于德刚 汤亭亭 朱振安
骨关节炎(OA)是一种最常见的骨关节疾病,其病理特征主要表现为进展性关节软骨丢失、软骨下骨异常改变、轻度滑膜反应及周围软组织异常。OA主要临床症状为关节慢性疼痛,尤其是负重性疼痛。近年来大量研究显示,OA软骨下骨异常改变与关节疼痛及关节软骨退变密切相关。
软骨下骨一般指关节软骨沉积线以下的软骨下骨板和骨小梁结构,软骨下骨板界于钙化软骨层与骨小梁之间,为皮质化板层骨结构,类似于皮质骨[1-3]。也有学者[1,4-6]将软骨下骨定义为关节软骨潮线以下的钙化组织,将钙化软骨层归于软骨下骨板。钙化软骨、软骨下骨板和骨小梁等结构对OA发病的影响可能并不一致,但目前的影像学技术难以将它们在解剖学上区分,因此许多基于临床影像学的研究实际上是对软骨下钙化组织的观察。
生理状态下,软骨下骨可为关节软骨提供力学支撑,并协同关节软骨传递关节内负荷,缓冲约30%的关节内下传应力,维持关节匹配,防止关节内应力集中。此外,通过软骨下骨板和钙化软骨层的终末血管可为关节软骨提供营养支持[2,4,7]。
影像学检查中出现软骨下骨硬化是OA主要特征表现之一。然而,目前研究表明软骨下骨的表现随着OA病情的进展而呈动态改变,在病程早期主要表现为骨吸收,在晚期主要表现为骨形成。
OA早期或进展阶段,软骨下骨骨改建活跃,软骨下骨矿沉积率增加3~5倍[8-9],且骨改建位点也有增加,活跃的骨改建降低了软骨下骨板厚度[10]。研究[11]显示,犬前交叉韧带切断(ACLT)模型中OA早期软骨下骨板厚度明显变薄且孔隙增加。对小鼠胶原酶诱导模型[12-13]、大鼠 ACLT 模 型[14]或大鼠ACLT伴有内侧半月板切除模型[15]等观察发现,OA早期软骨下骨板和(或)骨小梁明显丢失。在 OA 早期患者中也观察到类似现象[16-17]。研究[18]显示,OA进展阶段患者骨吸收标志物显著升高,而OA非进展阶段患者骨吸收标志物并不升高。在无临床症状的早期OA中青年男性患者中骨吸收标志物也升高[19]。
OA早期软骨下骨骨改建增加的原因目前尚未明确,可能机制包括显微损伤修复、促血管生成因子诱导的血管侵入及经软骨下微孔的骨与软骨相互作用。关节内持续负荷可导致软骨下骨板产生显微裂痕,从而启动骨改建[20-21]。OA 骨软骨中促血管生成因子如血管内皮细胞生长因子(VEGF)等增加,软骨下骨中血管生成增多,并侵入关节软骨深层[22](骨改建增加与血管侵入相关)。退变软骨和软骨下骨中转化生长因子(TGF)-β、胰岛素样生长因子(IGF)-Ⅰ、白 细胞 介 素 (IL)-1、IL-6 和 前 列 腺 素(PG)E2蛋白水平升高,Wnt信号上调,核因子-κB受体活化因子配体(RANKL)上调而骨保护素(OPG)下调等,可刺激骨改建[23-25]。正常关节软骨下骨板中存在微孔隙,可提供软骨与软骨下骨相互作用[7];OA 发生时,软骨下骨板孔隙增加[13]。研究[26]报道,应用示踪技术发现大鼠软骨下骨与关节软骨相互作用。研究[27-28]证实,在小鼠模型中软骨损伤和血管侵入可增加孔隙大小和数量,允许骨与软骨之间通过小分子弥散相互作用。
OA晚期骨转换减少,骨吸收减弱,而骨形成相对增加,影像学上表现为软骨下骨板骨质硬化[29]。正常骨吸收与骨形成之间的偶联机制在OA晚期失去平衡,倾向骨形成[30]。研究[31-34]显示,与正常患者相比,OA晚期患者软骨下骨密度增加、骨体积增加、胶原含量增加,但钙与胶原比例降低、骨矿化度降低、力学强度降低。这是由于骨表观密度与材料密度的差异所致,如果骨体积分数增加,则表观密度增加;如果骨矿化不足,则表观密度降低,同时力学刚度下降。有研究[35]报道,OA晚期软骨下骨体积分数与骨矿化度相关为共适应过程,即骨量增加以应对骨矿化不足。
