西昆仑西北缘大洋斜长花岗岩带的岩石地球化学特征、成因及其构造环境*

2015-03-15 12:19康磊校培喜高晓峰王超杨再朝奚仁刚
岩石学报 2015年9期
关键词:斜长塔克锆石

康磊 校培喜 高晓峰 王超 杨再朝 奚仁刚

KANG Lei,XIAO PeiXi,GAO XiaoFeng,WANG Chao,YANG ZaiChao and XI RenGang

国土资源部岩浆作用成矿与找矿重点实验室,中国地质调查局西安地质调查中心,西安 710054

Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits,MLR,Xi’an Center of Geological Survey,CGS,Xi’an 710054,China

2014-01-02 收稿,2015-01-01 改回.

1 引言

大洋斜长花岗岩通常指发育于蛇绿混杂岩中的长英质岩石(闪长岩、英云闪长岩、奥长花岗岩)(Coleman and Peterman,1975;Thayer,1977;Coleman and Donato,1979;Bébien et al.,1997;Koepke et al.,2007),它以浅色矿物斜长石和石英为主要成分,含有少量铁镁质矿物,几乎缺乏钾长石,并具高的SiO2和中等Al2O3含量,低的K2O 和Rb 含量(Coleman and Donato,1979;Amri et al.,1996),是研究洋壳和蛇绿岩形成、演化(Bébien et al.,1997)的重要对象(Borsi et al.,1996;李武显和李献华,2003;樊帅权等,2010;Grimes et al.,2013)。

目前,对大洋斜长花岗岩的成因仍备受争议(Grimes et al.,2013)。早期大多学者认为这些大洋斜长花岗岩是在低压环境下玄武岩浆结晶分异的产物(Arth et al.,1978;Hunter et al.,1978;Aldiss,1981;Flagler and Spray,1991),最为典型的实例为Oman (Lippard et al.,1986;Pallister and Hopson,1981;Pallister and Knight,1981)和Troodos(Coleman and Peterman,1975)蛇绿岩中斜长花岗岩。但是,大洋斜长花岗岩在现代和古老的地质时期中形成于多样的构造环境(Grimes et al.,2013),其成因不只是简单的洋中脊快速冷凝的结果(Rollinson,2009)。随着研究的深入,人们发现大洋斜长花岗岩可形成于洋壳的形成和演化的不同阶段(李武显和李献华,2003),蛇绿岩中的辉长岩在所有构造层位中与斜长花岗岩均具平衡性(共生性)(Amri et al.,1996),是热水和岩浆相互强烈作用而加强了含水部分熔融的缘故(France et al.,2010;Gillis and Coogan,2002;Stakes and Taylor,1992),因此许多学者提出大洋斜长花岗岩是铁镁质洋壳部分熔融的产物的观点(Malpas,1979;Amri et al.,1996;Gillis and Coogan,2002)。甚至,最近Rollinson(2009)和Grimes et al.(2013)对典型的Oman 大洋斜长花岗岩的成因提出了挑战,认为是辉长岩和方辉橄榄岩先后部分熔融的产物,而非洋中脊玄武岩浆结晶分异的结果。

大洋斜长花岗岩一般作为蛇绿岩的组成部分,其发育规模往往较小,近些年学者发现大洋斜长花岗岩亦可以规模较大的岩株出现(陈其龙,2011),由于目前世界上不与蛇绿岩共生或有成因关系的大洋斜长花岗岩的实例较少(Kaur and Mehta,2005),关于不发育蛇绿岩的大规模大洋斜长花岗岩的报道更是少见。西昆仑造山带西北缘不发育蛇绿构造混杂岩(河南地质调查院,2005a①河南地质调查院. 2005a. 1∶25 万艾提开尔丁萨依幅、英吉沙县幅区域地质调查报告,b②河南地质调查院. 2005b. 1∶25 万库尔干幅区域地质调查报告;张传林等,2006;李广伟等,2009;高晓峰等,2013),但出露着大规模由英云闪长岩、石英闪长岩和奥长花岗岩组成的斜长花岗岩带,前人对其成因和构造环境颇受争议:姜耀辉和周珣若(1999)和Jiang et al.(2008)认为其属于“上俯冲带型”洋脊花岗岩,是洋内弧俯冲环境下拉斑质玄武岩结晶分异的产物;而张传林等(2006)则认为该岩体是天山造山带大陆裂谷作用在西昆仑地区的远程效应下“年轻的”玄武质地壳部分熔融形成,李广伟等(2009)与其观点基本一致,认为其与天山石炭纪裂谷环境下地幔柱有关。本文试图通过岩石学、岩石地球化学、锆石U-Pb 定年和Hf 同位素研究,证实该花岗岩带为大规模大洋斜长花岗岩,并探讨其岩石成因和构造环境,无疑具有重要意义。

2 地质背景及岩体特征

西昆仑造山带位于青藏高原西北缘和中央造山带的最西段,处于古亚洲构造域和特提斯构造域结合部位(任纪舜,1999;姜耀辉和周珣若,1999;姜春发等,2000)(图1a),从北到南主要可以划分为北昆仑地体、南昆仑地体和甜水海地块,相互以库地-其曼于特蛇绿构造混杂带和麻扎-康西瓦蛇绿构造混杂带为界(潘裕生,1990;Mattern and Schneider,2000;袁超等,2003;Xiao et al.,2002;方爱民等,2003;许志琴等,2011)(图1b)。

西昆仑造山带显生宙以来总体上经历了原特提斯和古特提斯两个演化阶段(Mattern and Schneider,2000;袁超等,2003),与之伴随发育有大量与俯冲消减、拼合碰撞和伸展拉张相关的火山岩和侵入岩(姜耀辉等,2000;Yuan et al.,2002),为揭示西昆仑造山带构造演化历史提供了重要的地质信息。随着地质调查和区域对比的深入,近几年来发现在西昆仑造山带北缘地区普遍发育有大规模与古特提斯演化关系密切的石炭-二叠纪岩浆岩带,位于该带的西部地区发育有以大面积玄武岩为主的石炭纪乌鲁阿特组(C1w)(河南地质调查院,2005a)(图1c),特别是侵入其中的大量英云闪长岩、石英闪长岩、奥长花岗岩等具有大洋斜长花岗岩岩石特征的中酸性岩体,主要包括:奥依塔克岩体、波斯坦铁列克岩体、萨罗依岩体、维齐得歪岩体、托喀依东岩体和阿克沙热岩体等,延伸达100 余千米,出露规模达297km2。

图1 西昆仑西北缘斜长花岗岩带地质简图(据李荣社等,2008 修编)Fig.1 Sketch geological map of oceanic plagiogranites belt in the northwestern margin of western Kunlun(modified after Li et al.,2008)

本文以该斜长花岗岩带中奥依塔克岩体(奥长花岗岩)和萨罗依岩体(英云闪长岩)为研究对象,分别位于奥依塔克镇西侧和波斯坦铁列克村西侧,呈近椭圆状和长条状,与区域构造延伸方向一致(图1c),出露面积分别约42km2和13km2。岩体发育片理,并与围岩早石炭纪乌鲁阿特组玄武岩片理产状一致,表明岩体与其遭受了相同的构造作用(姜耀辉和周珣若,1999)。前人认为岩体与围岩乌鲁阿特组为侵入接触关系(张传林等,2006;Jiang et al.,2008;李广伟等,2009),但本次工作发现两者接触处局部明显呈渐变过渡接触,斜长花岗岩中还存在镁铁质残留体(图2a),甚至在玄武岩中还发育花岗质的浅色熔融条带(图2b),可见结构及成分的变化均显示斜长花岗岩具围岩玄武岩部分熔融的特征。

奥依塔克岩体以灰白色奥长花岗岩和少量浅灰色英云闪长岩为主,两者为渐变过渡接触关系,块状构造,微片麻状构造。其中奥长花岗岩为中粒不等粒结构(图2c),主要由斜长石(53% ~60%)、石英(22% ~32%)、黑云母(4% ~8%)组成,矿物自形程度较差,多呈半自形-他形状,斜长石发生一定的绢云母化和粘土化。此外,斜长石中发育蠕虫状石英(图2c),指示石英与斜长石具有共同结晶的特征,这与典型大洋斜长花岗岩的矿物特征一致(Amri et al.,1996)。副矿物有磷灰石、锆石和少量磁铁矿等。

萨罗依岩体以浅灰色英云闪长岩为主,块状结构,略微片麻状构造,中粒花岗结构(图2d),岩石主要由斜长石(55% ~64%)、石英(17% ~30%)、黑云母(11% ~15%)组成,斜长石呈自形板条状,环带发育,沿环带绢云母和黝帘石化强烈,石英呈他形粒状、填隙状。副矿物有磷灰石、锆石及少量榍石等。

