博格达造山带东段早石炭世火山岩地球化学特征及构造属性

2015-03-07 06:35汪晓伟徐学义马中平陈隽璐崔方磊朱小辉孙吉明
地质与勘探 2015年1期
关键词:博格达石炭世裂谷

汪晓伟, 徐学义, 马中平, 陈隽璐, 崔方磊, 朱小辉, 孙吉明

(1.中国地质调查局西安地质调查中心,陕西西安 710054; 2.长安大学地球科学与资源学院,陕西西安 710054)



博格达造山带东段早石炭世火山岩地球化学特征及构造属性

汪晓伟1,2, 徐学义1, 马中平1, 陈隽璐1, 崔方磊1,2, 朱小辉1, 孙吉明1

(1.中国地质调查局西安地质调查中心,陕西西安 710054; 2.长安大学地球科学与资源学院,陕西西安 710054)

博格达造山带东段克孜库都克地区七角井组玄武岩和中酸性火山碎屑岩及少量流纹岩在时空上构成双峰式火山岩组合。玄武岩LA-ICP-MS锆石U-Pb年龄为331.0±3.0Ma,属于早石炭世晚期;SiO2含量为47.68%~48.82%,TiO2含量(1.83%~2.17%)略高于N型大洋中脊玄武岩,高Al(Al2O3含量为15.56%~16.09%),富钠贫钾(Na2O/K2O=5.44~7.76),低Mg(MgO含量为5.97%~7.17%,Mg#为43~47),表明其原始岩浆发生过明显的橄榄石和辉石的分离结晶作用。玄武岩具有近于平坦的稀土配分模式,轻微负Eu异常(δEu=0.89~0.93),相对富集Rb、Ba、P,亏损Th、Nb、Ta、Sr、Ti等不相容元素。火山岩岩石地球化学特征表明:研究区玄武岩可能是亏损尖晶石相地幔橄榄岩向石榴石相地幔橄榄岩过渡的产物,且在其上升过程中受到较弱程度的地壳物质混染,形成于陆内裂谷环境,其地球动力学体制可能与古亚洲洋壳向先存的准噶尔-吐哈陆块斜向俯冲,产生的侧向撕裂力拉张陆块有关。克孜库都克地区早石炭世玄武岩构造属性的确立进一步证实了博格达造山带在石炭纪时期处于大陆裂谷演化过程的观点,为进一步深入理解博格达地区石炭纪构造岩浆演化过程提供了新的地质与年代学依据。

博格达造山带 早石炭世火山岩 岩石成因 陆内裂谷 构造岩浆演化

Wang Xiao-wei, Xu Xue-yi, Ma Zhong-ping, Chen Jun-lu, Cui Fang-lei, Zhu Xiao-hui, Sun Ji-ming.Geochemistry and tectonic setting of the early Carboniferous volcanic rocks in the eastern section of the Bogda orogenic belt in Xinjiang[J].Geology and Exploration, 2015, 51(1):0108-0122.

博格达造山带大地构造位置隶属天山造山带东段,北邻准噶尔盆地,南为吐哈地块,西起乌鲁木齐,东与克拉麦里-莫钦乌拉蛇绿岩带相接,是研究天山造山带运动学和动力学过程的理想场所,长期以来备受地质学家的广泛关注。博格达造山带以花岗岩不发育、广泛发育石炭纪火山岩为特征。早石炭世火山岩作为造山带的重要组成部分,对造山带演化具有十分重要意义。长期以来,国内外学者对博格达造山带晚古生代构造属性的认识一直存在分歧,素有裂谷(王利利等,1986;吴庆福,1986;何国琦等,1994;顾连兴等,2001a,2001b;王银喜等,2005,2006;王金荣等,2010;田黎萍等,2010)、岛弧(方国庆,1993;马瑞士等,1997)和弧后盆地(李锦轶等,2004;孙桂华等,2007)之争。然而越来越多的研究成果表明,博格达造山带石炭纪的构造属性更倾向于裂谷环境(顾连兴等,2001a,2001b;王银喜等,2005,2006;王金荣等,2010;田黎萍等,2010)。裂谷始于早石炭世的七角井一带(裂谷双峰式火山岩之玄武岩和流纹岩的Rb-Sr等时线年龄分别为342Ma和340Ma)(王银喜等,2005,2006),结束于晚石炭世晚期(西地-伊齐-小红柳峡一带柳树沟组双峰式火山岩组合之流纹岩Rb-Sr等时线年龄为296 Ma),早二叠世为裂谷闭合造山作用,早二叠世末进入后造山伸展的演化阶段(卡拉岗组流纹岩Rb-Sr等时线年龄为278 Ma)(王金荣等,2010)。近年来,笔者在博格达造山带东段对石炭纪地层单元进行了详细的地质调查研究,重点开展了七角井组火山岩的岩相、分布、岩石组合等特征研究,获得了较为详实的地质资料,并运用高精度的LA-ICP-MS锆石U-Pb方法对七角井组玄武岩进行精确定年,展开详细的岩石学、岩石地球化学研究,探讨其成因及形成背景,并在此基础上侧重讨论该区石炭纪构造岩浆演化过程,为深入理解天山构造动力学演化过程提供地质依据。

1 地质概况及火山岩岩石学特征

研究区位于博格达造山带东段北部,北临准噶尔盆地,南隔吐哈盆地和觉罗塔格石炭纪火山岩带相邻,东以红柳峡-苏吉断裂与克拉麦里-莫钦乌拉晚古生代蛇绿岩相接,是三个主要大地构造单元交汇的部位(图1a)(马瑞士等,1997;Shuetal.,2000)。区域内出露的主要地层为下石炭统七角井组,主要分布于博格达造山带东部的七角井-高泉地区,在研究区位于克孜库都克一带的北侧;柳树沟组分布于研究区西北部,与七角井组主要呈断层接触关系,构成博格达东段主体(图1-b)。研究区下石炭统七角井组由火山熔岩、酸性火山碎屑岩及沉积碎屑岩组成,其岩性主要为灰绿色玄武岩、薄层状粉砂岩、砂岩、凝灰质砂岩、晶屑凝灰岩、岩屑晶屑凝灰岩,另有少量流纹岩(其分布不及玄武岩的10%)。区内该套岩性组合总厚度不大,以玄武岩与酸性火山碎屑岩或沉积碎屑岩多次不均匀互层以及夹少量的流纹岩为特征,在时空上构成了双峰式火山岩组合。玄武岩表面呈灰绿色,斑状结构,杏仁状构造,斑晶以自形板状斜长石为主,粒径多为0.5~1.5 mm,含量一般为5%~10%。基质粒度多小于0.1 mm,由斜长石和辉石微晶及少量玻璃质构成间隐结构(图2-a);斜长石微晶多呈长柱状或针状,长宽比可超5∶1;填隙辉石多呈微棕色,细粒状。岩石杏仁较为发育,多为椭圆状,大小多为1 mm,成分以长英质为主(图2-b)。酸性火山碎屑岩为灰绿色,依成分可划分为晶屑凝灰岩和岩屑晶屑凝灰岩等,具凝灰结构、块状构造,岩石组成中碎屑质量分数一般大于65%,其中晶屑成分为烟灰色、灰白色它形粒状石英及少量斜长石和白云母(图2-c);岩屑成分以酸性火山熔岩为主,充填物质量分数小于35%,为火山灰。流纹岩呈灰白色,斑状结构,块状构造。斑晶含量可达15%~20%,其成分主要为石英和斜长石,粒度多在0.3~1.0 mm;其中石英呈它形粒状,具有一定的定向排列;斜长石呈半自形板片状,发育聚片双晶。基质为霏细状长英质,粒度多在0.1 mm以下,晶粒界线不清。次生蚀变多以绢云母化和碳酸盐化为主,含有少量纤片状绢云母,均匀分布于基质当中(图2-d)。