OA晚期软骨下骨矿化度降低的机制目前尚不清楚,可能与成骨细胞分化调节因子有关[36]。研究表明,骨矿化度降低与软骨下成骨细胞产生的TGF-β和 Dickkopf 家 族 蛋 白 (Dkk)-2 增 加 有关[37-38];Dkk-2是 Wnt信号的抑制剂,可抑制成骨细胞矿化[39]。另有研究[40]显示,生理状况下成骨细胞生成的Ⅰ型胶原为2个α1链和1个α2链构成的异三聚体,而OA晚期成骨细胞生成的Ⅰ型胶原为α1链同源三聚体,其可阻碍胶原正常矿化。
此外,随着医疗技术的发展,MRI检查用于诊断OA越来越广泛。软骨下骨骨髓损伤是OA在MRI图像上的特征表现之一,在T2加权抑脂序列或短时间反转恢复序列上表现为软骨下边界模糊的高信号区。在组织病理学上,软骨下骨骨髓损伤的表现包括水肿、纤维化、骨坏死、骨小梁损伤和骨改建[41]。随着OA的进展,软骨下骨骨髓损伤可表现为无明显改变、继续扩展、消退或新发[42-43]。经MRI检查结合显微CT、定量CT检查及双能X线吸收法(DXA)分析发现,OA晚期软骨下骨骨髓损伤区域呈现骨质硬化、骨体积分数增加、骨密度降低[44-46]。
关节慢性疼痛是OA的突出症状,疼痛产生原因及其治疗方案一直是研究的难点。目前的研究提示软骨下骨异常改变在OA关节疼痛产生及治疗中起重要作用。
众多基于临床影像学检查的研究提示,OA软骨下骨异常改变与关节疼痛呈正相关。膝关节OA患者X线片上表现的结构性改变(Kellgren-Lawrence分级)与关节疼痛显著相关[47]。膝关节软骨下骨磨损指受累平台骨质垂直丢失或压缩,是软骨下骨骨改建的表现[17],为膝关节OA患者常见的影像学表现。研究发现,膝关节X线和MRI影像上表现出的软骨下骨磨损与关节疼痛强烈相关[48-49];软骨下骨裸露程度与关节疼痛程度呈正相关[50]。研究报道,在 MRI影像上可观察到软骨下骨骨髓损伤与膝关节疼痛相关,甚至较滑膜炎更能预测关节疼痛[51-52],软骨下骨骨髓损伤发生发展与疼痛加重相关[43]。
组织病理学研究发现,正常关节软骨下骨中分布着痛觉神经纤维[53],在OA软骨下骨板中血管神经束增加,并侵入骨软骨交界处直至关节软骨深层[54-56]。有研究[57]发现,OA 软骨下骨中多种 炎症介质和痛觉递质增加。
针对软骨下骨异常改变进行治疗的研究结果也支持软骨下骨异常改变在关节疼痛产生中起重要作用。研究发现,具有抑制骨吸收或促进骨形成作用的骨保护类药物如双膦酸盐类[58-59]、雷尼酸锶[60-61]等,可通过改善或抑制软骨下骨异常改变缓解OA患者关节 疼痛。小 鼠[62]、大鼠[63-65]和 犬[66]实 验也发现,骨保护类药物可改善软骨下骨结构,减轻关节疼痛,降低痛觉标志物表达。
改善软骨下骨而缓解关节疼痛的机制可能为:关节软骨为无血管神经组织[67],而软骨下骨有丰富的血管神经支配[68-69],OA 时软骨下骨板血管神经束增加并侵入骨软骨界面[54-56];OA时软骨下骨结构与力学性能改变[6,34]及炎性致痛介质增加,致使软骨下骨中的痛觉感受器极易受到化学及力学刺激或损伤[70],进而表现出OA疼痛症状,尤其是负重性疼痛[68]。因此,改善软骨下骨结构和力学性能有助于防止软骨下痛觉感受器受到刺激或损伤,进而缓解关节疼痛。此外,有研究[71]表明破骨细胞活性增强而引发的酸性环境也可导致痛觉产生。在OA发病过程中软骨下骨骨转换活跃、破骨细胞活性增强,因此抑制破骨细胞活性有助于减缓关节疼痛。