3 样品采集及分析方法

本次工作在奥依塔克岩体中采集奥长花岗岩样品6 件(10X-01),在萨罗依岩体中采集英云闪长岩样品5 件(10X-04),具体采样位置见图1c。

主量、微量元素和稀土元素的测试在中国地质调查局西安地质矿产研究所实验测试中心完成。主量元素含量用荧光光谱仪(XRF)测试,其中FeO 含量通过湿化学方法测定,分析精度和准确度优于1%;微量元素和稀土元素含量采用电感耦合等离子质谱仪(ICP-MS)完成,分析精度和准确度一般也优于5%。

锆石阴极发光图像、激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)原位U-Pb 定年和Lu-Hf 同位素均在西北大学大陆动力学国家重点实验室完成。锆石的CL 图象分析在装有英国Gatan 公司生产的Mono CL3+阴极发光装置系统的中子显微扫描中镜上完成。锆石的微量元素分析和U-Pb 原位定年分析所采用的ICP-MS 为美国Agilent 公司生产Agilent7500a,激光剥蚀系统为德国MicroLas 公司生产GeoLas200M。锆石原位Lu-Hf 同位素测定采用Nu Plasma HR(Wrexham,UK)多接收电感藕合等离子体质谱仪完成(MC-ICP-MS)。样品的同位素比值及元素含量计算采用GLITTER(ver4.0,Macanarie University)程序,年龄计算及谐和图的绘制用Isoplot(ver2.49)完成。详细分析步骤和数据处理方法详见Yuan et al.(2004)。

图2 奥依塔克岩体和萨罗依岩体的岩相学特征(a)斜长花岗岩与玄武岩渐变过渡接触关系;(b)玄武岩中发育花岗质浅色熔融条带;(c)奥依塔克岩体奥长花岗岩的显微组构及斜长石与石英的蠕虫结构(正交偏光);(d)萨罗依岩体英云闪长的显微组构(正交偏光). 矿物代号:Q-石英;Pl-斜长石;Bi-黑云母Fig.2 The petrographical features of Oytag pluton and Saluoyi pluton(a)gradual transition contact relation between plagiogranite and basalt;(b)granitic molten veins in basalt;(c)microcosmic characters of trondhjemite and the structure of intergrowth between quartz and plagioclase in Oytag pluton;(d)microcosmic characters of tonalite in Saluoyi pluton.Mineral abbreviations:Q-quartz;Pl-plagioclase;Bi-biotite

4 分析结果

4.1 锆石LA-ICP-MS U-Pb 定年

奥依塔克岩体奥长花岗岩样品(10X01)和萨罗依岩体英云闪长岩样品(10X04)中锆石均呈较自形的长-短柱状,晶体长81 ~190μm,宽62 ~174μm,柱状长宽比为1.2∶1 ~5∶1。阴极发光图像中(图3),除英云闪长岩中部分锆石发育弱的生长环带,大多锆石的生长环带不明显,呈面状内部结构,具有幔源岩浆成因锆石的特征(吴元保和郑永飞,2004)。从各锆石微区测得的U-Pb 同位素分析结果(表1)可见,各样品中锆石的Th 和U 变化幅度均较大(Th 含量变化分别为25.02 ×10-6~174.8 ×10-6、18.72 ×10-6~410.7 ×10-6,U含量变化为91.38 × 10-6~315.8 × 10-6、59.88 × 10-6~409.3 ×10-6),且具有较高的Th/U 比值(0.28 ~0.55 和0.30 ~0.76,大多>0.4),这些特征与典型岩浆锆石特征一致(Claesson et al.,2000;吴元保和郑永飞,2004)。

奥依塔克岩体样品(10X01)成功测定19 颗锆石,所有锆石的206Pb/238U 年龄集中在318 ~329Ma 之间,均分布在谐和曲线附近,构成年龄集中区,样品的加权平均206Pb/238U 年龄为322.8 ±2.2Ma,MSWD =0.24(95%置信度)(图4a)。萨罗依岩体样品(10X04)成功测定22 颗锆石,206Pb/238U 年龄均集中在318 ~321Ma 之间,均分布在谐和曲线附近,样品的加权平均206Pb/238U 年龄为319.0 ± 1.7Ma,MSWD = 0.06(95%置信度)(图4b)。综上所述,奥依塔克岩体和萨罗依岩体形成年龄分别为322.8 ±2.2Ma(MSWD =0.24)、319.0±1.7Ma(MSWD=0.06),很明显两者在误差范围内一致,均属于晚石炭世早期,应为同一岩浆事件的产物。

4.2 岩石地球化学特征

奥依塔克岩体和萨罗依岩体的主量和微量元素分析结果见表2。主量元素显示,奥依塔克岩体和萨罗依岩体具有相似的岩石化学特征,岩石偏酸性(SiO2= 68.24% ~75.91%,平均值为73.00%),均具低的Al2O3(11.88% ~14.58%,平均值为13.05%)和P2O5含量(0.03% ~0.13%,平均值为0.07%),高的CaO(2.10% ~4.20%,平均值为2.96%)和MgO(0.90% ~1.67%,平均值为1.35%),强烈的富钠贫钾(Na2O = 4.38% ~6.02%,K2O = 0.17% ~0.83%,Na2O/K2O=5.68 ~32.89)。奥长花岗岩和英云闪长岩的σ 为0.73 ~1.32,属于钙质系列,A/CNK 均小于或等于1.00,属于准铝质系列。在SiO2-(K2O+Na2O)图解中(图5a),奥依塔克岩体均投在花岗岩范围,萨罗依岩体基本落入花岗闪长岩,在标准矿物An-Ab-Or 分类图解中(图5b),前者位于奥长花岗岩区域,而后者基本落于英云闪长岩范围,这与岩相学特征一致。