图1 研究区区域地质略图(据1∶25万三道岭幅建造构造图修改,2009)Fig.1 Schematic geological tectonic map of study area (after reference 1 to 250 thousand Sandaoling construction of structural map, 2009) 1-第四纪冲洪积物;2-中下侏罗统水西沟群;3-渐新统桃树园组;4-中二叠统卡拉岗组;5-下二叠统石人子沟组;6-上石炭统柳树沟组;7-下石炭统七角井组;8-晚二叠世钾长花岗岩;9-晚二叠世辉绿岩;10-早二叠世辉绿岩;11-早二叠世橄榄岩-辉长岩;12-断层及角度不整合;13-采样位置;①-东准噶尔造山带;②-准噶尔盆地;③-博格达造山带;④-哈尔里克晚古生代岛弧;⑤ -吐哈地块;⑥-觉罗塔格晚古生代岛弧;⑦-南天山晚古生代岛弧1-Quaternary alluvial material; 2-middle and lower Jurassic Shuixigou Formation; 3-Oligocene Taoshuyuan Formation; 4-middle Permian Kalagang Formation; 5-lower Permian Shirenzigou Formation; 6-upper Cambrian Liushugou Formation; 7-lower Cambrian Qijiaojing Formation; 8-late Permian Moyite; 9-late Permian diabase; 10-early Permian diabase; 11-early Permian peridotite and gabbro; 12-fault and angular unconformity; 13-sampling position; ①-east Junggar orogenic belt; ②-Junggar basin; ③-Bogda orogenic belt; ④-late Pa laeozoic Harlik island arc; ⑤-Tuha plots; ⑥-late Paleozoic Jueluotage island arc; ⑦-late Paleozoic south Tianshan island arc

图2 博格达造山带克孜库都克地区七角井组火山岩镜下照片Fig.2 Microphotographs of the volcanic rocks of the Qijiaojing Formation from the Kezikuduke area of Bogda suture zone a-玄武岩间隐结构;b-玄武岩杏仁状构造;c-中酸性火山岩碎屑岩;d-流纹岩;Ms-白云母;Pl-斜长石;Qz-石英;Ser-绢 云母;Aug-普通辉石(a、b、c、d-正交偏光)a-Intersertal texture of basalts; b-Amygdaloidal structure of basalts; c-Acid volcaniclastic rocks; d-Rhyolite; Ms-Muscovite; Pl -Plagioclase; Qz-Quartz; Ser-Sericite; Aug-Augite (a, b, c, d-crossed nicols)

2 样品采集与测试

本文选取了来自博格达造山带东段克孜库都克地区七角井组玄武岩(BD-07)进行LA-ICP-MS法锆石U-Pb定年分析,并将实测剖面取得的6块样品进行岩石地球化学分析,采样位置见图1b。

锆石样品在河北省地勘局廊坊实验室内完成处理。首先经过破碎,经淘洗、浮选和电磁选方法富集锆石,再在双目镜下用手工方法逐个挑选晶型完好、无裂隙、干净透明的锆石颗粒制作样靶,用环氧树脂固定,固化后将靶上的锆石颗粒打磨至中心部位露出后,进行抛光并进行阴极发光(CL)研究和LA-ICP-MS锆石U-Pb同位素组成分析。阴极发光在长安大学西部矿产资源与地质工程教育部重点实验室扫描电镜加载阴极发光仪上完成。锆石U-Pb同位素测定在天津地质矿产研究所分析测试中心完成。分析仪器采用德国Microlas公司生产的GeoLas200M激光剥蚀系统与Elan6100DRC-ICP-MS联机上进行测定,分析采用的激光斑束直径为30μm,激光脉冲为10Hz,能量为32~36mJ,激光剥蚀样品的深度为20~40μm,锆石年龄测定采用国际标准锆石91500作为外部标准物质。所得数据用Glitter(ver4.0, Mac Quarie University)程序进行计算和处理并对其进行普通铅校正。所有样品均采用206Pb/238U年龄,年龄计算及谐和图采用Isoplot(ver3.0)完成。单个数据点的误差均为1σ,其加权平均值的置信度为95%。进行岩石地球化学分析时,首先将样品表面杂质清除,切除风化面,在玛瑙研钵中无污染破碎研磨至200目制成分析样品。全岩及微量元素测试分析由西安地质矿产研究所完成。主量元素除FeO和LOI采用标准湿化学法分析外,其他元素均采用PW4400型X萤光光谱仪XRF测定,分析误差低于5%;微量元素和稀土元素采用X-Series II型电感耦合等离子质谱仪ICP-MS测定,检测限优于5×10-9,相对标准偏差也优于5%。

3 地球化学特征

3.1 主量元素

研究区七角井组玄武岩地球化学分析结果见表1。从表1可以看出,七角井组玄武岩SiO2含量较低,介于47.68%~48.82%之间,平均为48.33%;富钠贫钾(Na2O/K2O=5.44~7.76),Na2O含量为2.55%~3.18%,K2O含量为0.39%~0.54%;全碱(Na2O+K2O)含量为2.96%~3.59%,里特曼指数σ=1.76~2.75,平均为2.08,为亚碱性系列;TiO2含量为1.83%~2.17%,总体上略高于N-MORB(Wilson, 1989)(TiO2≈1.15%);Al2O3含量较高,介于15.56%~16.09%;MgO含量较低,介于5.97%~7.17%之间,Mg#为43~47,低于典型MORB的Mg#(Rapp, 1997)(Mg#=60)。在Na2O+K2O-SiO2图解(图3a)及FeOT/MgO-SiO2图解(图3b)中样品投入玄武岩域,属拉斑系列。

3.2 微量元素和稀土元素

由玄武岩微量元素分析结果(表1)可知,七角井组玄武岩稀土元素总量变化不大,介于100.50×10-6~108.80×10-6之间,平均为103.52×10-6。在稀土元素球粒陨石标准化配分模式图(图4a)上,玄武岩稀土配分曲线整体上接近平坦型,轻重、稀土元素之间存在微弱的分异现象,LREE轻度富集,ΣLREE/ΣHREE为2.98~3.17,(La/Yb)N为2.01~2.20,(La/Sm)N为1.14~1.22,(Gd/Yb)N为1.44~1.49,δEu为0.89~0.93,平均为0.91,轻微负铕异常,表明其原始岩浆在演化过程中斜长石的分离结晶作用不明显,并暗示由于伸展拉张导致大陆地壳减薄、玄武岩浆快速上升至地表喷发。其稀土配分模式与世界上典型的大陆溢流玄武岩(Wilson,1989)以及大陆裂谷玄武岩(Wilson,1989)稀土配分模式十分相似。

表1 博格达造山带东段早石炭世玄武岩主量元素(%)和微量元素(10-6)分析结果

续表1

Continued Table 1

样品号CuPbZnCrNiCoLiRbCsMoSrBaV13BD-06H63 413 599 818978 239 112 44 950 400 7133417827013BD-07H61 612 010715275 838 414 69 260 460 5537312727713BD-08H64 112 297 918476 938 712 34 850 400 5433916426913BD-11H62 43 6189 519769 536 612 17 010 430 9135113727313BD-13H62 19 1310315462 437 69 195 420 301 0931912628313BD-14H63 54 1795 413262 838 611 24 300 320 74302142274样品号ScNbTaZrHfGaUThYLaCePrNd13BD-06H33 04 060 351503 8818 90 300 7432 611 430 24 5721 413BD-07H34 44 150 341544 0619 10 310 7833 711 530 54 6722 013BD-08H33 04 000 331463 8918 40 300 7432 511 430 74 6021 213BD-11H36 14 150 331503 9518 40 320 9933 312 131 84 7521 913BD-13H32 34 770 391784 5218 30 330 7935 012 533 04 9622 613BD-14H32 24 500 361694 3518 40 280 7533 512 032 04 7422 0样品号SmEuGdTbDyHoErTmYbLu∑REEδEuδCe13BD-06H5 991 876 851 126 811 403 910 593 830 56100 50 891 0113BD-07H6 321 987 041 197 201 463 950 603 830 57102 810 901 0013BD-08H6 121 956 781 116 781 363 770 583 680 55100 580 921 0213BD-11H6 231 986 821 116 811 393 860 583 700 56103 590 921 0113BD-13H6 572 097 431 207 381 504 210 654 100 61108 80 911 0113BD-14H6 432 046 951 147 051 413 950 613 900 59104 810 931 02