临床上膝关节内侧或外侧单间室OA疼痛症状常在施行胫骨高位截骨术后得到有效缓解,其原理在于通过调整膝关节力线平衡关节内负荷,减少过高应力对患侧软骨与软骨下骨的过度刺激[72]。目前膝关节单髁或全髁置换术是治疗OA关节疼痛的成熟术式,其机制在于切除病变软骨与软骨下骨,更换关节摩擦副[73],这进一步表明OA软骨下骨是关节疼痛产生的主要源点之一。
对于OA软骨下骨异常改变是关节软骨退变的始动因素还是继发性改变,目前尚存在异议。长期以来OA软骨下骨异常改变被认为是继发于关节软骨退变,许多实验研究也支持这种观点[74-75],但另一些实验研究发现软骨下骨异常改变可发生在软骨退变前或与之同时发生[76-78]。但可以肯定的是,关节软骨退变与软骨下骨异常改变相关,软骨下骨出现异常可加速软骨退变,而改善骨异常则可减缓软骨退变。
研究[16]报道,采用骨闪烁成像法观察到膝关节OA患者软骨下骨骨转换增强与病情快速进展相关。多个基于MRI的影像学研究发现,OA关节软骨丢失与软骨下骨骨髓损伤、磨损显著相关[48,50,79-85];关节软骨丢失与软骨下骨吸收相关[35],软骨下骨磨损区域关节软骨丢失的风险较正常区域增加7倍[86]。有研究报道,犬 ACLT 模型[11]、兔骨质疏松关节失稳模型中关节软骨损伤与软骨下骨板厚度降低相关。小鼠和兔实验研究[8,87]显示,软骨退变可发生于骨板增厚区域。小鼠Ⅰ型胶原突变模型[88]、小鼠过表达 RUNX2模型[89]、大鼠骨质疏松模型[90]和兔模型[91-92]等研究证实,软骨下骨骨转换增加可促进关节软骨细胞与软骨基质丢失,增加关节软骨损伤。
在小鼠ACLT模型中,抑制软骨下骨中过高的TGF-β1可改善骨结构,减缓软骨退变[93]。研究[94]报道,在基因修饰小鼠模型中骨特异性过表达成骨刺激因子EphB4可保护OA软骨下骨,减轻关节软骨损伤。多个动物实验研究[14,22,62,90-91,95-96]发现,骨保护类药物如抗骨吸收药物(雌激素类、降钙素、双膦酸盐类和OPG等)、促骨形成药物(特立帕肽等)、双向调控药物(雷尼酸锶等)可通过抑制或改善软骨下骨损伤减缓关节软骨退变。此外,多个临床实验研究[61,97-100]结果也支持骨保护类药物具有抑制软骨Ⅱ型胶原降解、延缓软骨退变的积极作用。
软骨下骨异常改变影响关节软骨退变的机制目前尚未明确,可能主要有以下两个方面:在生物力学方面,关节软骨含有大量水分,承受压缩应力性能强,但承受张应力和剪切应力性能弱,OA软骨下骨密度和硬度的不均质性及其弹性模量下降,致使关节软骨承受到异常的张应力和剪切应力,易出现软骨退变[101];在分子生物学方面,OA软骨下骨板微孔隙增加,骨与软骨之间作用加强[13,28],OA 软骨下成骨细胞、破骨细胞、骨细胞可释放多种蛋白酶、炎性介质与生长因子,以促进其上层软骨细胞死亡和基质降解[102-103]。
虽然越来越多的动物与临床实验证实通过骨保护类药物可减轻关节疼痛、延缓关节软骨退变,但也有临床研究显示其疗效并不确切[58]。产生差异的主要原因可能在于软骨下骨在OA病程中呈动态转变,软骨下骨异常改变并非总能被抑制或改善,干预效果依赖于治疗始期[64]。
总之,OA软骨下骨在病程中呈动态转变,病程早期主要表现为骨吸收,晚期主要表现为骨形成。越来越多的研究证实,OA软骨下骨异常改变促进了关节疼痛和关节软骨退变发生。相信随着研究的深入,软骨下骨靶向治疗有希望成为新的治疗手段。
[1] Madry H,van Dijk CN,Mueller-Gerbl M.The basic science of the subchondral bone[J].Knee Surg Sports Traumatol Arthrosc,2010,18(4):419-433.