Th/U 0.36 0.30 0.40 0.39 0.28 0.32 0.29 0.28 0.40 0.40 0.35 0.37 0.41 0.55 0.46 0.47 0.38 -6)U( ×10 127.7 129.7 155.1 126.4 120.9 234.1 157.2 117.9 143.7 128.0 134.3 106.8 185.5 315.8 159.7 173.6 138.7量T h含4 6.57 39.39 61.95 49.19 33.31 74.53 45.65 32.42 57.89 51.51 47.26 39.28 75.35 174.8 73.03 81.06 52.20素位同Pb 34.22 34.93 39.46 34.90 31.80 58.08 40.16 29.57 36.65 33.80 35.64 29.05 47.49 78.86 41.10 43.83 36.10 232Th 1σ 12 9 9 1 1 12 10 10 13 9 10 11 11 8 7 9 8 9年208Pb/369龄395 375 395 371 371 381 362 356 362 385 372 373 352 361 351 359 5 U 5 1σ 5 5 238 5 5 5 5 5 5 5 5 4 4 5 5 5)(Ma年206Pb/龄3 25龄329 321 322 324 321 323 321 321 322 322 323 323 318 323 323 324年素 1σ 235位1 0 U 11 10 12 11 9 9 12 10 11 10 12 9 9 1 0 10 10同207Pb/龄年331 333 342 334 330 310 320 326 328 314 323 323 328 314 320 325 331 206 1σ 53 Pb 57 65 58 53 51 65 55 65 58 68 47 52 58 55 51 51果结2 07Pb/年龄371 358 487 415 372 222 301 364 382 257 330 321 367 285 294 339 379析分素位T h 1σ U-Pb 同232 208Pb/0.00045 0.00057 比值石0.0184 0.01976 0.00059 0.01872 0.00047 0.01975 0.00058 0.01854 0.00058 0.01851 0.00048 0.01903 0.00051 0.01807 0.00064 0.01777 0.00046 0.01808 0.00052 0.01923 0.00053 0.0186 0.01863 0.00042 0.01757 0.00037 0.01801 0.00045 0.01754 0.00042 0.01792 0.00046 (10X04)LA-ICP-MS 锆U 1σ 238 0.00075 206Pb/0.00078 0.00076 0.00081 0.00078 0.00074 0.00074 0.0008 0.00075 0.00078 0.00076 0.00081 0.00073 0.00073 0.00076 0.00075 0.00074 比值比0.05169 值0.05237 0.05111 0.05126 0.0515 0.05111 0.0514 0.0510 0.05101 0.05114 0.0512 0.05134 0.05138 0.05063 0.05141 0.05137 0.0516位素体同U 1 σ岩2 35 0.01319 0.01442 0.0144 0.01625 0.01461 0.01235 0.0125 0.0157 0.01391 0.01468 0.01397 0.01598 0.01233 0.01244 0.01384 0.01352 0.01312 依罗萨2 07Pb/值(10X01)和比0.38488 0.38769 0.40088 0.38926 0.38355 0.35644 0.37105 0.37847 0.38172 0.36212 0.37438 0.37387 0.38182 0.36295 0.37004 0.3772 0.38561 207Pb/0.00207 Pb 206 0.00227 1σ 0.00221 0.00227 0.00196 0.00198 0.00243 0.00219 0.00227 0.00219 0.00245 0.00197 0.00199 0.00215 0.00212 0.00207 岩体值克塔比0.0025 0.05401 0.0537 0.05689 0.05508 0.05402 0.05058 0.05236 0.05382 0.05427 0.05136 0.05303 0.05282 0.0539 0.05199 0.0522 0.05325 0.0542依LA-ICP-MS Zircon U-Pb isotopicanalysisofOytagpluton 10X01 and Saluoyipluton 10X04奥号1 点表T able1 测10X0101 10X0102 10X0103 10X0104 10X0105 10X0106 10X0107 10X0108 10X0109 10X0110 10X0111 10X0112 10X0113 10X0114 10X0115 10X0116 10X0117 0.27 91.38 24.27 25.02 14 368 5 325 322 12 302 0.01837 0.00069 71 0.05163 0.00082 0.01633 0.37283 0.00248 0.05237 10X0118 0.41 0.48 0.30 0.40 0.53 0.49 0.38 0.31 0.51 0.50 0.70 0.68 0.52 0.44 0.47 0.38 0.34 0.76 0.65 0.58 0.63 0.47 0.35 163.4 94.41 90.82 68.72 71.11 124.7 92.47 59.88 377.5 129.0 582.8 159.5 119.0 139.8 107.1 91.35 86.49 409.3 106.6 76.12 99.53 113.1 62.52 67.66 45.00 27.68 27.57 37.85 61.73 35.14 18.72 190.9 65.15 410.7 108.3 61.94 61.44 49.82 34.43 29.24 310.8 68.8 44.22 62.46 53.38 21.94 41.62 27.54 24.50 18.03 19.32 32.05 24.33 16.71 95.14 32.23 152.2 40.16 29.88 34.61 27.13 23.39 22.76 102.0 27.64 20.83 25.97 29.53 17.12 10 10 11 12 9 5 8 1 3 4 6 3 5 6 9 6 8 8 4 6 7 6 9 1 0 386 334 333 331 341 317 338 360 346 315 341 342 306 342 320 334 333 337 322 357 327 383 35 1 5 5 5 5 5 4 4 5 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 323 319 321 319 318 318 318 319 320 319 319 319 318 321 319 318 318 318 321 319 319 319 318 10 12 12 14 12 7 9 1 3 5 9 4 8 9 1 0 8 8 8 7 8 9 9 9 1 0 328 321 315 327 328 325 334 331 324 335 331 333 325 321 324 321 319 321 343 331 338 351 342 54 75 73 84 71 38 49 74 23 45 16 40 49 61 42 46 44 33 40 49 46 47 51 364 339 275 388 401 371 445 411 356 446 412 431 378 328 361 339 322 345 496 418 469 569 511 0.01926 0.00048 0.01664 0.00049 0.00056 0.00058 0.00026 0.00034 0.00049 0.0166 0.0165 0.01702 0.00044 0.0158 0.01685 0.00039 0.01799 0.00064 0.01727 0.0002 0.01572 0.00032 0.01699 0.00014 0.01705 0.00027 0.01523 0.00029 0.01708 0.00045 0.01597 0.0003 0.01665 0.00038 0.01662 0.00039 0.01681 0.00022 0.01604 0.00029 0.0178 0.01631 0.00032 0.01911 0.00044 0.0175 0.00075 0.00076 0.00075 0.00081 0.00075 0.0006 0.00065 0.00076 0.00055 0.00064 0.00053 0.00061 0.00064 0.00069 0.00061 0.00062 0.00061 0.00058 0.00062 0.00064 0.00063 0.00065 0.00066 0.0514 0.05072 0.05098 0.0507 0.05055 0.05062 0.05058 0.05078 0.05085 0.05079 0.05077 0.05072 0.05051 0.05099 0.0507 0.05062 0.05063 0.05054 0.05101 0.05066 0.05068 0.05068 0.05056 0.01359 0.01675 0.01585 0.01917 0.01665 0.00986 0.01263 0.01729 0.00701 0.01191 0.00559 0.01067 0.01209 0.01412 0.01066 0.01115 0.01071 0.00885 0.01122 0.01231 0.01213 0.0131 0.01355 0.38151 0.37241 0.36391 0.38043 0.3815 0.3769 0.38924 0.38488 0.37609 0.391 0.38496 0.38794 0.37723 0.37242 0.37586 0.37168 0.3689 0.37191 0.40166 0.38517 0.39431 0.41253 0.40089 0.00213 0.0026 0.00245 0.00294 0.0026 0.0017 0.00207 0.00268 0.00136 0.00198 0.00123 0.00182 0.00199 0.00224 0.00181 0.00187 0.00181 0.00159 0.0019 0.00203 0.00202 0.00217 0.00222 0.05383 0.05325 0.05177 0.05442 0.05473 0.054 0.05581 0.05497 0.05364 0.05583 0.05499 0.05547 0.05417 0.05297 0.05376 0.05325 0.05285 0.05337 0.05712 0.05514 0.05643 0.05904 0.0575 10X0119 10X0401 10X0402 10X0403 10X0404 10X0405 10X0406 10X0407 10X0408 10X0409 10X0410 10X0411 10X0412 10X0413 10X0414 10X0415 10X0416 10X0417 10X0418 10X0419 10X0420 10X0421 10X0422

图3 奥依塔克岩体10X01(a)和萨罗依岩体10X04(b)中典型锆石CL 图像及其年龄值和εHf(t)值Fig.3 Representative zircon CL images,ages and εHf(t)values of Oytag pluton 10X01 (a)and Saluoyi pluton 10X04 (b)

图4 奥依塔克岩体10X01(a)和萨罗依岩体10X04(b)中LA-ICP-MS 锆石U-Pb 年龄谐和图Fig.4 LA-ICP-MS zircon U-Pb concordia diagram of Oytag pluton 10X01 (a)and Saluoyi pluton 10X04 (b)

图5 SiO2-(K2O+Na2O)图解(a)和An-Ab-Or 分类图解(b)Fig.5 SiO2-(K2O+Na2O)diagram (a)and An-Ab-Or diagram (b)

图6 奥依塔克岩体和萨罗依岩体的球粒陨石标准化稀土元素模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989)Fig.6 Chondrite-normalized REE-pattern (a)and primitive-mantle normalized spider diagram (b)of Oytag pluton and Saluoyi pluton (normalization values after Sun and McDonough,1989)

图7 奥依塔克岩体和萨罗依岩体的大洋中脊斜长花岗岩标准化蛛网图(Troodos 洋中脊花岗岩数据引自Pearce et al.,1984)Fig. 7 ORG-normalized diagrams for Oytag pluton and Saluoyi pluton (data of ORG Troodos after Pearce et al.,1984)

奥依塔克岩体和萨罗依岩体岩石的稀土元素总量较低(78.67 ×10-6~121.4 ×10-6)。在球粒陨石标准化图解中,其中前者轻稀土亏损明显((La/Yb)N=0.54 ~0.66),具强烈的负Eu 异常(Eu/Eu*=0.23 ~0.32),与N-MORB 的特征类似,显示LREE 亏损的左倾近平坦的稀土模式特征(图6a),后者轻重稀土近于水平分布((La/Yb)N= 1.00 ~1.60),具中等的负Eu 异常(Eu/Eu*=0.42 ~0.62),显示了Eu 中度负异常的平坦稀土谱型(图6a)。在洋脊花岗岩标准化图解中(图7),配分曲线与典型洋脊花岗岩Troodos 基本一致(Pearce et al.,1984),只是相对其富集K、Rb,亏损Nb、Ta 元素。在原始地幔标准化蛛网图中(图6b),略微富集Ba、Th,明显亏损Nb、Ta、Sr、Pb、Ti,其他元素相对高出原始地幔数倍至二十倍,且富集程度近于一致。

4.3 锆石Hf 同位素特征

本次工作对前面进行锆石U-Pb 测年的奥依塔克岩体奥长花岗岩样品(10X01)和萨罗依岩体英云闪长岩样品(10X04)中各18 颗锆石进行了Hf 同位素分析(表3)。根据岩体结晶年龄计算,所有锆石均具高的正εHf(t)值,奥依塔克岩体锆石εHf(t)为13.60 ~15.91(平均值为14.60),萨罗依岩体锆石εHf(t)为11.06 ~15.25(平均值为13.44)。在锆石年龄与Hf 同位素相关图解中(图8),εHf(t)基本都位于亏损地幔演化线附近,反映其具有亏损地幔物质来源的特征。对于花岗岩,锆石Hf 同位素地壳模式年龄(tDMc)代表岩浆源岩蚀源区地壳物质从亏损地幔库脱离的平均年龄。本文采用Taylor and McLennan(1985)推荐的上地壳平均成分(0.008)计算tDMc,奥依塔克岩体和萨罗依岩体的两阶段模式年龄分别为320 ~418Ma(平均值为376.5Ma)、343 ~540Ma(平均值为417.1Ma),整体明显较其形成年龄(319.0±1.7Ma、322.8 ±2.2Ma)较老,但差异较小,甚至个别锆石(1-1、1-10)的形成年龄与其两阶段模式年龄(319Ma、320Ma)基本一致。