在微量元素原始地幔标准化蛛网图(图4b)上,研究区玄武岩不相容元素Rb、Ba、P等相对富集,Th、Nb、Ta、Sr、Ti等相对亏损,这与许多地区大陆拉斑玄武岩特征一致(Depuy and Dostal,1984;Holm,1985;Jolly,1987;李昌年,1992;Pin and Marinl,1993),并表明其玄武岩浆可能受到过一定程度的地壳混染。此外玄武岩微量元素Ni(62.40×10-6~78.20×10-6)和Cr(132.00×10-6~197.00×10-6)远低于判别原始岩浆的参考数值(Wendlandtetal.,1999)(Ni≈250.00×10-6、Cr≈300.00×10-6),表明玄武岩浆早期演化过程中可能发生过橄榄石、辉石的结晶分离作用,这也与该区玄武岩较低的Mg#值(Mg#=43~47)相吻合。

4 锆石CL分析和LA-ICP-MS法锆石U-Pb测年

笔者对研究区七角井组玄武岩样品(样品号BD-07)进行了锆石U-Pb定年。该岩石中的锆石大多无色透明,颗粒较小,呈长条状,长约50~150μm,宽约20~50μm,粒径比约为3∶1,晶面清晰,CL图像(图5)显示这些锆石均发育有清晰的岩浆震荡环带,表明其为典型的岩浆锆石(吴元保和郑永飞,2004)。本次锆石LA-ICP-MS法U-Pb测年获得有效测试数据为15个,具体分析结果见表2。在一致曲线图中(图6),获得15个数据点的206Pb/238U加权平均年龄为331.0±3.0Ma(MSWD=3.7,置信度95%)。玄武岩为快速冷凝,可以代表岩石的形成时代,归入早石炭世晚期。

5 讨论

5.1 构造环境

研究发现,双峰式火山岩可以产生于洋内岛弧(Brouxeletal., 1987;赖绍聪和张国伟,2002;Jollyetal., 2008)、洋岛(Geistetal.,1995)、大陆拉张减薄(Duncanetal., 1984;Pinetal.,1993;Garlandetal., 1995;李献华等,2002)、活动大陆边缘(Donnelly and Rogers,1980)、弧后盆地(Shinjo and Kato,2000;申萍等,2008)、成熟岛弧(Freyetal.,1984;Pin and Marinl,1993;耿全如等,2005)以及造山后拉张(Coulonetal.,1986;陈培荣等,1999;章邦桐等,2002;Zhangetal.,2008)等多种不同的构造背景下,但主体以大陆裂谷环境为主。研究区中酸性火山碎屑岩(少量流纹岩)地球化学特征主要受控于其壳源性质,不能较好的反映其成岩环境,本文主要通过基性熔岩地球化学特征来确定该套双峰式火山岩的形成环境。由主量元素特征可以看出,研究区玄武岩样品SiO2含量较低,属拉斑系列,具有富钠贫钾的特点(Na2O/K2O=5.44~7.76),TiO2含量(1.83%~2.17%)略高于N-MORB(Wilson,1989)(TiO2≈1.15%),具高Al(Al2O3含量为15.56%~16.09%)、低Mg(MgO含量为5.97%~7.17%,Mg#为43~47)的地球化学特征,暗示着这些基性熔岩具有裂谷演化初期岩浆成分的特点,它们都是不厚的大陆地壳受到快速拉张,岩石圈地幔发生较高程度部分熔融的产物(舒良树等,2005),明显不同于洋脊玄武岩和大陆裂谷碱性玄武岩,而与大陆裂谷拉斑玄武岩十分相似(Hyndman,1985)。从表1中可以看出,玄武岩微量元素Nb/La值为0.34~0.38,与上地壳接近(Rudnick and Gao,2003)(Nb/La≈0.39);Nb/U为12.97~16.07,与中下地壳相近(Rudnick and Gao,2003)(Nb/U≈7.69~25.00),表明其可能受到一定程度的陆壳物质混染。而陆壳物质混入通常会对玄武岩Ta、Nb等元素的含量产生较大的影响,并导致高场强元素段呈现明显的Ta、Nb谷,在构造环境恢复的过程中可能会误判为岛弧环境(Ernstetal.,2005;夏林圻等,2007)。Zr、Y等元素的含量受地壳物质混染影响不大,可以较准确地反映玄武岩的形成环境(夏林圻等,2007),研究区玄武岩Zr/Y为4.50~5.09(>4),在Zr-Zr/Y图解(图7)中,样品均落入板内玄武岩区域,表明其形成于板内环境。另外,初步的锆石U-Pb年代学研究表明该套火山岩形成于早石炭世晚期(331.0±3.0Ma),结合区域地质背景,准噶尔-吐哈地块在早石炭世已经处于大陆减薄的体制下,不可能是弧-陆俯冲碰撞事件的产物;此外研究区内迄今还未发现晚古生代的大洋地壳和海沟沉积物、蛇绿混杂岩、双变质带和板块俯冲的其它证据,北部的卡拉麦里洋在早石炭世或更早就已闭合(Duncanetal.,1984;何国琦等,1994;李锦轶,1995;李锦轶和肖序常,1999),表明该套火山岩应形成于大陆裂谷环境,这与林晋炎(1993)所作的博格达造山带石炭系沉积层序的研究结果也相一致。

图3 七角井组玄武岩Na2O+K2O-SiO2(a)和FeOT/MgO-SiO2(b)图解(a据Le Bas,1986;b据Miyashiro,1975)Fig.3 Na2O+K2O-SiO2 (a) and FeOT/MgO-SiO2 (b) diagrams of the Qijiaojing Formation basalts(a, after Le Bas, 1986; b, after Miyashiro, 1975)

图4 七角井组玄武岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)(球粒陨石标准化数据据Boynton,1984;原始地幔标准化值引自Sun and McDonough,1989)Fig.4 The rare earth elements distribution patterns (a) and the primitive mantle normalized trace element spidergrams (b) of the Qijiaojing Formation basalts(Chondrite normalized data after Boynton, 1984; Primitive mantle normalized data after Sun and McDonough, 1989)

图5 七角井组玄武岩样品(样号BD-07)的锆石CL照片Fig.5 CL images of the the Qijiaojing Formation basalts (Sample No.BD-07)

点号207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U含量(×10-6)比值1σ比值1σ比值1σ年龄1σ年龄1σ年龄1σPbU10 41030 02070 05410 00040 02750 00274121103491834031727420 38370 02170 05140 00040 02430 00213771233301932331424130 38550 02530 05160 00050 01690 00133781463312232431629240 39450 01220 05320 00040 01920 0013364663381033433353750 39520 01940 05220 00040 02590 00164081053381732831423560 38950 02250 05160 00040 02450 00134041273341932431220770 39560 01810 05240 00040 02170 0011403993381532931526480 39290 02030 05300 00040 02540 00133621143361733331829490 40450 02180 05370 00050 02880 001439511634519337317273100 38520 02060 05260 00040 01500 000633411833118330318314110 41050 01940 05410 00040 01600 000741310334917340316298120 39040 02400 05280 00050 01780 000835713333521332310207130 39770 01920 05320 00040 01690 000737910434016334319337140 39230 05270 05210 00060 01800 00103953013364532847122150 40560 02280 05330 00050 01150 000642012434619335318321

图6 七角井组玄武岩样品(样号BD-07)的LA-ICP-MS锆石U-Pb年龄谐和图Fig.6 LA-ICP-MS zircon U-Pb condordia diagram of the Qijiaojing Formation basalts (Sample No.BD-07)

图7 七角井组玄武岩Zr-Zr/Y构造环境判别图解(据Deniel,1998)Fig.7 Zr-Zr/Y tectonic environments discrimination diagram of the Qijiaojing Formation basalts (after Deniel, 1998)

5.2 岩浆岩区

双峰式火山岩的基性端元源自于地幔岩部分熔融的成因模式基本得到学术界认同。微量元素比值通常是判别源区的有效手段之一,该区玄武岩Zr含量为146.00×10-6~178.00×10-6,Y含量为32.50×10-6~35.00×10-6,Zr/Y为4.50~5.09(>4),并结合微量元素Zr-Nb源区判别图解(图8)表明该区玄武岩中含有相当数量亏损地幔物质(Pearce,1982;Condie,1989)。