[2] Imhof H,Sulzbacher I,Grampp S,et al.Subchondral bone and cartilage disease:a rediscovered functional unit[J].Invest Radiol,2000,35(10):581-588.
[3] Burr DB,Gallant MA.Bone remodelling in osteoarthritis[J].Nat Rev Rheumatol,2012,8(11):665-673.
[4] Duncan H,Jundt J,Riddle JM,et al.The tibial subchondral plate.A scanning electron microscopic study[J].J Bone Joint Surg Am,1987,69(8):1212-1220.
[5] Castaneda S,Roman-Blas JA,Largo R,et al.Subchondral bone as a key target for osteoarthritis treatment[J].Biochem Pharmacol,2012,83(3):315-323.
[6] Burr DB.Anatomy and physiology of the mineralized tissues:role in the pathogenesis of osteoarthrosis[J].Osteoarthritis Cartilage,2004,12(Suppl A):S20-S30.
[7] Lyons TJ,McClure SF,Stoddart RW,et al.The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces[J].BMC Musculoskelet Disord,2006,7:52.
[8] Benske J,Schunke M,Tillmann B.Subchondral bone formation in arthrosis.Polychrome labeling studies in mice[J].Acta Orthop Scand,1988,59(5):536-541.
[9] Amir G,Pirie CJ,Rashad S,et al. Remodelling of subchondral bone in osteoarthritis:a histomorphometric study[J].J Clin Pathol,1992,45(11):990-992.
[10] Intema F,Sniekers YH,Weinans H,et al.Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis[J].J Bone Miner Res,2010,25(7):1650-1657.
[11] Sniekers YH,Intema F,Lafeber FP,et al.A role for subchondral bone changes in the process of osteoarthritis:a micro-CT study of two canine models [J]. BMC Musculoskelet Disord,2008,9:20.
[12] Botter SM,van Osch GJ,Waarsing JH,et al.Cartilage damage pattern in relation to subchondral plate thickness in a collagenase-induced model of osteoarthritis[J].Osteoarthritis Cartilage,2008,16(4):506-514.
[13] Botter SM,van Osch GJ,Clockaerts S,et al.Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice:an in vivo microfocal computed tomography study[J].Arthritis Rheum,2011,63(9):2690-2699.
[14] Hayami T,Pickarski M,Wesolowski GA,et al.The role of subchondral bone remodeling in osteoarthritis:reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model[J].Arthritis Rheum,2004,50(4):1193-1206.
[15] Hayami T,Pickarski M,Zhuo Y,et al.Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis[J].Bone,2006,38(2):234-243.
[16] Dieppe P,Cushnaghan J,Young P,et al.Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy[J].Ann Rheum Dis,1993,52(8):557-563.
[17] Reichenbach S,Guermazi A,Niu J,et al.Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort[J].Osteoarthritis Cartilage,2008,16(9):1005-1010.
[18] Bettica P,Cline G,Hart DJ,et al.Evidence for increased bone resorption in patients with progressive knee osteoarthritis:longitudinal results from the Chingford study[J].Arthritis Rheum,2002,46(12):3178-3184.
