SHRIMP U-Pb dating and geochemical analysis[J]. Acta Geologica Sinica,2008, 82: 801-809.
ZHAO Z H, XIONG X L, WANG Q, et al.Underplating-related adakites in Xinjiang Tianshan, China[J]. Lithos, 2008, 102: 374-391.
ZHENG J P, GRIFFIN W L, O’REILLY S Y, et al. Granulite xenoliths and their zircons, Tuoyun, NW China: Insights into southwestern Tianshan lower crust[J]. Precambrian Research,2006, 145(3/4): 159-181.
Significance and Inherited Zircon U-Pb Age of Diabase-porphyrite in Qunjisayi Copper Deposit, Western Awulale Mountain, Xinjiang
ZHAO Jun1, ZHANG Zuoheng2, QI Jingjie3,ZHANG He4, LIU Min2
(1.No.8 Gold Geological Party, Chinese People’s Armed Police Force, Urumqi 830057, Xinjiang, China;2. Institute of Mineral Resources, Chinese Academy of Geological Sciences,Beijing 100003,China; 3.No.7 Gold Geological Party, Chinese People's Armed Police Force, Yantai 264004, Shandong, China;4. Beijing Institute of Geological Engineering Research, Beijing 101500, China)
As an important part of the ancient Yili rift, the western Awulale Mountain possesses many diabase dykes including the Qunjisayi diabase-porphyrite which is controlled by volcanic crypto explosive breccia pipes. The diabase-porphyrite dyke contains many inherited metamorphogenic zircons which yield weighted average207Pb/206Pb ages of (1798.9±6.1) Ma. This age is consistent with the age of Precambrian Basement in Western Tianshan Mountain. The diabase-porphyrite dyke is characterized with higher FeO, TiO2and Na2O content, little K content, lower incompatible elements content and weak negative δEu anomaly. The rocks are enriched with HFSE such as Th, U, Ta, Nb, Zr and Hf, depleted of LILE such as Rb, Ba, K, Sr and Cs. The petrogenesis of Qunjisayi diabase-porphyrite dyke indicates that the magma is derived from weak depleted mantle mingled with a little crust rocks. All the research results indicate that the Qunjisayi diabase-porphyrite dyke is generated from continental rift setting which is relevant with the underplating of the upper-mantle basaltic magma. With the basaltic magma ascending, it captures a great deal of metamorphogenic zircons from Precambrian basement rocks, which indirectly testifies the existence of early-medium Proterozoic crystalline basement in Yili microplate.
Qunjisayi diabase-porphyrite; zircon U-Pb age; geochemistry; crystalline basement; Yili microplate
2015-03-20;
2015-05-17
国家重点基础研究发展计划(2012CB416803)、国家科技支撑计划(2011BAB06B02)和地质矿产调查评价项目(1212011085060)共同资助的成果
赵军( 1978-),男,四川达县人,工程师,博士,矿产普查与勘探专业。E-mail: woodzhao_2000@163.com
P597
A
1009-6248(2015)03-0157-12