表2 奥依塔克岩体(10X01)和萨罗依岩体(10X04)的主量元素(wt%)、稀土微量元素(×10 -6)含量Table 2 Major element (wt%)and trace element (×10 -6)composition of Oytag pluton (10X01)and Saluoyi pluton (10X04)

表3 奥依塔克岩体(10X01)和萨罗依岩体(10X04)的锆石Hf 同位素分析结果Table 3 Zircon in situ Hf isotope analysis data of Oytag pluton (10X01)and Saluoyi pluton (10X04)

图8 奥依塔克岩体和萨罗依岩体的锆石U-Pb 年龄与Hf 同位素相关图解Fig.8 U-Pb age vs. Hf isotopes of zircons in Oytag pluton and Saluoyi pluton

5 讨论

5.1 岩石成因类型

奥依塔克岩体和萨罗依岩体具有低的K2O(0.17% ~0.83%)和Rb (2.42 ×10-6~19.4 ×10-6)含量以及非常低的K2O/Na2O(0.03 ~0.18)、Rb/Sr(0.05 ~0.22)和87Sr/86Sr(0.7048 ~0.7068)(Jiang et al.,2008)比值,高的K/Rb 比值(355.4 ~590.5),这与大洋斜长花岗岩的主要岩石地球化学指标一致(Ishizaka and Yanagi,1975)。在SiO2-K2O 图解中(图9a),样品基本落入大洋斜长花岗岩范围(Coleman and Peterman,1975),同时在SiO2/Al2O3-A/CNK 图解中(图9b),也位于典型大洋斜长花岗岩区域附近(Sarvothaman,1993)。并且,在斜长花岗岩的平均化学含量与典型大洋斜长花岗岩对比表中(表4)(Engel and Fisher,1975;Saunders et al.,1979;Alabaster et al.,1982;Pearce et al.,1984;Kontinen,1987;Borsi et al.,1996;Shastry et al.,2002),除具相对较高的Rb 和低的Nb 含量外,其主量、微量和稀土元素含量均与世界著名大洋斜长花岗岩非常一致。因此,西昆仑西北缘地区发育的斜长花岗岩与典型的大洋斜长花岗岩具亲缘性。

表4 奥依塔克岩体和萨罗依岩体平均化学含量与典型大洋斜长花岗岩对比表(主量元素:wt%;稀土和微量元素:×10 -6)Table 4 Average chemical composition of Oytag pluton and Saluoyi pluton compared with the analyses of classical oceanic plagiogranites (major elements:wt%;trace elements:×10 -6)

5.2 岩石成因

关于大洋斜长花岗岩的岩石成因,目前主要有四种模型:(1)玄武质岩浆结晶分异模型(Arth et al.,1978;Hunter et al.,1978);(2)铁镁质岩部分熔融模型(Martin,1987,1999;Rapp et al.,1991,2003;Wareham et al.,1997;Turkina,2000;Grimes et al.,2013);(3)岩浆不混溶模型(Natland et al.,2002;Shastry et al.,2002);(4)早期奥长花岗岩/英云闪长岩部分熔融模式(Jahn et al.,1984;Popov et al.,2002)。其中,第二种是目前应用最为广泛的成因模式(陈其龙,2011;Kuibida et al.,2013),最近已得到越来越多的地质特征、稀土分馏模拟以及高SiO2岩浆实验岩石学的证实(Koepke et al.,2007;Rollinson,2009;France et al.,2010;Brophy and Pu,2012)。

图9 SiO2-K2O 图解(a,据Coleman and Peterman,1975)和SiO2/Al2O3-A/CNK 图解(b,据Sarvothaman,1993)LA-低铝质英云闪长岩;HA-高铝质英云闪长岩;OP-大洋斜长花岗岩;CT-陆壳英云闪长岩Fig.9 SiO2-K2O diagrams (a,after Coleman and Peterman,1975)and A/CNK-SiO2/Al2O3 diagram (b,after Sarvothaman,1993)LA-low alumina trondhjemite;HA-high alumina trondhjemite;OP-oceanic plagiogranite;CT-continental trondhjemite

图10 La-SiO2(a,据Brophy,2009)和Rb/La-Rb(b,据Schiano et al.,2010)大洋酸性岩成因判别图Fig.10 La-SiO2 diagram (a,after Brophy,2009)and Rb/La-Rb diagram (b,after Schiano et al.,2010)proposed for evaluating petrogenesis of silicic rocks in ocean crust

首先,在西昆仑西北缘目前并没发现早于石炭世的奥长花岗岩/英云闪长岩和以及与奥依塔克斜长花岗岩同时代的辉长质岩石,因此不支持早期奥长花岗岩/英云闪长岩部分熔融模式成因和岩浆不混溶的成因模式。奥依塔克岩体和萨罗依岩体的二阶段模式年龄(tDM2)分别为319 ~435Ma(平均值为372.4Ma)、348 ~593Ma(平均值为416.0Ma),明显大于岩体的形成年龄(322.8 ±2.2Ma、319.0 ± 1.7Ma)。而且,最近Brophy(2009)通过对大洋酸性岩石的地球化学成因模式的总结,发现由结晶分异形成的酸性岩浆SiO2含量均与La 或Yb 含量呈正相关性,而镁铁质岩石含水部分熔融时SiO2含量与之无相关性或呈负相关性,在La 与SiO2的关系图中(图10a),斜长花岗岩的SiO2与La 之间无相关性,且在Rb/La-Rb 图解中样品点呈左倾斜式分布(图10b),均与结晶分异演化趋势不同,说明这些斜长花岗岩也不可能是玄武岩岩浆直接结晶分异的产物(第一种成因模式),但均明显与部分熔融的演化趋势一致,因此可能与镁铁质岩石部分熔融成因有关。同时,岩体的模式年龄明显大于其形成年龄,恰好支持了铁镁质岩石部分熔融的成因模式,而且在AFM-CFM源岩成因判定图解中样品均位于玄武岩部分熔融区域(图11a)。此外,不同成因的大洋斜长花岗岩中TiO2含量与其形成过程中的氧逸度和温度有密切的联系(Koepke,2007),TiO2的含量可以作为鉴别大洋斜长花岗岩不同成因过程的因子(陈其龙,2011),奥依塔克岩体和萨罗依岩体的TiO2含量较低(0.17% ~0.54%),并且在实验熔体SiO2-TiO2关系图中样品均落入含水条件下辉长岩部分熔融范围,TiO2含量明显低于玄武质岩浆结晶分异和岩浆不混熔的底线(图11b),这种特征通常被认为是镁铁质洋壳部分熔融的指示(Koepke et al.,2007;France et al.,2010;Grimes et al.,2013)。

图11 AFM-CFM 源岩成因判定图解(a,据Altherr et al.,2000)和拉斑玄武岩系统中富SiO2 实验熔体SiO2-TiO2 关系图(b,据Koepke et al.,2007)Fig.11 AFM-CFM diagram (a,after Altherr et al.,2000)and TiO2-SiO2 diagram on the basis of the experiments involving hydrous melting of mafic ocean crust and fractional crystallization of mid-ocean ridge basalt (MORB)(b,after Koepke et al.,2007)

图12 N-MORB 不同程度部分熔融形成的熔体稀土元素配分模式和西昆仑西北缘斜长花岗岩稀土元素的对比图(据张传林等,2006)乌鲁阿特组玄武岩稀土元素数据引自计文化等未发表数据Fig. 12 The contrast diagram between REE-pattern of plagiogranite in the northwestern margin of western Kunlun and REE-pattern of N-MORB 's different partial melting(after Zhang et al.,2006)REE data of basalt in the Wuluate Formation quoted Ji et al.(unpublished)