[19] Bolbos RI,Zuo J,Banerjee S,et al.Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T[J].Osteoarthritis Cartilage,2008,16(10):1150-1159.
[20] Bentolila V,Boyce TM,Fyhrie DP,et al.Intracortical remodeling in adult rat long bones after fatigue loading[J].Bone,1998,23(3):275-281.
[21] Verborgt O,Gibson GJ,Schaffler MB.Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo[J].J Bone Miner Res,2000,15(1):60-67.
[22] Pesesse L,Sanchez C,Henrotin Y.Osteochondral plate angiogenesis:a new treatment target in osteoarthritis[J].Joint Bone Spine,2011,78(2):144-149.
[23] Tat SK,Pelletier JP,Lajeunesse D,et al.Differential modulation of RANKL isoforms by human osteoarthritic subchondral bone osteoblasts:influence of osteotropic factors[J].Bone,2008,43(2):284-291.
[24] Massicotte F,Lajeunesse D,Benderdour M,et al.Can altered production of interleukin-1beta, interleukin-6,transforming growth factor-beta and prostaglandin E(2)by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients [J]. Osteoarthritis Cartilage,2002,10(6):491-500.
[25] Mansell JP,Collins C,Bailey AJ.Bone,not cartilage,should be the major focus in osteoarthritis[J].Nat Clin Pract Rheumatol,2007,3(6):306-307.
[26] Pan J,Zhou X,Li W,et al.In situ measurement of transport between subchondral bone and articular cartilage[J].J Orthop Res,2009,27(10):1347-1352.
[27] Hwang J,Bae WC,Shieu W,et al.Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis[J].Arthritis Rheum,2008,58(12):3831-3842.
[28] Pan J,Wang B,Li W,et al.Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints[J].Bone,2012,51(2):212-217.
[29] Karsdal MA, Leeming DJ, Dam EB,et al.Should subchondral bone turnover be targeted when treating osteoarthritis?[J].Osteoarthritis Cartilage,2008,16(6):638-646.
[30] Kumarasinghe DD,Perilli E,Tsangari H,et al.Critical molecular regulators,histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis[J].Osteoarthritis Cartilage,2010,18(10):1337-1344.
[31] Fazzalari NL, Parkinson IH. Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip[J].J Bone Miner Res,1997,12(4):632-640.
[32] Li B,Aspden RM.Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis[J].J Bone Miner Res,1997,12(4):641-651.
[33] Coats AM,Zioupos P,Aspden RM.Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis[J].Calcif Tissue Int,2003,73(1):66-71.
[34] Bailey AJ,Mansell JP,Sims TJ,et al.Biochemical and mechanical properties of subchondral bone in osteoarthritis[J].Biorheology,2004,41(3-4):349-358.
[35] Cox LG,van Donkelaar CC,van Rietbergen B,et al.Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis[J].Bone,2012,50(5):1152-1161.
[36] Hopwood B,Tsykin A,Findlay DM,et al.Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling[J].Arthritis Res Ther,2007,9(5):R100.
[37] Chan TF,Couchourel D,Abed E,et al.Elevated Dickkopf-2 levels contribute to the abnormal phenotype of human osteoarthritic osteoblasts[J].J Bone Miner Res,2011,26(7):1399-1410.
[38] Zhen G, Cao X. Targeting TGF-beta signaling in subchondral bone and articular cartilage homeostasis[J].Trends Pharmacol Sci,2014,35(5):227-236.
[39] Li X,Liu P,Liu W,et al.Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation[J].Nat Genet,2005,37(9):945-952.
[40] Couchourel D,Aubry I,Delalandre A,et al.Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type Ⅰ collagen production[J].Arthritis Rheum,2009,60(5):1438-1450.
[41] Zanetti M,Bruder E,Romero J,et al.Bone marrow edema pattern in osteoarthritic knees:correlation between MR imaging and histologic findings[J].Radiology,2000,215(3):835-840.
[42] Kornaat PR,Kloppenburg M,Sharma R,et al.Bone marrow edema-like lesions change in volume in the majority of patients with osteoarthritis; associations with clinical features.Eur Radiol,2007,17(12):3073-3078.