图8 七角井组玄武岩Zr-Nb图解Fig.8 Zr-Nb diagrams of the Qijiaojing Formation basalts

在研究岩石成因时,Zr/Nb-Ce/Y图解常被用来判断玄武岩浆的源区矿物相组成(Condie,1989),研究区玄武岩样品的Zr/Nb为36.14~37.56,Ce/Y为0.91~0.96,在Zr/Nb-Ce/Y判别图解(图9a)中落入亏损尖晶石橄榄岩和原始石榴石橄榄岩的熔融曲线之间,且部分熔融程度较高。有研究表明,来源于不同矿物相源区不同部分熔融程度形成的玄武岩浆具有不同的Dy/Yb比值(Deniel,1998),一般认为当Dy/Yb>2.5时,部分熔融发生在含石榴石地幔源区,而当Dy/Yb<1.5时则为尖晶石地幔源区(Milleretal.,1999),研究区玄武岩样品Dy/Yb值为1.78~1.88,在Dy/Yb-La/Yb图解(图9b)中处于石榴石二辉橄榄岩熔融趋势线以下,尖晶石二辉橄榄岩熔融趋势线以上,部分熔融程度接近20%。以上特征均表明该区玄武岩可能是亏损尖晶石相橄榄岩向石榴石相橄榄岩过渡相较高程度部分熔融的产物。另外值得注意的是,在微量元素原始地幔标准化蛛网图(图4b)上,研究区玄武岩不相容元素Nb、Ta、Ti等相对亏损,表明源区可能有地壳物质的加入(Rolilnson,1993;Rudnick and Land,1995),通过K2O/TiO2和K2O/P2O5等氧化物比值的大小通常可以反映地壳混染的程度(Guoetal.,2005),该区玄武岩K2O/TiO2=0.18~0.27和K2O/P2O5=1.03~1.54,说明在岩浆演化过程中受到的地壳混染作用微弱。

5.3 构造岩浆演化过程

新疆北部地区属中亚造山带在中国大陆的重要组成部分,其古生代是以洋盆俯冲、闭合、陆块碰撞造山为特点的主造山期,记录了古亚洲洋形成闭合的演化过程(张玉杰,2013)。在天山大部分地区,广泛出露了一套石炭纪火山岩,但其构造属性与博格达地区有所差异。朱永峰等(2005)获得西天山大哈拉将军组石炭纪火山岩中玄武岩和粗面安山岩锆石SHRIMP年龄分别为353.7±4.5 Ma和312.8±4.2 Ma,分别属于早石炭世早期和晚石炭世早期,并被认为是代表古南天山洋的火山岛弧(龙灵利等,2008;Zhuetal.,2009),并具有自西向东逐渐消亡,至晚石炭世被碰撞后富钾岩浆喷发所替代(朱永峰等,2006),或被推测为大陆边缘弧后拉张的产物(钱青等,2006)。侯广顺等(2005)和李向民等(2004,2006)获得东天山企鹅山群石炭纪火山岩中玄武岩、安山岩和酸性火山岩锆石U-Pb年龄分别为334Ma、322 Ma和319Ma,并被认为形成于大陆裂谷环境,但最近开展的一系列火山岩和花岗岩研究表明,早石炭世火山岩更倾向形成于岛弧环境,与康古尔古大洋南北俯冲作用有关(侯广顺等,2006;李文铅等,2006)。上述研究成果表明在天山大部分地区石炭纪火山岩倾向于俯冲流体参与下的岩浆作用的产物,与研究区石炭纪陆内裂谷的构造属性有所不同。

顾连兴等(2001)研究认为,博格达裂谷的形成很可能是位于西伯利亚大陆和吐-哈地块之间的古亚洲洋壳(马瑞士等,1993)俯冲过程中的产物,该认识对笔者分析该区石炭纪岩浆构造演化过程具有重要的指导意义。从研究区早石炭世玄武岩地球化学特征、构造环境和岩浆源区的分析结果,可知玄武岩浆源于亏损地幔,且受到较弱程度的地壳物质混染,形成于陆内裂谷环境,其地球动力学体制可能与古亚洲洋壳向先存的准噶尔-吐哈陆块由北向南斜向俯冲,产生的侧向撕裂力拉张陆块有关(顾连兴等,2001b)。早石炭世初期,整个准噶尔-吐哈地块受到古亚洲洋从北向南俯冲,准噶尔-吐哈地块的东部哈密一带向东突出,受洋盆向南俯冲的影响,向东突出部分受到洋壳俯冲自北而南的应力较大发生了顺时针旋转,博格达东段及巴里坤一带受了侧向应力的影响,形成了该区区域性伸展拉张的构造背景,准噶尔-吐哈地块开始拉张,产生了博格达初始裂谷;早石炭世中后期,地壳的拉张减薄引起岩石圈地幔因减压而发生部分熔融,形成玄武质岩浆,岩浆在上涌过程中,由于压力的不断变化,部分岩浆在地壳内部和深部侧向流动产生的水平力矩以及热力对岩石圈的软化进一步加大了地壳的伸展变形,但总体而言在裂谷发育初期阶段,岩石圈撕裂程度不大,幔源岩浆上升缓慢,在下地壳中停留时间较长,玄武岩浆除部分喷发到地表以外,在地壳深部形成了一定规模的次生岩浆房,为结晶分异形成中酸性岩浆提供了时间和空间,造成了辉石和橄榄石的分离结晶以及岩浆受到地壳物质的混染;分异之后的玄武岩浆随后上升喷出地表,形成了早期的中酸性火山岩,由于中酸性岩浆是玄武岩浆分异结晶的产物,这就造成了研究区(克孜库都克地区)、七角井刺梅沟地区(王银喜等,2006)和西地—伊齐一带(田黎萍等,2010)下石炭统七角井组玄武岩明显比流纹岩分布广泛。晚石炭世初期,随着洋壳的继续俯冲,拉张应力进一步增大,岩石圈撕裂程度不断加大,地壳厚度越来越薄,地壳物质重熔所产生的中酸性岩浆在下部岩浆压力的影响下开始逐步上侵,逐渐接近地表,压力突然发生变化,岩浆迅速喷出地表,开始形成了晚石炭世大量的中酸性火山岩,中酸性火山岩中残留的斜长石表明尚未完全重熔的地壳物质紧跟着一起喷出地表,地幔中上涌的玄武岩浆以及次生岩浆房中发生了结晶分异的玄武岩浆也由于压力的剧减紧跟着中酸性岩浆向地表快速运移,喷出地表,形成了博格达地区上石炭统柳树沟组大量的双峰式火山岩建造(顾连兴等,2000;王金荣等,2010;梁婷等,2011;高景刚等,2013),此时裂谷已经发育到了全盛时期,岩石圈的撕裂程度达到了最大。然而裂谷发育并未持续很长时间,随着中-晚石炭世天山地区古洋盆的关闭以及各大板块的碰撞(陈衍景,1996;胡霭琴等,1997;李锦轶等,2006),岩石圈开始闭合,上涌的地幔岩浆和次生岩浆房中的玄武岩浆在经历了短暂的喷发之后被阻挡在了地壳之下,重熔的中酸性岩浆上侵继续喷发地表,然而时间不长,随着区域性挤压应力的加剧,岩石圈进一步闭合,中酸性岩浆也逐渐被阻挡了地壳深部或下部,火山活动趋于微弱,裂谷走向消亡。晚石炭世末期北疆地区板块的持续碰撞,研究区挤压应力持续作用,甚至逐渐变强,撕裂的岩石圈闭合,岩浆被完全挡在了岩石圈之下,火山活动停息,裂谷最终走向消亡(流纹岩Rb-Sr等时线年龄为278Ma±0.76Ma(王银喜等,2005))。通过上述对博格达裂谷构造岩浆演化过程的研究表明,博格达裂谷开启于早石炭世初期,闭合于晚石炭世末期,其寿命可能只有60Ma,由于在整个博格达裂谷发育过程中,迄今还未发现证据充分的晚古生代大洋地壳、海沟沉积物、蛇绿混杂岩和双变质带,表明裂谷的发育并未达到出现一定规模洋盆的阶段,这对深入研究博格达造山过程及其效应具有一定的指示意义。