奥依塔克岩体和萨罗依岩体表现出低的Al2O3、高MgO和LREE 稍亏损或平坦型配分型式,以及高的正εHf(t)值(11.06 ~16.93,平均值为14.4),说明其源岩明显具亏损地幔源的特征,这与其紧密共生的乌鲁阿特组玄武岩(NMROB)特征一致,而且该地区基性岩浆岩和斜长花岗岩的具有相似的初始Sr 同位素比值(分别为0.704153 ~0.705119、0.704818 ~0.706772)和εNd(t)值(4.2 ~6.9、6.2~7.6)(Jiang et al.,2008),均说明乌鲁阿特组玄武岩可能就是该地区斜长花岗岩的镁铁质源岩,且斜长花岗岩受到陆壳物质混染较少。两岩体的二阶段模式年龄(tDM2)主要集中在早石炭世—泥盆纪(348 ~403Ma、348 ~434Ma),也与早石炭纪乌鲁阿特组玄武岩形成时代相似。并且,乌鲁阿特组玄武岩以拉斑玄武系列为主,其稀土元素的球类陨石配分曲线与拉斑玄武岩源岩一致,张传林等(2006)曾模拟拉斑玄武岩部分熔融所形成的斜长花岗岩与该地区的斜长花岗岩的配分曲线模式十分吻合(图12)。因此综上所述,西昆仑西北缘斜长花岗岩带应是与之紧密共生的乌鲁阿特组拉斑质玄武岩部分熔融所形成的产物。

5.3 岩浆形成温压条件

奥依塔克岩体和萨罗依岩体低Sr(34 ×10-6~102 ×10-6)、高Y 含量(44.1 ×10-6~83.6 ×10-6),指示这些斜长花岗岩形成过程中玄武岩部分熔融的压力可能较低(Wareham et al.,1997;张旗等,2006)。岩体中Al2O3的含量往往在一定程度上与成岩过程中施加在岩浆中的压力值成正相关(Barker and Arth,1976)。根据熔融实验,当压力≤1.6GPa 时,熔体的Al2O3含量低于15%;当压力>1.6GPa时,熔体的Al2O3大于15%(Rapp et al.,1991),奥依塔克岩体和萨罗依岩体的Al2O3含量明显较低(11.88% ~14.58%,平均值为13.05%),也说明岩浆形成时压力较低。此外,在An-Ab-Qtz 三元共结压力曲线图中(Winter,2001),样品也落入M 型花岗岩和大洋斜长花岗岩附近的低压熔融范围,并指示其压力应小于0.1GPa(图13)。

Watson and Harrison(1983a,b)从高温实验(700 ~1300℃)得出的锆石溶解度的模拟公式:TZr(℃)= {12900[lnDZr(496000/熔体)+0.85M +2195]}-273.15,式中DZr为Zr 分配系数,所选样品M 值范围为1.42 ~1.68,在推荐范围范围之内(0.9 ~1.7,Watson and Harrison,1983a)。据此计算,奥依塔克岩体和萨罗依岩体的锆石温度为736.6 ~780.9℃(表2),且岩浆中发育继承锆石(图3),说明母岩浆中锆石已达饱和,因此736.6 ~780.9℃可代表原始岩浆的初始岩浆温度(Miller et al.,2003;赵振华,2010)。

图13 An-Ab-Qtz 三元共结压力曲线图(据Winter,2001)Fig.13 The Ab-Or-Qtz system with the ternary cotectic curves (after Winter,2001)

含水拉斑玄武岩的实验表明,在<0.8GPa(650 ~800℃)的条件下,玄武岩熔融的残留相为斜长石+角闪石±斜方辉石±钛铁矿(无石榴石)(肖庆辉等,2002;葛小月等,2002),熔体与斜长石和角闪石处于平衡,具有低Sr 高Yb 的特点;0.8 ~1.3GPa(700 ~800℃)条件下,残留物为石榴石+角闪石+单斜辉石±斜长石±钛铁矿,岩浆具有低Sr 低Yb 的特点;1.2 ~2GPa(750 ~950℃),具高Sr 低Yb 型花岗岩(埃达克岩)特征,压力>1.2GPa 时,为石榴石+角闪石稳定区(斜长石消失),压力>1.5GPa,为石榴石+角闪石+金红石稳定区(金红石出现),压力>1.8 或>2.2GPa,为石榴石+金红石稳定区(角闪石消失)(Xiong et al.,2005;张旗等,2006)。如前文所述,西昆仑西北缘斜长花岗岩带是拉斑玄武岩在低压(<0.1GPa)低温(737 ~781℃)条件下部分熔融,并且具低Sr 高Yb 的地球化学特征,与第一种熔融条件完全一致,因此部分熔融的残留相应为斜长石+角闪石±斜方辉石±钛铁矿(无石榴石)。

5.4 构造环境

奥依塔克岩体和萨罗依岩体具低的K2O、Al2O3、Sr 含量和高的Y 含量以及低的Sr/Y 比值,同时LREE 略为亏损,这与典型的大洋中脊斜长花岗岩特征相似,而明显区别于洋壳俯冲消减的高压环境下低钾玄武岩部分熔融形成的英云闪长岩、奥长花岗岩和花岗闪长岩组成的TTG 岩石组合(具高的Al2O3、Sr 含量、低的Y 含量、高Sr/Y 比值以及LREE 富集)(Jiang et al.,2008)。而且,不同的不相容元素在洋壳/大洋沉积物俯冲有关的流体和在洋盆沉积物部分熔融过程中的元素迁移特性是不同的(Pearce and Peate,1995;Hawkesworth et al.,1997;Macdonald et al.,2000;Elburg et al.,2002),如在俯冲流体中Ba 元素活动性较高,Th 元素活动性较弱,同时会导致高的Ba/Th 比值,而在洋盆沉积物部分熔融过程Th 和Ba 元素的活动性则相反(Hawkesworth et al.,1997),据此可判断俯冲消减作用对岩浆形成的影响程度(Dilek et al.,2008),在Th-Ba/Th 图解中(图14a),西昆仑西北缘斜长花岗岩演化位于洋盆沉积物部分熔融的演化趋势线上,明显与俯冲流体作用趋势不同。因此,该地区斜长花岗岩带的形成应与洋壳的俯冲消减作用无关。

图14 判断俯冲消减作用对岩浆形成的Th-Ba/Th 图解(a,Dilek et al.,2008)和Sr-Nd 同位素相关图(b)奥依塔克奥长花岗岩和基性岩浆岩Sr-Nd 同位素数据引自Jiang et al. (2008),日本海玄武岩集及太平洋沉积物据Cousens et al. (1994)和Nohda et al. (1991)Fig.14 Th-Ba/Th diagram indicates the subduction effect upon magma (a,after Dilek et al.,2008)and Sr-Nd isotopic correlation diagram (b)Sr-Nd isotopic data of Oytag plagiogranite and basic rock are from Jiang et al. (2008),data for basalts from Japan sea are from Cousens et al. (1994)and Nohda et al. (1991)

图15 Rb-(Y+Nb)(a)和Nb-Y (b)构造判别图解Fig.15 Rb-(Y+Nb)(a)and Nb-Y (b)tectonic discrimination diagrams

如前文所述,该斜长花岗岩带与大洋中脊斜长花岗岩的地球化学特征相似,在Rb-(Y +Nb)和Nb-Y 构造判别图解中(图15),该斜长花岗岩样品也基本位于大洋中脊环境范围,但是相对洋中脊花岗岩具Nb-Ta 负异常,以及低的Zr 含量(105 ×10-6~180 ×10-6,洋中脊斜长花岗岩一般大于500×10-6(Bébien et al.,1997)),显示弧后盆地岩浆岩的地球化学特征(Hergt and Farley,1994;Hawkins,1995;Bébien et al.,1997),而且在Sr-Nd 同位素相关图上(图14b),奥长花岗岩位于日本弧后盆地环境附近,并明显受到大洋沉积物的影响,这与该地区斜长花岗岩的岩浆形成过程中存在洋盆沉积物部分熔融的环境吻合(图14a),也与其源岩—乌鲁阿特组玄武岩中发育灰岩和砂岩(河南地质调查院,2005a;陈守建等,2008)的地质事实一致,同时解释了该斜长花岗带岩相对洋中脊花岗岩具高的K、Rb 含量的原因。