[43] Foong YC,Khan HI,Blizzard L,et al.The clinical significance,natural history and predictors of bone marrow lesion change over eight years[J].Arthritis Res Ther,2014,16(4):R149.
[44] Hunter DJ,Gerstenfeld L,Bishop G,et al.Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized[J].Arthritis Res Ther,2009,11(1):R11.
[45] Lo GH,Hunter DJ,Zhang Y,et al.Bone marrow lesions in the knee are associated with increased local bone density[J].Arthritis Rheum,2005,52(9):2814-2821.
[46] Lowitz T,Museyko O,Bousson V,et al.Bone marrow lesions identified by MRI in knee osteoarthritis are associated with locally increased bone mineral density measured by QCT[J].Osteoarthritis Cartilage,2013,21(7):957-964.
[47] Neogi T,Felson D,Niu J,et al.Association between radiographic features of knee osteoarthritis and pain:results from two cohort studies[J].BMJ,2009,339:b2844.
[48] Reichenbach S,Dieppe PA,Nüesch E,et al.Association of bone attrition with knee pain,stiffness and disability:a cross-sectional study[J].Ann Rheum Dis,2011,70(2):293-298.
[49] Hernandez-Molina G,Neogi T,Hunter DJ,et al.The association of bone attrition with knee pain and other MRI features of osteoarthritis[J].Ann Rheum Dis,2008,67(1):43-47.
[50] Moisio K, Eckstein F, Chmiel JS, et al. Denuded subchondral bone and knee pain in persons with knee osteoarthritis[J].Arthritis Rheum,2009,60(12):3703-3710.
[51] Yusuf E, Kortekaas MC, Watt I,et al. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis?A systematic review[J].Ann Rheum Dis,2011,70(1):60-67.
[52] Zhang Y,Nevitt M,Niu J,et al.Fluctuation of knee pain and changes in bone marrow lesions,effusions,and synovitis on magnetic resonance imaging[J].Arthritis Rheum,2011,63(3):691-699.
[53] Aso K,Ikeuchi M,Izumi M,et al.Nociceptive phenotype of dorsal root ganglia neurons innervating the subchondral bone in rat knee joints[J].Eur J Pain,2014,18(2):174-181.
[54] Walsh D,Bonnet C,Turner E,et al.Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis[J].Osteoarthritis Cartilage,2007,15(7):743-751.
[55] Walsh DA,McWilliams DF,Turley MJ,et al.Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis[J].Rheumatology(Oxford),2010,49(10):1852-1861.
[56] Suri S,Gill SE,de Camin SM,et al.Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis[J].Ann Rheum Dis,2007,66(11):1423-1428.
[57] Ogino S,Sasho T,Nakagawa K,et al.Detection of pain-related molecules in the subchondral bone of osteoarthritic knees[J].Clin Rheumatol,2009,28(12):1395-1402.
[58] Saag KG.Bisphosphonates for osteoarthritis prevention:“Holy Grail”or not?[J].Ann Rheum Dis,2008,67(10):1358-1359.
[59] Carbone LD,Nevitt MC,Wildy K,et al.The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis[J].Arthritis Rheum,2004,50(11):3516-3525.
[60] Reginster JY.Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis:results of a double-blind randomised,placebo-controlled trial[J].Ann Rheum Dis,2014,73(2):e8.
[61] Pelletier JP,Roubille C,Raynauld JP,et al.Disease-modifying effect of strontium ranelate in a subset of patients from the Phase Ⅲ knee osteoarthritis study SEKOIA using quantitative MRI:reduction in bone marrow lesions protects against cartilage loss[J].Ann Rheum Dis,2015,74(2):422-429.
[62] Sagar DR,Ashraf S,Xu L,et al.Osteoprotegerin reduces the development of pain behaviour and joint pathology in a model of osteoarthritis[J].Ann Rheum Dis,2014,73(8):1558-1565.
[63] Strassle BW,Mark L,Leventhal L,et al.Inhibition of osteoclasts prevents cartilage loss and pain in a rat model of degenerative joint disease[J].Osteoarthritis Cartilage,2010,18(10):1319-1328.