图9 七角井组玄武岩Zr/Nb-Ce/Y图解(a)和La/Yb-Dy/Yb图(b)(a据Deniel,1998;b据Miller et al.,1999)Fig.9 Zr/Nb-Ce/Y (a) and La/Yb-Dy/Yb (b) diagrams of the Qijiaojing Formation basalts(a, after Deniel, 1998; b, after Miller et al., 1999)

6 结论

通过对博格达造山带东段克孜库都克地区早石炭世玄武岩岩石学、岩石地球化学、年代学研究得出以下结论:

(1) 博格达造山带东段克孜库都克地区七角井组玄武岩及酸性火山碎屑岩夹少量的流纹岩在时空上构成了双峰式火山岩,通过精确的LA-ICP-MS锆石U-Pb方法,获得其玄武岩成岩年龄为331.0±3.0 Ma,属于早石炭世晚期。

(2) 根据详细的岩石学和地球化学研究表明,研究区早石炭世玄武质岩浆源于亏损尖晶石相地幔橄榄岩向石榴石相地幔橄榄岩过渡相较高程度的部分熔融,且受到较弱程度的地壳物质混染,形成于陆内裂谷环境,其动力学体制可能与古亚洲洋壳向先存的准噶尔-吐哈陆块斜向俯冲,产生的侧向撕裂力拉张陆块有关。

(3) 研究区早石炭世七角井组玄武岩构造属性的确定进一步证实了博格达造山带在石炭纪时期处于大陆裂谷演化过程的观点,为进一步理解博格达地区石炭纪构造岩浆活动提供新的地质与年代学依据,为深入理解天山构造动力学演化过程具有一定的科学参考价值。

Boynton W V. 1984. Cosmochemistry of the rare earth elements[J]. Meteorite Studies Dev, Geochemistry, 2: 63-114

Brouxel M, Lapierre H, Michard A, Albrede F. 1987. The deep layers of a Paleozoic arc: geochemistry of the Copley-Blaklala series, northern California[J]. Earth and Planetary Science Letters, 85: 386-400

Chen Pei-rong, Kong Xing-gong, Wang Yin-xi, Ni Qi-sheng, Zhang Bang-tong, Ling Hong-fei. 1999. Rb-Sr isotopic dating and significance of early Yanshan bimodal volcanic-intrusive complex from south Jiangxi province[J]. Geological Journal of China University, 5: 378-383 (in Chinese with English abstract)

Chen Yan-jing. 1996. Mineralization during collisional orogenesis and its control of the distribution of gold deposits in Junggar mountains, Xinjiang, China[J]. Acta Geologica Sinica, 70(3): 253-261 (in Chinese with English abstract)

Condie K C. 1989. Geochemical changes in basalts and andesites across the Archaean-Proterozoic boundary: Identification and significance[J]. Lithos, 23: 1-18

Coulon C, Maluski H, Bollinger C. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamic significance[J]. Earth and Planetary Science Letters, 79: 281-302

Deniel C. 1998. Geochemical and isotopic (Sr-Nd-Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean)[J]. Chem. Geol, 144: 281-303

Depuy C, Dostal J. 1984.Trace elements geochemistry of some continental tholeiites[J]. Earth and Planetary Science Letters, 67: 61-69

Donnelly T W, Rogers J J W. 1980. Igneous series in island arcs: the northeastern Caribbean compared with worldwide island-arc assemblages[J]. Bulletin Volcanologique, 43: 347-382

Duncan A R, Erlank A J, Marsh J S. 1984. Regional geochemistry of the Karoo igneous province[J]. Special Publication Geological Society of Africa, 13: 355-388

Ernst R E, Buchan K L, Campbell I H. 2005. Frontiers in large igneous province research[J]. Lithos, 79: 271-297

Fang Guo-qing. 1993. Sedimentological evidence of late Paleozoic Bogda island arc[J]. Acta Sedimentologica Sinica, 11(3): 31-36 (in Chinese with English abstract)

Frey F A, Geflaeh D C, Hickey R L, Leopoldo L E, Francisco M V. 1984. Petrogenesis of the Laguna el Mauje volcanic complex, Chile(360S)[J]. Contributions to Mineralogy and Petrology, 88: 133-149

Garland F, Hawkesworth C J, Mantovanim S M. 1995. Description and petrogenesis of the Parana rhyolites, southern Brazil[J]. Journal of Petrology, 36: 1193-1227

Geist D, Howard K A, Larson P. 1995. The generation of oceanic rhyolites by crustal fractionation: the basalt-rhyolite association at Volcano Alcedo, Galapagos Archipelago[J]. Journal of Petrology, 36: 965-982

Geng Quan-ru, Pan Gui-tang, Jin Zhen-min, Wang Li-jin, Zhu Di-cheng, Liao Zhong-li. 2005. Petrogenesis and Geochemistry of the volcanic rocks from the Yeba formation in the Gangdisi zone, Xizang[J]. Earth Science, 30: 747-760 (in Chinese with English abstract)

Gu Lian-xing, Hu Shou-xi, Yu Chun-shui, Zhao Ming, Wu Chang-zhi, Li Hong-yu. 2001a. Intrusive activities during compression-extension tectonic conversion in the Bogda intracontinental orogen[J]. Acta Petrologica Sinica, 17(2): 187-198 (in Chinese with English abstract)

Gu Lian-xing, Hu Shou-xi, Yu Chun-shui, Wu Chang-zhi, Yan Zhen-fu. 2001b. Initiation and evolution of the Bogda subduction-torn-type rift[J]. Acta Petrologica Sinica, 17(4): 585-597 (in Chinese with English abstract)

Gu Lian-xing, Hu Shou-xi, Yu Chun-shui, Li Hong-yu, Xiao Jian-xin, Yan Zhen-fu. 2000. Carboniferous volcanites in the Bogda orogenic belt of eastern Tianshan: their tectonic implications[J]. Acta Petrologica Sinica, 16(3): 305-316 (in Chinese with English abstract)

Guo F, Fan W M, Wang Y J, Chao W L. 2005. Petrogenesis and tectonic implication of Early Cretaceous high-K calc-alkaline volcanic rocks in the Laiyany basin of the Sulu belt, eastern China[J]. The Island Are, 14: 69-90

Gao Jing-gang, Li Wen-yuan, Guo Xin-cheng, Zhou Yi, Liu Jian-chao, Fan Ting-bin, Zhou Ru-hong. 2013. Studies on the geochemistry, zircon U-Pb age and geological significance of diabase in the Sepikou region, eastern Bogda, Xinjiang[J]. Xinjiang Geology, 31(2): 117-123 (in Chinese with English abstract)

Gao Jing-gang, Li Wen-yuan, Zhou Yi, Liu Jian-chao, Fan Ting-bin, Lu Lin, Zhou Ru-hong. 2013. Geochemistry, zircon ages and geological significance of the Liushugou formation rhyolite in the Sepikou region, eastern Bogda, Xinjiang[J]. Geology and Exploration, 2013, 49(4): 665-675 (in Chinese with English abstract)

He Guo-qi, Li Mao-song, Liu De-quan, Tang Yan-ling, Zhou Hong-ru. 1994. Paleozoic crustal evolution and Mineralization in Xinjiang of China[M]. Urumiqi: Xinjiang People’s Publication Press: 1-100 (in Chinese)

Holm P E. 1985. The Geochemical fingerprints of different tectonomagmatic environments using hydromagmatophile element abundances of tholelitic basalts and basaltic andesites[J]. Chemical Geology, 51: 303-323

Hou Guang-shun, Tang Hong-feng, Liu Cong-qiang, Wang Yan-bin. 2005. Isotopic-chronological and geochemical study on the wallrock of Tuwu-Yangdong porphyry copper deposits, eastern Tianshan mountains[J]. Acta Petrologica Sinica, 21(6): 1729-1736 (in Chinese with English abstract)

Hou Guang-shun, Tang Hong-feng, Liu Cong-qiang. 2006. Geochemical characteristics of the late Paleozoic volcanic rocks in Jueluotage tectonic belt, eastern Tianshan and its implications[J]. Acta Petrologica Sinica, 22(5): 1167-1177 (in Chinese with English abstract)

Hu Ai-qin, Wang Zhong-gang, Tu Guang-zhi. 1997. Geological evolution and diagenesis and mincralization in northern Xinjiang[J]. Beijing: Science Press: 1-246 (in Chinese with English abstract)