区域上,有人认为西昆仑西北缘斜长花岗岩属于库地-苏巴什蛇绿岩带的重要组成之一(丁道桂等,1996;姜耀辉和周珣若,1999;Jiang et al.,2008),有人则认为其并不属于蛇绿岩带的组成(张传林等,2006;李广伟等,2009),最新的地质调查在该地区也未发现典型的蛇绿岩组合(河南地质调查院,2005a,b;高晓峰等,2013),笔者认为这可能与西昆仑西段(西构造结)显生宙强烈挤压导致蛇绿岩缺失有关。在地层方面,陈守建等(2008)经过岩相特征及构造古地理研究,认为昆仑造山带北缘石炭纪总体处于伸展裂陷的大地构造背景,并发现西昆仑西北缘发育着大量的石炭纪海相地层,而且乌鲁阿特组具有火山岩-沉积岩(枕状玄武岩、安山岩、灰岩、硅质岩和砂砾岩)的弧后盆地相岩石组合。此外,最近计文化等(未发表成果)对包括乌鲁阿特组玄武岩在内的石炭纪基性岩的地球化学和Sr-Nd 同位素研究,也认为其具有弧后盆地环境形成的特征。西昆仑造山带北缘受到昆仑地体与塔里木板块加里东期碰撞造山作用早在晚志留世进入陆内演化(潘裕生,1990;Mattern and Schneider,2000;Yuan et al.,2002;姜耀辉和周珣若,1999;姜耀辉等,2000;韩芳林等,2001;于晓飞等,2011),而西昆仑北缘石炭纪伸展裂解的构造体制以及西北缘石炭纪弧后盆地的形成,是与以塔里木地块北缘的天山造山带石炭纪大陆裂谷环境为代表(Xia et al.,2003,2004;徐学义等,2006)的整个塔里木板块周缘石炭纪处于伸展裂解的构造体制有关,还是与南部古特提斯洋持续往北俯冲导致西昆仑北缘发生弧后扩展(李荣社等,2008)有关,仍需进一步研究。

综上所述,综合区域资料,初步认为西昆仑西北缘斜长花岗岩带是在弧后盆地的伸展裂解环境下新生镁铁质洋壳(乌鲁阿特组玄武岩)夹杂着盆地沉积物发生部分熔融的产物,至于如此大规模斜长花岗岩的具体形成机制和构造体制亟待深入研究。

6 结论

(1)西昆仑西北缘出露以英云闪长岩、石英闪长岩、奥长花岗岩为主的斜长花岗岩带,它们低Al2O3、高CaO 和MgO含量,强烈的富钠贫钾,属于钙质准铝质系列,稀土元素总量较低,具LREE 稍亏损或平坦型配分型式,与典型洋脊花岗岩基本一致,但它们相对富集K、Rb,具负Eu 和Nb、Ta 异常,经过与世界典型大洋斜长花岗岩的对比,该斜长花岗岩带应为典型的大洋斜长花岗岩带。

(2)野外地质、岩石地球化学、锆石U-Pb 定年和Lu-Hf同位素特征及区域地质分析表明,西昆仑西北缘斜长花岗岩带是晚石炭世弧后盆地的伸展裂解环境下在低压(<0.1GPa)低温(737℃~781℃)条件下以乌鲁阿特组(玄武岩夹沉积岩)为代表的早石炭世新生镁铁质洋壳部分熔融所形成的产物,残留相为斜长石+角闪石±斜方辉石±钛铁矿(无石榴石),不是传统认为的地幔玄武质岩浆结晶分异成因的大洋中脊花岗岩,为研究不与蛇绿岩共生或有成因关系的大规模斜长花岗岩成因提供了有益的探索。

致谢 徐学义研究员、张成立教授和计文化研究员审阅了全文,并提出了重要的建设性意见;编辑部俞良军老师对论文提出了宝贵修改意见;在英文摘要撰写和同位素分析方面,分别得到了中国地质大学(北京)韩鑫博士和西北大学康磊博士的热情帮助;在此一并表示诚挚的感谢!

Alabaster T,Pearce JA and Malpas J. 1982. The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contributions to Mineralogy and Petrology,81(3):168 -183

Aldiss DT. 1981. Plagiogranites from the ocean crust and ophiolites.Nature,289 (5798):577 -578

Altherr R,Holl A,Heger E,Langer C and Kreuzer H. 2000. Highpotassium, calc-alkaline I-type plutonism in the European Variscides:Northern Vosges (France)and northern Schwarzwald(Germany). Lithos,50(1):51 -73

Amri I,Benoit M and Ceuleneer G. 1996. Tectonic setting for the genesis of oceanic plagiogranites:Evidence from a paleo-spreading structure in the Oman ophiolite. Earth and Planetary Science Letters,139(1-2):177 -194

Arth JG,Barker F,Peterman ZE and Friedman I. 1978. Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of Southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas. J. Petrol.,19(2):289 -316

Barker F and Arth JG. 1976. Generation of trondhjemite-basaltic liquids and Archaean bimodal trondhjemite-basalt suites. Geology,4,596-600

Bébien J,Dautaj N,Shallo M,Turku I and Barbarin B. 1997. Diversity of ophiolitic plagiogranites:The Albanian example. Comptes Rendus de l’Academie des Sciences-Series-IIA Earth and Planetary Science,324(11):875 -882

Borsi L,Scharer U,Gaggero L and Crispini L. 1996. Age,origin and geodynamic significance of plagiogranites in lherzolites and gabbros of the Piedmont-Ligurian ocean basin. Earth and Planetary Science Letters,140(1 -4):227 -241

Brophy JG and Pu XF. 2012. Rare earth element-SiO2systematics of mid-ocean ridge plagiogranites and host gabbros from the Fournier oceanic fragment,New Brunswick,Canada:A field evaluation of some model predictions. Contributions to Mineralogy and Petrology,164(2):191 -204

Brophy JG. 2009. La-SiO2and Yb-SiO2systematics in mid-ocean ridge magmas:Implications for the origin of oceanic plagiogranite.Contributions to Mineralogy and Petrology,158(1):99 -111

Chen QL. 2011. The study about petrogenesis of ocean plagiogranite.Journal of Capital Normal University (Natural Science Edition),32(5):73 -77 (in Chinese with English abstract)

Chen SJ,Li RS,Ji WH,Wang C,Zhao ZM,Wang BZ,Dai CG and Wang GC. 2008. Carboniferous period lithofacies character and tectono-paleogeography in Kunlun Orogenic Belt. Journal of Earth Sciences and Environment,30(3):221 - 233 (in Chinese with English abstract)

Claesson S,Vetrin V,Bayanova T and Downes H. 2000. U-Pb zircon ages from a Devonian carbonatite dyke,Kola peninsula,Russia:A record of geological evolution from the Archaean to the Palaeozoic.Lithos,51(1 -2):95 -108

Coleman RG and Donato MM. 1979. Oceanic plagiogranite revisited. In:Baker F (ed.). Trondhjemites,Dacites,and Related Rocks,Developments in Petrology,Volume 6. Amsterdam:Elsevier,149 -168

Coleman RG and Peterman ZE. 1975. Oceanic plagiogranite. J.Geophys. Res.,80(8):1099 -1108

Cousens BL,Allan JF and Gorton MP. 1994. Subduction-modified pelagic sediments as the enriched component in back-arc basalts from the Japan Sea:Ocean drilling program sites 797 and 794.Contributions to Mineralogy and Petrology,117(4):421 -434

Dilek Y,Furnes H and Shallo M. 2008. Geochemistry of the Jurassic Mirdita ophiolite (Albania)and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos,100(1 -4):174 -209

Ding GT,Wang DX and Liu WX. 1996. Western Kunlun Orogenic Belt and Basin. Beijing:Geological Publishing House,36 - 107 (in Chinese)

Elburg MA,van Bergen M,Hoogewerfe J,Foden J,Vroon P,Zulkarnain I and Nasution A. 2002. Geochemical trends across an arc-continent collision zone:Magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta,66(15):2771 -2789

Engel CG and Fisher RL. 1975. Granitic to ultramafic rock complexes of the Indian ocean ridge system,western Indian ocean. Bulletin Geological Society of America,86(11):1553 -1578

Fan SQ,Shi RD,Ding L,Liu DL,Huang QS and Wang HQ. 2010.Geochemical characteristics and zircon U-Pb age of the plagiogranite in Gaize ophiolite of central Tibet and their tectonic significance.Acta Petrologica et Mineralogica,29(5):467 -478 (in Chinese with English abstract)

Fang AM,Li JL,Liu XH,Hou QL,Lee IJ,Xiao WJ,Yu LJ and Zhou H. 2003. Tectonic settings of the basic igneous rocks in the Kudi ophiolite zone of West Kunlun Mountains,Xingjiang Province. Acta Petrologica Sinica,19(3):409 - 417 (in Chinese with English abstract)

Flagler PA and Spray JG. 1991. Generation of plagiogranite by amphibolites anatexis in oceanic shear zones. Geology,19:70 -73

France L,Koepke J,Ildefonse B,Cichy SB and Deschamps F. 2010.Hydrous partial melting in the sheeted dike complex at fast spreading ridges:Experimental and natural observations. Contributions to Mineralogy and Petrology,160(5):683 -704

Gao XF,Xiao PX,Kang L,Xi RG,Guo L,Xie CR and Yang ZC.2013. Origin of Datongxi pluton in the West Kunlun orogeny:Constraints from mineralogy,elemental geochemistry and zircon U-Pb age. Acta Petrologica Sinica,29(9):3065 -3079 (in Chinese with English abstract)