[64] Yu DG,Yu B,Mao YQ,et al.Efficacy of zoledronic acid in treatment of teoarthritis is dependent on the disease progression stage in rat medial meniscal tear model[J].Acta Pharmacol Sin,2012,33(7):924-934.
[65] Yu D,Liu F,Liu M,et al.The inhibition of subchondral bone lesions significantly reversed the weight-bearing deficit and the overexpression of CGRP in DRG neurons,GFAP and Iba-1in the spinal dorsal horn in the monosodium iodoacetate induced model of osteoarthritis pain[J].PLoS One,2013,8(10):e77824.
[66] Moreau M,Rialland P,Pelletier JP,et al.Tiludronate treatment improves structural changes and symptoms of osteoarthritis in the canine anterior cruciate ligament model[J].Arthritis Res Ther,2011,13(3):R98.
[67] Hunter DJ,McDougall JJ,Keefe FJ.The symptoms of osteoarthritis and the genesis of pain[J].Med Clin North Am,2009,93(1):83-100.
[68] Hunter DJ,McDougall JJ,Keefe FJ.The symptoms of osteoarthritis and the genesis of pain[J].Rheum Dis Clin North Am,2008,34(3):623-643.
[69] Mach D,Rogers S,Sabino M,et al.Origins of skeletal pain:sensory and sympathetic innervation of the mouse femur[J].Neuroscience,2002,113(1):155-166.
[70] Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis[J].Nat Rev Rheumatol,2012,8(7):390-398.
[71] Yoneda T,Hata K,Nakanishi M,et al.Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone pain[J].Bone,2011,48(1):100-105.
[72] Hui C,Salmon LJ,Kok A,et al.Long-term survival of high tibial osteotomy for medial compartment osteoarthritis of the knee[J].Am J Sports Med,2011,39(1):64-70.
[73] Ethgen O,Bruyere O,Richy F,et al.Health-related quality of life in total hip and total knee arthroplasty.A qualitative and systematic review of the literature[J].J Bone Joint Surg Am,2004,86(5):963-974.
[74] Calvo E,Palacios I,Delgado E,et al.High-resolution MRI detects cartilage swelling at the early stages of experimental osteoarthritis[J].Osteoarthritis Cartilage,2001,9(5):463-472.
[75] Song Y,Greve JM,Carter DR,et al.Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads[J].Osteoarthritis Cartilage,2008,16(12):1545-1554.
[76] Carlson CS,Loeser RF,Jayo MJ,et al.Osteoarthritis in cynomolgus macaques:aprimate model of naturally occurring disease[J].J Orthop Res,1994,12(3):331-339.
[77] Carlson CS,Loeser RF,Purser CB,et al.Osteoarthritis in cynomolgus macaques.Ⅲ:Effects of age,gender,and subchondral bone thickness on the severity of disease[J].J Bone Miner Res,1996,11(9):1209-1217.
[78] Huebner JL,Hanes MA,Beekman B,et al.A comparative analysis of bone and cartilage metabolism in two strains of guinea-pig with varying degrees of naturally occurring osteoarthritis[J].Osteoarthritis Cartilage,2002,10(10):758-767.
[79] Raynauld J,Martel-Pelletier J,Berthiaume M,et al.Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients:correlation with clinical symptoms and radiographic changes[J].Arthritis Res Ther,2006,8(1):R21.
[80] Roemer FW,Guermazi A,Javaid MK,et al.Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss:the MOST Study. A longitudinal multicentre study of knee osteoarthritis[J].Ann Rheum Dis,2009,68(9):1461-1465.
[81] Wluka A,Wang Y,Davies-Tuck M,et al.Bone marrow lesions predict progression of cartilage defects and loss of cartilage volume in healthy middle-aged adults without knee pain over 2 yrs[J].Rheumatology(Oxford),2008,47(9):1392-1396.
[82] Wildi LM, Raynauld JP, Martel-Pelletier J, et al.Relationship between bone marrow lesions,cartilage loss and pain in knee osteoarthritis:results from a randomised controlled clinical trial using MRI[J].Ann Rheum Dis,2010,69(12):2118-2124.