Hyndman D W. 1985. Petrology of igneous and metamorphic rocks[J]. NewYork: McGraw-Hill: 135-141

Jolly W T, Lidiak E G, Dickin A P. 2008. Bimodal volcanism in northeast Puerto Rico and the Virgin Islands(Greater Antilles Island Arc): Genetic links with Cretaceous subduction of the mid-Atlantic ridge Caribbean spur[J]. Lithos, 103: 393-414

Jolly W T. 1987. Geology and Geochemistry of Huronian rholites and low-Ti continental tholeiites from the Thessalon region, central Ontario. Can[J]. Earth Science, 24: 1360-1385

Lai Shao-cong, Zhang Guo-wei. 2002. Geochemistry of the volcanic rock association from Wuliba area in Mianlue suture zone, southern Qinling and its tectonic significance[J]. Geotectonica et Metallogenia, 26: 43-50 (in Chinese with English abstract)

Long Ling-li, Gao Jun, Qian Qing, Xiong Xian-ming, Wang Jing-bin, Wang Yu-wang, Gao Li-ming. 2008. Geochemical characteristics and tectonic settings of Carboniferous volcanic rocks from Yili region, western Tianshan[J]. Acta Petrologica Sinica, 24(4): 699-710 (in Chinese with English abstract)

Le Bas M J, Le Maite R W, Steckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 27: 745-750

Li Xiang-min, Xia Lin-qi, Xia Zu-chun, Xu Xue-yi, Ma Zhong-ping, Wang Li-she. 2004. Zircon U-Pb geochronology of volcanic rocks of Qi’eshan group in the east Tianshan mountains[J]. Geological Bulletin of China, 23(12): 1215-1220 (in Chinese with English abstract)

Li Xiang-min, Xia Lin-qi, Xia Zu-chun, Xu Xue-yi, Ma Zhong-ping, Wang Li-she. 2006. Petrogenesis of the Carboniferous Qi’eshan group volcanic rocks in the east Tianshan[J]. Journal of Jilin University(Earth Science Edition), 36(3): 336-341 (in Chinese with English abstract)

Li Xian-hua, Zhou Han-wen, Li Zheng-xiang, Liu Yin. 2002. Petrogenesis of Neoproterozoic bimodal volcanic in western Sichuan and its tectonic implications: geochemical and Sm-Nd isotopic constraints[J]. Chinese Journal of Geology, 37: 264-276 (in Chinese with English abstract)

Li Wen-qian, Xia Bin, Wang Ke-zhuo, Wang Xi, Wang He. 2006. Zircon SHRIMP age and geochemistry of Caizhong granite from east Tianshan, Xinjiang, China[J]. Acta Geologica Sinica, 80(1): 43-52 (in Chinese with English abstract)

Li Jin-yi. 1995. Main characteristics and emplacement processes of the east Junggar ophiolites, Xinjiang, China[J]. Acta Petrologica Sinica, 11(Suppl.): 73-84 (in Chinese with English abstract)

Li Jin-yi, Xiao Xu-chang. 1999. Brief reviews on some issues of framework and tectonic evolution of Xinjiang crust, northwest China[J]. Chinese Journal of Geology, 34: 405-419 (in Chinese with English abstract)

Li Jin-yi. 2004. Late Neoproterozoic and Paleozoic framework and evolution of eastern Xinjiang, northwestern China[J]. Scientia Geologica Sinica, 50(3): 304-322 (in Chinese with English abstract)

Li Jin-yi, Wang Ke-zhuo, Sun Gui-hua, Mo Shen-guo, Li Wen-qian, Yang Tian-nan, Gao Li-ming. 2006. Palaozoic active margin slices in the southern Turfan-Haimi basin: geological records of subduction of the Paleo-Asian ocean plate in central Asian regions[J]. Acta Petrologica Sinica, 22(5): 1087-1102 (in Chinese with English abstract)

Li Chang-nian. 1992. Trace elements in igneous petrology[M]. Wuhan: Press of China University of Geosciences: 1-195 (in Chinese with English abstract)

Liang Ting, Guo Xin-cheng, Gao Jing-gang, Fan Ting-bin, Qin Hai-feng, Zhou Ru-hong, Hei Huan. 2011. Geochemistry and structure characteristic of Carboniferous volcanic rocks in the eastern of Bogda mountain[J]. Xinjiang Geology, 29(3): 289-295 (in Chinese with English abstract)

Lin Jin-yan. 1993. The sedimentary sequence of Bogda rift and the formation and evolution of the northern basin of Xinjiang unified land[D]. Doctor of Philosophy thesis, Department of Geology, Northwestern University: 1-20 (in Chinese with English abstract)

Ma Rui-shi, Wang Ci-yin, Ye Shang-fu. 1993. Structural framework and crustal evolution of eastern Tianshan mountains[M]. Nanjing: Nanjing University Publishing House: 1-225 (in Chinese with English abstract)

Ma Rui-shi, Shu Liang-shu, Sun Jia-qi. 1997. Tectonic evolution and metallogeny of eastern Tianshan mountains[M]. Beijing: Geological Publishing House: 1-202 (in Chinese with English abstract)

Miller C, Schuster R, Klötzli U. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 40: 1399-1424

Miyashiro A. 1975. Classification, characteristics and origin of ophiolites[J]. Journal of Geology, 83: 249-281

Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[A]. In: Thorps, R S(ed), Andesites[C]. New York: John Wiley and Sons: 525-548

Pin C, Marinl F. 1993. Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the southern Massif Central, France[J]. Lithos, 29: 177-19

Qian Qing, Gao Jun, Xiong Xian-ming, Long Ling-li, Huang De-zhi. 2006. Petrogenesis and tectonic settings of Carboniferous volcanic rocks from north Zhaosu, western Tianshan mountains: Constrains from petrology and geochemistry[J]. Acta Petrologica Sinica, 22(5): 1307-1323 (in Chinese with English abstract)

Rapp R P. 1997. Heterogeneous source regions for Archean granitoids. In: Wit M J and Ashwal L D (ed.). Green Stone Belts[J]. Oxford: Oxford University Press: 35-37

Rolilnson H R. 1993. Using geochemical data: evolution, presentation, interpretation[M]. Singapore Longman Singapore Publishers: 160-170

Rudnick R L, Land F D M. 1995. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews in Geophysics, 33: 267-309

Rudnick R L, Gao S. 2003. Composition of the continental crust[J]. In: Rudnick R L (ed.). The Crust, Treatise in Geochemistry, Vol. 3. Elsevier-Pergamon, Oxford:1-64

Shen Ping, Shen Yuan-chao, Liu Tie-bing, Lu Jie-jin, Wei Jin-ping, Song Guo-xue, Meng Lei. 2008. Late Paleozoic gold and copper mineralization and tectonic evolution in Xinjiang, China[J]. Acta Petrologica Sinica, 24: 1087-1100 (in Chinese with English abstract)

Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 54: 117-137

Shu Liang-shu, Zhu Wen-bin, Wang Bo, Faure M, Charvet J, Cluzel D. 2005. The post-collision intracontinental rifting and olistostrome on the southern slope of Bogda mountains, Xinjiang[J]. Acta Petrologica Sinica, 21(1): 25-36 (in Chinese with English abstract)

Shu L S, Chen Y T, Lu H F, Charvet J, Laurent C S, Yin Dong-hao. 2000. Paleozoic accretionary terranes in northern Tianshan, northwestern China[J]. Chinese Journal of Geochemistry, 19(3): 193-202

Sun Gui-hua, Li Jin-yi, Zhu Zhi-xin, Li Ya-ping, Yang Zhi-qing. 2007. Zircons SHIMP U-Pb dating of gneissoid-biotitic granite in Harlik Mountains, eastern of Xinjiang and its geological implications[J]. Xinjiang Geology, 25(1): 4-10 (in Chinese with English abstract)

Sun Gui-hua, Li Jin-yi, Zhu Zhi-xin, Li Ya-ping, Yang Zhi-qing. 2007. Detrital zircon SHRIMP U-Pb dating of Carboniferous sandstone from the southern foot of the Harlik Mountains, eastern Xinjiang and its geological implications[J]. Geology in China, 34(5): 778-789 (in Chinese with English abstract)

Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[A]. In Magmatism in the Ocean Basins[C], Saunders A. D. and Norry M. J. eds. , Geological Society, Special Publication, 42: 313-345

Tian Li-ping, Wang Jin-rong, Tang Zhong-li, Tang Zhong-li, Yu Man, Wang Huai-tao, Zhao Zhi-xiong. 2010. Geochemical characteristic and tectonic significance of the early Carboniferous volcanic rocks in eastern Bogda mountains of Xinjiang region[J]. Journal of Lanzhou University, 46(4): 30-41 (in Chinese with English abstract)

Wang Li-li, Zhang Kai, Gao Ming-yuan. 1986. Characteristics of structural evolution and oil-gas potential prediction in southern margin area of Junggar basin[J]. Xinjiang Petroleum Geology, 7(2): 1-9 (in Chinese with English abstract)

Wang Yin-xi, Gu Lian-xing, Zhang Zun-zong, Zhang Kai-jun, Li Hui-min, Wu Chang-zhi, Yang Jie-dong. 2005. Isotopic chronology evidence of Bogda rift closure and regional uplift and geological significance[J]. Acta Geoscientica Sinica, 26(Suppl.): 102-104 (in Chinese with English abstract)

Wang Yin-xi, Gu Lian-xing, Zhang Zun-zong, Wu Chang-zhi, Zhang Kai-jun, Li Hui-min, Yang Jie-dong. 2006. Geochemistry and Nd-Sr-Pb isotopic of the bimodal volcanic rocks of the Bogda rift[J]. Acta Petrologica Sinica, 22(5): 1215-1224 (in Chinese with English abstract)

Wang Jin-rong, Li Tai-de, Tian Li-ping, Tang Zhong-li, Yu Man, Wang Huai-tao, Zhao Zhi-xiong, Tang Zhong-li. 2010. Late Paleozoic tectono-magmatic evolution in Bogda Orogenic Belt, Xinjiang: Evidence from geochemistry of volcanic rocks[J]. Acta Petrologica Sinica, 26(4): 1103-1115 (in Chinese with English abstract)

Wendlandt R F, Altherr R, Neumann E R, Baldridge W S. 1995. Ptrology, geochemistry, isotopes[J]. Developments in Geotectonics, 25: 47-60

Wilson M. 1989. Igneous Petrogenesis[M]. London: Unwin Hyman Press: 1-464

Wu Yuan-bao, Zhen Yong-fei. 2004. Mineralogy of zircon petrogenesis and its constraints to explanation for U-Pb age [J]. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese with English abstract)

Wu Qing-fu. 1986. Structural evolution and prospects of Junggar basin[J]. Xinjiang Geology, 4(3): 1-19 (in Chinese with English abstract)

Xia Lin-qi, Xia Zu-chun, Xu Xue-yi, Li Xiang-min, Ma Zhong-ping. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica, 26(1): 77-88 (in Chinese with English abstract)

Zhang X H, Zhang H F, Tang Y J, Wilde S A, Hu Z C. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 249: 262-281

Zhang Bang-tong, Chen Pei-rong, Kong Xing-gong. 2002. Rb-Sr chronology of bimodal volcanic rocks of the Yutian group in the Lingjiang basin, southern Jiangxi[J]. Geology in China, 29: 351-354 (in Chinese with English abstract).

Zhang Yu-jie, Zhang Dong, Lu Yan-ming, Fan Jun-jie, Pan Ai-jun, Zhang Feng. 2013. Multi-stage tectonic deformation and superimposed gold mineralization in the Karamaili structural belt of eastern Junggar, Xinjiang[J]. Geology and Exploration, 2013, 49(5): 797-812 (in Chinese with English abstract)

Zhu Yong-feng, Zhang Li-fei, Gu Li-bing, Guo Xuan, Zhou Jing. 2005. SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan mountains[J]. Chinese Science Bulletin, 50(18): 2004-2014 (in Chinese with English abstract)

Zhu Y F, Guo X, Song B, Zhang L F, Gu L B. 2009. Petrology, Sr-Nd-Hf isotopic geochemistry and zircon chronology of the late Paleozoic volcanic rocks in the southwestern Tianshan mountains, Xinjiang, NW China[J]. Journal of Geological Society, 166: 1085-1099

Zhu Yong-feng, Zhou Jing, Guo Xuan. 2006. Petrology and Sr-Nd isotopic geochemistry of the Carboniferous volcanic rocks in western Tianshan mountains[J]. Acta Petrologica Sinica, 22(5): 1341-1350 (in Chinese with English abstract)

[附中文参考文献]

陈培荣, 孔兴功, 王银喜, 倪琦生, 章邦桐, 凌洪飞.1999.赣南燕山早期双峰式火山-侵入杂岩的Rb-Sr同位素定年及意义[J].高校地质学报, 5: 378-383

陈衍景.1996.准噶尔造山带碰撞体制的成矿作用及金等矿床分布规律[J].地质学报, 70(3): 253-261

方国庆.1993.博格达晚古生代岛弧的沉积岩石学证据[J].沉积学报, 11(3): 31-36

耿全如, 潘桂棠, 金振民, 王立金, 朱弟成, 廖忠礼.2005.西藏冈底斯带叶巴组火山岩地球化学及成因[J].地球科学, 30: 747-760

顾连兴, 胡受奚, 于春水, 赵明, 吴昌志, 李宏宇.2001a.博格达陆内碰撞造山带挤压-拉张构造转折期的侵入活动[J].岩石学报, 17(2): 187-198

顾连兴, 胡受奚, 于春水, 吴昌志, 严正富.2001b.论博格达俯冲撕裂型裂谷的形成与演化[J].岩石学报, 17(4): 585-597

顾连兴, 胡受奚, 于春水, 李宏宇, 肖建新, 严正富.2000.东天山博格达造山带石炭纪火山岩及其形成地质环境[J].岩石学报, 16(3): 305-316

高景刚, 李文渊, 郭新成, 周义, 刘健朝, 范庭宾, 周汝洪.2013.新疆博格达东缘色皮口一带辉绿岩地球化学、锆石U-Pb年龄及地质意义[J].新疆地质, 31(2): 117-123

高景刚, 李文渊, 周义, 刘健朝, 范庭宾, 鲁麟, 周汝洪.2013.新疆博格达东缘色皮口地区柳树沟组流纹岩地球化学、LA-ICP-MS锆石U-Pb年代学及地质意义[J].地质与勘探, 49(4): 665-675

何国琦, 李茂松, 刘德权, 唐艳龄, 周洪汝.1994.中国新疆古生代地壳演化及成矿[M].乌鲁木齐: 新疆人民出版社: 1-100

侯广顺, 唐红峰, 刘丛强, 王彦斌.2005.东天山土屋—延东斑岩铜矿围岩的同位素年代和地球化学研究[J].岩石学报, 21(6): 1729-1736

侯广顺, 唐红峰, 刘丛强.2006.东天山觉罗塔格构造带晚古生代火山岩地球化学特征及意义[J].岩石学报, 22(5): 1167-1177

胡霭琴, 王中刚, 涂光炽.1997.新疆北部地质演化及成岩成矿规律[M].北京: 科学出版社: 1-246

赖绍聪, 张国伟.2002.勉略结合带五里坝火山岩的地球化学研究及其构造意义[J].大地构造与成矿学, 26: 43-50

龙灵利, 高俊, 钱青, 熊贤明, 王京彬, 王玉往, 高立明.2008.西天山伊宁地区石炭纪火山岩地球化学特征及构造环境[J].岩石学报, 24(4): 699-710

李向民, 夏林圻, 夏祖春, 徐学义, 马中平, 王立社.2004.东天山石炭纪企鹅山群火山岩锆石U-Pb年代学[J].地质通报, 23(12): 1215-1220

李向民, 夏林圻, 夏祖春, 徐学义, 马中平, 王立社.2006.东天山石炭纪企鹅山群火山岩岩石成因[J].吉林大学学报: 地球科学版, 36(3): 336-341

李献华, 周汉文, 李正祥, 刘颖.2002.川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义[J].地质科学, 37: 264-276