Ge XY,Li XH,Chen ZG and Li WP. 2002. Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China:Constrains on crustal thickness. Chinese Science Bulletin,47(11):962 -968

Gillis KM and Coogan LA. 2002. Anatectic migmatites from the roof of an ocean ridge magma chamber. Journal of Petrology,43(11):2075 -2095

Grimes CB,Ushikubo T,Kozdon R and Valley JW. 2013. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos,179:48 -66

Han FL,Cui JT,Ji WH,Li HP,Hao JW. 2001. Discussion of orogenics of the western Kunlun Mountains during the Caledonian orogeny.Geology of Shaanxi,19(2):8 - 18 (in Chinese with English abstract)

Hawkesworth CJ,Turner SP,McDermott F,Peate DW and Calsteren P.1997. U-Th isotopes in arc magmas:Implications for element transfer from the subducted crust. Science,276(5312):551 -555

Hawkins JW. 1995. Evolution of the Lau Basin-Insights from ODP Leg 135. In:Taylor B and Natland J (eds.). Active Margins and Marginal Basins of the Western Pacific. Geophysical Monograph 88,Am. Geophys. Union,125 -173

Hergt JM and Farley KN. 1994. Major element,trace element,and isotope (Pb,Sr and Nd)variations in site 834 basalts:Implications for the initiation of backare opening. In:Proceedings of the Ocean Drilling Program,Scientific Results,135:471 -485

Hunter DR,Barker F and Millard HTJ. 1978. The geochemical nature of the Archean ancient gneiss complex and granodiorite suite,Swaziland:A preliminary study. Precambrian Research,7(2):105-127

Ishizaka K and Yanagi T. 1975. Occurrence of oceanic plagiogranites in the older tectonic zone,Southwest Japan. Earth and Planetary Science Letters,27(3):371 -377

Jahn BM,Vidal P and Kröner A. 1984. Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland:A case for long crustal residence time. Contrib. Mineral. Petrol.,86(4):398-408

Jiang CF,Wang ZQ and Li JZ. 2000. Opening-closing Tectonics of Central Orogen. Beijing:Geological Publishing House,7 -13 (in Chinese)

Jiang YH and Zhou XR. 1999. The petrology and tectonicmagmatic dynamics of the Western Kunlun. Geoscience,13(4):378 (in Chinese)

Jiang YH,Rui XJ,Guo KY and He JR. 2000. Tectonic environments of granitoids in the West Kunlun Orogenic Belt. Acta Geoscientia Sinica,21(1):23 -25 (in Chinese with English abstract)

Jiang YH,Liao SY,Yang WZ and Shen WZ. 2008. An island arc origin of plagiogranites at Oytag,western Kunlun orogen,northwest China:SHRIMP zircon U-Pb chronology,elemental and Sr-Nd-Hf isotopic geochemistry and Paleozoic tectonic implications. Lithos,106(3 -4):323 -335

Kaur G and Mehta PK. 2005. The Gothara plagiogranite:Evidence for oceanic magmatism in a non-ophiolitic association,North Khetri Copper Belt,Rajasthan,India?Journal of Asian Earth Sciences,25(5):805 -819

Koepke J,Berndt J,Feig ST and Holtz F. 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology,153(1):67-84

Kontinen A. 1987. An early proterozoic ophiolite:The Jormua maficultramafic complex,northeastern Finland. Precambrian Research,35:313 -341

Kuibida ML,Kruk NN,Murzin OV,Shokal’skii S,Gusev NI,Kirnozova TI and Travin AV. 2013. Geologic position,age,and petrogenesis of plagiogranites in northern Rudny Altai. Russian Geology and Geophysics,54(10):1305 -1318

Li GW,Fang AM,Wu FY,Liu XH,Pan YS and Wang SG. 2009.Studies on the U-Pb ages and Hf isotopes of zircons in the Aoyitake plagioclase granite,West Tarim. Acta Petrologica Sinica,25(1):166 -172 (in Chinese with English abstract)

Li RS,Ji WH,Yang YC,Yu PS and Zhao ZM. 2008. Geology of Kunlun Mountain and Adjacent Regions. Beijing: Geological Publishing House (in Chinese)

Li WX and Li XH. 2003. Rock types and tectonic significance of the granitoids rocks within ophiolites. Advance in Earth Science,18(3):392 -397(in Chinese with English abstract)

Lippard SJ,Shelton AW and Gass IG. 1986. The ophiolite of northern Oman. In:Geological Society of London Memoir,Vol. 11. Oxford:Blackwell Scientific,1 -230

Macdonald R,Hawkesworth CJ and Heath E. 2000. The Lesser Antilles volcanic chain:A study in arc magmatism. Earth-Science Reviews,49(1 -4):1 -76

Malpas J. 1979. Two contrasting trondhjemite associations from transported ophiolites in western Newfoundland:Initial report. In:Barker F (ed.). Trondhjemites,Dacites,and Related Rocks.Amsterdam:Elsevier,465 -487

Martin H. 1987. Petrogenesis of Archaean trondhjemites,tonalites,and granodiorites from eastern Finland: Major and trace element geochemistry. J. Petrol.,28(5):921 -953

Martin H. 1999. Adakitic magmas:Modern analogues of Archaean granitoids. Lithos,46(3):411 -429

Mattern F and Schneider W. 2000. Suturing of the Proto-and Paleo-Tethys oceans in the western Kunlun (Xinjiang,China). Journal of Asian Earth Sciences,18(6):637 -650

Miller CF,McDowell SM and Mapes RW. 2003. Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance. Geology,31(6):529 -532

Natland JH,Dick HJB,Miller DJ and Von Herzen RP. 2002.Proceedings of the Ocean Drilling Program. College Station,Science Research,1 -69

Nohda S,Chen H and Tatsumi Y. 1991. Geochemical stratification in the upper mantle beneath NE China. Geophysical Research Letters,18(1):97 -100

Pallister JS and Hopson CA. 1981. Samail ophiolite plutonic suite:Field relations,phase variation,cryptic variation and layering,and a model of a spreading ridge magma chamber. Journal of Geophysical Research,86(B4):2593 -2644

Pallister JS and Knight RJ. 1981. Rare-earth element geochemistry of the Samail ophiolite near Ibra,Oman. Journal of Geophysical Research,86(B4):2673 -2697

Pan YS. 1990. Tectonic features and evolution of the western Kunlun mountain region. Scientia Geologica Sinica,25(3):224 -232(in Chinese with English abstract)

Pearce JA, Harris NBW and Tindle AC. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25(4):956 -983

Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review in Earth and Planetary Sciences,23(1):251 -285

Popov VS,Bogatov VI and Zhuravlev DZ. 2002. Sources of granite magmas and Middle and Southern Urals earth crust formation:Sm-Nd and Rb-Sr isotopic data. Petrologia,10:389 -410(in Russian)

Rapp RP,Watson EB and Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research,51(1 -4):1 -25

Rapp RP,Schimizu N and Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature,425(6958):605 -609

Ren JS. 1999. Geotectonic Map of China and Adjacent Regions. Beijing:Geological Publishing House,1 -15 (in Chinese)

Rollinson H. 2009. New models for the genesis of plagiogranites in the Oman ophiolite. Lithos,112(2 -3):603 -614

Sarvothaman H. 1993. The molar Al2O3/(CaO+Na2O+K2O)ratios as discriminant constraint for oceanic plagiogranites and continental trondhjemites. Journal of the Geological Society of India,42(5):513 -522

Saunders AD,Tarney J,Stern CR and Dalziel IWD. 1979. Geochemistry of Mesozoic marginal basin floor igneous rocks from southern Chile.Bulletin of the Geological Society of America,90(3):237 -258

Schiano P,Monzier M,Eissen JP,Martin H and Koga KT. 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology,160(2):297 -312

Shastry A, Srivastava RK, Chandra R and Jenner GA. 2002.Geochemical characteristics and genesis of oceanic plagiogranites associated with south Andaman ophiolite suite,India:A late stage silicate liquid immiscible product. Journal of the Geological Society of India,59(3):233 -241

Stakes DS and Taylor HPJ. 1992. The northern Samail ophiolite:An oxygen isotope,microprobe,and field study. Journal of Geophysical Research,97(B5):7043 -7080

Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42(1):313 -345

Taylor SR and McLennan SM. 1985. The Continental Crust,Its Composition and Evolution. Oxford:Blackwell,1 -312

Thayer TP. 1977. Some implications of sheeted dike swarms in ophiolitic complexes. Geotectonics,11(6):419 -426

Turkina OM. 2000. Modeling geochemical types of tonalite-trondhjemite melts and their natural equivalents. Geochemistry International,38(7):704 -717 (in Russian)

Wareham CD,Millar IL and Vaughan APM. 1997. The generation of sodic granite magmas,western Palmer Land,Antarctic Peninsula.Contrib. Mineral. Petrol.,128(1):81 -96