[83] Raynauld J, Martel-Pelletier J,Berthiaume M,et al.Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period[J].Ann Rheum Dis,2008,67(5):683-688.
[84] Davies-Tuck ML,Wluka AE,Forbes A,et al.Development of bone mar row lesions is associated with adverse effects on knee cartilage while resolution is associated with improvement-apotential target for prevention of knee osteoarthritis:a longitudinal study[J].Arthritis Res Ther,2010,12(1):R10.
[85] Neogi T,Felson D,Niu J,et al.Cartilage loss occurs in the same subregions as subchondral bone attrition:a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study[J].Arthritis Rheum,2009,61(11):1539-1544.
[86] Bellido M,Lugo L,Roman-Blas JA,et al.Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis[J].Arthritis Res Ther,2010,12(4):R152.
[87] Wu DD,Burr DB,Boyd RD,et al.Bone and cartilage changes following experimental varus or valgus tibial angulation[J].J Orthop Res,1990,8(4):572-585.
[88] Blair-Levy JM,Watts CE,Fiorentino NM,et al.A typeⅠcollagen defect leads to rapidly progressive osteoarthritis in a mouse model[J].Arthritis Rheum,2008,58(4):1096-1106.
[89] Kadri A,Funck-Brentano T,Lin H,et al.Inhibition of bone resorption blunts osteoarthritis in mice with high bone remodelling[J].Ann Rheum Dis,2010,69(8):1533-1538.
[90] Nielsen RH,Bay-Jensen AC,Byrjalsen I,et al.Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover[J].Osteoarthritis Cartilage,2011,19(4):466-473.
[91] Bellido M,Lugo L,Roman-Blas JA,et al.Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis[J].Osteoarthritis Cartilage,2011,19(10):1228-1236.
[92] Calvo E,Castaneda S,Largo R,et al.Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits[J].Osteoarthritis Cartilage,2007,15(1):69-77.
[93] Zhen G, Wen C,Jia X,et al.Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J].Nat Med,2013,19(6):704-712.
[94] Valverde-Franco G,Pelletier JP,Fahmi H,et al.In vivo bone-specific EphB4 overexpression in mice protects both subchondral bone and cartilage during osteoarthritis[J].Arthritis Rheum,2012,64(11):3614-3625.
[95] Yu DG,Ding HF,Mao YQ,et al.Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model[J].Acta Pharmacol Sin,2013,34(3):393-402.
[96] Karsdal MA,Tanko LB,Riis BJ,et al.Calcitonin is involved in cartilage homeostasis:is calcitonin a treatment for OA?[J].Osteoarthritis Cartilage,2006,14(7):617-624.
[97] Bingham CO,Buckland-Wright JC,Garnero P,et al.Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study[J].Arthritis Rheum,2006,54(11):3494-3507.
[98] Karsdal MA,Byrjalsen I,Henriksen K,et al.The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritic patients:a14-day randomized study[J].Osteoarthritis Cartilage,2010,18(2):150-159.
[99] Reginster JY,Badurski J,Bellamy N,et al.Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis:results of a double-blind,randomised placebo-controlled trial[J].Ann Rheum Dis,2013,72(2):179-186.
[100]Bagger YZ,Tanko LB,Alexandersen P,et al.Oral salmon calcitonin induced suppression of urinary collagen type Ⅱdegradation in postmenopausal women:a new potential treatment of osteoarthritis[J].Bone,2005,37(3):425-430.
[101]Radin EL,Rose RM.Role of subchondral bone in the initiation and progression of cartilage damage[J].Clin Orthop Relat Res,1986,213:34-40.
[102]Lajeunesse D,Reboul P.Subchondral bone in osteoarthritis:a biologic link with articular cartilage leading to abnormal remodeling[J].Curr Opin Rheumatol,2003,15(5):628-633.
[103]Prasadam I,van Gennip S,Friis T,et al.ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts[J].Arthritis Rheum,2010,62(5):1349-1360.