李文铅, 夏斌, 王克卓, 王茜, 王核.2006.新疆东天山彩中花岗岩体锆石SHRIMP年龄及地球化学特征[J].地质学报, 80(1): 43-52

李锦轶.1995.新疆东准葛尔蛇绿岩的基本特征和侵位历史[J].岩石学报, 11(增刊): 73-84

李锦轶, 肖序常.1999.对新疆地壳结构和构造演化几个问题的简要论评[J].地质科学, 34: 405-419

李锦轶.2004.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评, 50(3): 304-322

李锦轶, 王克卓, 孙桂华, 莫申国, 李文铅, 杨天南, 高立明. 东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录[J]. 岩石学报, 2006, 22(5): 1087-1102

李昌年.1992.火成岩微量元素岩石学[M].武汉: 中国地质大学出版社: 1-195

梁婷, 郭新成, 高景刚, 范庭宾, 秦海峰, 周汝洪, 黑欢.2011.博格达东段石炭纪火山岩地球化学及构造属性[J].新疆地质, 29(3): 289-295

林晋炎. 博格达裂谷的沉积层序兼论新疆北部统一陆内盆地的形成和演化[D]. 西北大学地质系博士学位论文, 1993: 1-20

马瑞士, 王赐银, 叶尚夫.1993.东天山构造格架及地壳演化[M].南京: 南京大学出版社: 1-225

马瑞士, 舒良树, 孙家齐.1997.东天山构造演化与成矿[M].北京: 地质出版社: 1-202

钱青, 高俊, 熊贤明, 龙灵利, 黄德志.2006.西天山昭苏北部石炭纪火山岩的岩石地球化学特征、成因及形成环境[J].岩石学报, 22(5): 1307-1323

申萍, 沈远超, 刘铁兵, 卢洁瑾, 魏锦萍, 宋国学, 孟磊.2008.新疆西北缘晚古生代金铜成矿作用与构造演化[J].岩石学报, 24: 1087-1100

舒良树, 朱文斌, 王博, Faure M, Charvet J, Cluzel D.2005.新疆博格达南缘后碰撞期陆内裂谷和水下滑塌构造[J].岩石学报, 21(1): 25-36

孙桂华, 李锦轶, 朱志新, 李亚萍, 杨之清.2007.新疆东部哈尔里克山片麻状黑云母花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].新疆地质, 25(1): 4-10

孙桂华, 李锦轶, 朱志新, 李亚萍, 杨之清.2007.新疆东部哈尔里克山南麓石炭纪砂岩碎屑锆石SHRIMP U-Pb定年及其地质意义[J].中国地质, 34(5): 778-789

田黎萍, 王金荣, 汤中立, 于曼, 王怀涛, 赵志雄.2010.新疆博格达山东段早石炭世火山岩地球化学特征及其构造意义[J].兰州大学学报, 46(4): 30-41

王利利, 张凯, 高明远.1986.准噶尔盆地南缘的构造演化特征及含油气预测[J].新疆石油地质, 7(2): 1-9

王银喜, 顾连兴, 张遵忠, 张开均, 李慧民, 吴昌志, 杨杰东.2005.博格达裂谷闭合和区域隆起的同位素年代学证据及地质意义[J].地球学报, 26(增刊): 102-104

王银喜, 顾连兴, 张遵忠, 吴昌志, 张开均, 李慧民, 杨杰东.2006.博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征[J].岩石学报, 22(5): 1215-1224

王金荣, 李泰德, 田黎萍, 于曼, 王怀涛, 赵志雄, 汤中立.2010.新疆博格达造山带东段晚古生代构造-岩浆演化过程: 火山岩组合及其地球化学证据[J].岩石学报, 26(4): 1103-1115

吴元保, 郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16): 1589-1604

吴庆福.1986.准噶尔盆地构造演化及含油气远景[J].新疆地质, 4(3): 1-19

夏林圻, 夏祖春, 徐学义, 李向民, 马中平.2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 26(1): 77-88

章邦桐, 陈培荣, 孔兴功.2002.赣南临江盆地余田群双峰式火山岩的Rb-Sr年代学研究[J].中国地质, 29: 351-354

张玉杰, 张栋, 路彦明, 范俊杰, 潘爱军, 张峰.2013.新疆东准噶尔卡拉麦里构造带多期变形和金叠加成矿[J].地质与勘探, 49(5): 797-812

朱永峰, 张立飞, 古丽冰, 郭旋, 周晶.2005.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J].科学通报, 50(18): 2004-2014

朱永峰, 周晶, 郭旋.2006.西天山石炭纪火山岩岩石学及Sr-Nd同位素地球化学研究[J].岩石学报, 22(5): 1341-1350

Geochemistry and Tectonic Setting of the Early Carboniferous Volcanic Rocks in the Eastern Section of the Bogda Orogenic Belt in Xinjiang

WANG Xiao-wei1,2, XU Xue-yi1, MA Zhong-ping1, CHEN Jun-lu1, CUI Fang-lei1,2, ZHU Xiao-hui1, SUN Ji-ming1

(1.Xi′anCenterofGeologicalSurvey,ChinaGeologicalSurvey,Xi'an,Shaanxi710054; 2.CollegeofEarthScienceandResourcesofChang'anUniversity,Xi′an,Shaanxi710054)

Basalts, acidic volcaniclastic rocks and intercalated rhyolite of the Qijiaojing formation, as a bimodal combination, occur in the Kezikuduke area of the eastern section of the Bogda orogenic belt. The basalts with LA-ICP-MS zircon U-Pb age of 331.0±3.0 Ma should be formed in the end of early Carboniferous, which contain high Al(Al2O3=15.56%~16.09%), Na2O/K2O=5.44~7.76, TiO2=1.83%~2.17%, slightly higher than N-MORB′s, and low Mg (MgO=5.97%~7.17%,Mg#=43~47), indicating obvious fractional crystallization of olive and pyroxene during basaltic magmatism, which was the evolution product of original magma's fractional crystallization. These basalts are slightly enriched in trace elements Rb, Ba and P, with almost flat REE distribution patterns, slightly negative Eu anomalies (δEu=0.89~0.93), but relatively depleted in Nb, Ta, Th, Sr and Ti. These characteristics of volcanic rocks indicate that the basalts have geochemical features indicative of intraplate basalts that formed within a continent and originated from high-degree partial melting of the transition product from depleted spinel phase mantle peridotite to garnet phase mantle peridotite,and suffered from a slight degree of crustal contamination during the rising process. Their geodynamic regime may be related with oblique subduction of the ancient Asian oceanic crust beneath the pre-existing Junggar-Turpan-Hami continental block, which produced a lateral tearing force to stretch the continental block resulting in a rift zone. The study results further confirm the view that the Carboniferous Bogda orogenic belt was situated in a continental rift and provide the geology and chronology evidence for understanding the Carboniferous tectonic magmatic evolution process of the Bogda orogenic belt.

Bogda orogenic belt, early Carboniferous volcanic rocks, petrogenesis, continental rift, tectonomagmatic evolution

2014-09-16;

2014-11-12;[责任编辑]郝情情。

中国地质调查局地质调查项目“西北基础地质综合调查与片区总结”(编号1212011220649)、国家自然科学基金项目“西天山伊犁地块早石炭世典型沉积序列及对天山古生代洋陆转换时限的制约”(编号41202077)联合资助。

汪晓伟(1988年-),男,博士生,主要从事火山岩岩石学相关研究。E-mail:wxw04121555@163.com。

P618

A

0495-5331(2015)01-0108-15

猜你喜欢
博格达石炭世裂谷
裂谷热病毒N蛋白的原核表达及其单克隆抗体的制备
新疆伊吾县北晚石炭世侵入岩地球化学特征、锆石U-Pb年龄及其后碰撞构造环境的确定
骆驼救主
与肯尼亚裂谷连接导致埃塞俄比亚裂谷停止扩张
青海省半沙山地区早石炭世侵入岩地球化学特征及其地质意义
中非裂谷盆地构造演化差异性与构造动力学机制
裂谷盆地复杂地温场精细表征方法
博格达 五峰连穿
内蒙古苏尼特左旗白音乌拉地区晚石炭世花岗闪长岩地球化学特征及地质意义
准东区块博格达山前带推覆体地层及含油性认识