Watson EB and Harrison TM. 1983a. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters,64(2):295 -304

Watson EB and Harrison TM. 1983b. Zircon thermometer reveals minimum melting conditions on earliest earth. Science,308(5723):841 -844

Winter JD. 2001. An introduction to igneous and metamorphic petrology.New Jersey:Prentice Hall,1 -348

Wu YB and Zheng YF. 2004. Genetic mineralogy of zircon and its constraint on the interpretation of U-Pb zircon ages. Chinese Science Bulletin,49(16):1589 -1604 (in Chinese)

Xia LQ,Xu XY,Xia ZC,Li XM,Ma ZP and Wang LS. 2003.Carboniferous post-collisional rift volcanism of the Tianshan Mountains,Northwestern China. Acta Geologica Sinica,77(3):338 -360

Xia LQ,Xu XY and Xia ZC. 2004. Petrogenesis of carboniferous riftrelated volcanic rocks in the Tianshan, northwestern China.Geological Society of America Bulletin,116(3):419 -443

Xiao QH,Deng JF,Ma DS,Hong DW and Mo XX. 2002. The Ways of Investigation on Granitoids. Beijing:Geological Publishing House,172 -191 (in Chinese with English abstract)

Xiao WJ,Windley BF,Hao J and Li JL. 2002. Arc-ophiolite obduction in the western Kunlun Range (China):Implications for the Palaeozoic evolution of central Asia. Journal of the Geological Society,159:517 -528

Xiong XL,Adam J and Green TH. 2005. Rutile stability and ruble/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis. Chemical Geology,218(3 -4):339-359

Xu XY,Xia LQ,Ma ZP,Wang YB,Xia ZC,Li XM and Wang LS.2006. SHRIMP zircon U-Pb geochronology of the plagiogranites from Bayingou ophiolite in North Tianshan Mountains and the petrogenesis of the ophiolite. Acta Petrologica Sinica,22(1):83 - 94 (in Chinese with English abstract)

Xu ZQ,Li ST,Zhang JX,Yang JS,He BZ,Li HB,Lin CS and Cai ZH. 2011. Paleo-Asian and Tethyan tectonic systems with docking the Tarim block. Acta Petrologica Sinica,27(1):1 - 22 (in Chinese with English abstract)

Yu XF,Sun FY,Li BL,Ding QF,Chen GJ,Ding ZJ,Chen J and Huo L. 2011. Caledonian diagenetic and metallogenic events in Datong district in the western Kunlun:Evidences from LA-ICP-MS zircon UPb dating and molybdenite Re-Os dating. Acta Petrologica Sinica,27(6):1770 -1778(in Chinese with English abstract)

Yuan C,Sun M,Zhou MF,Zhou H,Xiao WJ and Li JL. 2002. Tectonic evolution of the West Kunlun:Geochronologic and geochemical constraints from Kudi granitoids. International Geology Review,44(7):653 -669

Yuan C,Sun M,Zhou H,Xiao WJ,Hou QL and Li JL. 2003. Arkarz shan intrusive complex,western Kunlun:Age,source and Tectonic implications. Xinjiang Geology,21(1):37 -45 (in Chinese with English abstract)

Yuan HL,Gao S,Lin XM,Li HM,Günther D and Wu FY. 2004.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry.Geostandards and Geoanalytical Research,28(3):353 -370

Zhang CL,Yu HF,Ye HM,Zhao Y and Zhang DS. 2006. Aoyitake plagiogranite in western Tarim Block, NW China: Age,geochemistry,petrogenesis and its tectonic implications. Science in China (Series D),49(11):1121 -1134

Zhang Q,Wang Y,Li CD,Wang YL,Jin WJ and Jia XQ. 2006.Granite classification on the basis of Sr and Yb contents and its implications. Acta Petrologica Sinica,22(9):2249 - 2269 (in Chinese with English abstract)

Zhao ZH. 2010. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis. Earth Science Frontiers,17(1):267 -286 (in Chinese with English abstract)

附中文参考文献

陈其龙. 2011. 大洋斜长花岗岩成因研究现状评述. 首都师范大学学报(自然科学版),32(5):73 -77

陈守建,李荣社,计文化,王超,赵振明,王秉章,戴传固,王国灿.2008. 昆仑造山带石炭纪岩相特征及构造古地理. 地球科学与环境学报,30(3):221 -233

丁道桂,王道轩,刘伟新. 1996. 西昆仑造山带与盆地. 北京:地质出版社,36 -107

樊帅权,史仁灯,丁林,刘德亮,黄启帅,王厚起. 2010. 西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb 年龄及构造意义. 岩石矿物学杂志,29(5):467 -478

方爱民,李继亮,刘小汉,侯泉林,Lee Ik Jong,肖文交,俞良军,周辉. 2003. 新疆西昆仑库地混杂带中基性火山岩构造环境分析.岩石学报,19(3):409 -417

高晓峰,校培喜,康磊,奚仁刚,过磊,谢从瑞,杨再朝. 2013. 西昆仑大同西岩体成因:矿物学、地球化学和锆石U-Pb 年代学制约. 岩石学报,29(9):3065 -3079

葛小月,李献华,陈志刚,李伍平. 2002. 中国东部燕山期高Sr 低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约. 科学通报,47(6):474 -480

韩芳林,崔建堂,计文化,李海平,郝俊武. 2001. 西昆仑加里东期造山作用初探. 陕西地质,19(2):8 -18

姜春发,王宗起,李锦铁. 2000. 中央造山带开合构造. 北京:地质出版社,7 -13

姜耀辉,周珣若. 1999. 西昆仑造山带花岗岩岩石学及构造岩浆动力学. 现代地质,13(4):378

姜耀辉,丙行健,郭坤一,贺菊瑞. 2000. 西昆仑造山带花岗岩形成的构造环境. 地球学报,21(1):23 -25

李广伟,方爱民,吴福元,刘小汉,潘裕生,王世刚. 2009. 塔里木西部奥依塔克斜长花岗岩锆石U-Pb 年龄和Hf 同位素研究. 岩石学报,25(1):166 -172

李荣社,计文化,杨永成,于浦生,赵振明. 2008. 昆仑山及邻区地质. 北京:地质出版社

李武显,李献华. 2003. 蛇绿岩中的花岗质岩石成因类型与构造意义. 地球科学进展,18(3):392 -397

潘裕生. 1990. 西昆仑山构造特征与演化. 地质科学,25(3):224 -232

任纪舜. 1999. 中国及邻区大地构造图. 北京:地质出版社,1 -15

吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb 年龄解释的制约. 科学通报,49(16):1589 -1604

肖庆辉,邓晋福,马大栓,洪大卫,莫宣学. 2002. 花岗岩研究思维与方法. 北京:地质出版社,172 -191

徐学义,夏林圻,马中平,王彦斌,夏祖春,李向民,王立社. 2006.北天山巴音沟蛇绿岩斜长花岗岩SHRIMP 锆石U-Pb 年龄及蛇绿岩成因研究. 岩石学报,22(1):83 -94

许志琴,李思田,张建新,杨经绥,何碧竹,李海兵,林畅松,蔡志慧. 2011. 塔里木地块与古亚洲/特提斯构造体系的对接. 岩石学报,27(1):1 -22

于晓飞,孙丰月,李碧乐,丁清峰,陈广俊,丁正江,陈静,霍亮.2011. 西昆仑大同地区加里东期成岩、成矿事件:来自LA-ICPMS 锆石U-Pb 定年和辉钼矿Re-Os 定年的证据. 岩石学报,27(6):1770 -1778

袁超,孙敏,周辉,肖文交,侯泉林,李继亮. 2003. 西昆仑阿卡阿孜山岩体的年代、源区和构造意义. 新疆地质,21(1):37 -45

张传林,于海锋,叶海敏,赵宇,张东生. 2006. 塔里木西部奥依塔克斜长花岗岩:年龄、地球化学特征、成岩作用及其构造意义.中国科学(D 辑),36(10):881 -893

张旗,王焰,李承东,王元龙,金惟俊,贾秀勤. 2006. 花岗岩的Sr-Yb 分类及其地质意义. 岩石学报,22(9):2249 -2269

赵振华. 2010. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用. 地学前缘,17(1):267 -286

猜你喜欢
斜长塔克锆石
锆石的成因类型及其地质应用
还有人那么爱你(外二首)
俄成功试射“锆石”高超音速巡航导弹
塔克 努力改变命运
随枣北部桐柏杂岩表壳岩特征、成因及时代探讨
锆石 谁说我是假宝石
兴城
漫画
塔克西拉佛教遗址发掘历程述论
汹涌澎湃的实力 Starke Sound 史塔克音响系统A7 MarK II/A7-2