3 结果与分析
在渠道比降(i)分别为1/1 000,1/2 000,1/3 000 和1/5 000,圆头量水柱的喉口收缩比(ε)分别为0.75,0.70,0.63,0.56,0.50和0.44,流量(Q)分别为0.015,0.025,0.035,0.045和0.055 m3/s的条件下,进行了120组试验,获得了各试验条件下渠道及圆头量水柱8个关键点处的水深,并分析了不同渠道比降条件下渠道流量与圆头量水柱驻点水深、喉口收缩比的关系。
3.1 圆头量水柱驻点水深与流量的关系
不同渠道比降和喉口收缩比时流量与圆头量水柱驻点水深的关系见图5。从图5可以看出,驻点水深与流量之间呈现良好的指数相关关系,相关系数达0.997。同一渠道比降下,随喉口收缩比的增大,流量与驻点水深关系曲线上移。由于临界水深的不稳定性,因此用驻点水深代替临界水深计算理论流量是可行的。通过对流量与喉口收缩比、驻点水深之间相关关系的分析,建立了不同渠道比降时具有量纲和谐性的流量计算公式为:
(8)
(9)
(10)
(11)
式中:ε为喉口收缩比;Hs为驻点水深,m;b为喉口断面水面宽度,m。
式(8)~(11)是在n=0.011的有机玻璃渠道试验基础上推导得出的,灌区实际渠道的糙率普遍较0.011大,故本试验即将在糙率较大的末级渠道上进行研究,以对其进行进一步修正。
3.2 圆头量水柱喉口收缩比的选择
圆头量水柱喉口收缩比定义为喉口断面面积(Ac,m2)与渠道衬砌断面面积(A0,m2)之比[13],即ε=Ac/A0。喉口收缩比是影响圆头量水柱测流精度的重要参数,如果收缩比过大,喉口处难以形成临界流;如果收缩比过小,则造成上游壅水高度增大,水头损失增大。因此,只要将喉口收缩比限定在一定范围内,那么因收缩比而导致的测流误差将会限定在某一较小数值范围内。不同试验条件下圆头量水柱上游的壅水高度见表3。
当喉口收缩比为0.50~0.70时,测流误差较小,且上游壅水高度较小,基本控制在5 cm内,满足灌区对于上下游水头差不高于5 cm的要求,因此较适的喉口收缩比为0.50~0.70。鉴于渠道比降为1/5 000时上游壅水高度的变化趋势与渠道比降为1/1 000,1/2 000和1/3 000时一致,故表3只列出了不同流量和适宜喉口收缩比(0.50~0.70)条件下渠道比降为1/1 000,1/2 000 和 1/3 000 时圆头量水柱的上游壅水高度。表3表明,同一流量下,渠道上游壅水高度随喉口收缩比的增大而减小。
3.3 圆头量水柱的临界淹没度
圆头量水柱的临界淹没度定义为不影响上游水位的最大下游水深与上游水深之比[14]。其测定方法为:在相同流量下,通过调节渠道尾门来改变下游水位,下游水位在一定范围内不影响上游水位,随着下游水位的继续升高,当下游水位开始影响上游水位时,此时下游水深(H2)与上游水深(H1)的比值为临界淹没度,即σ=H2/H1,较高的临界淹没度可以保证圆头量水柱较大范围的自由出流。对同一喉口收缩比的圆头量水柱而言,流量不同时临界淹没度也不同,一般当圆头量水柱满足最大流量下的临界淹没度要求时,其他流量下的临界淹没度也随之满足。本试验通过对不同渠道比降、喉口收缩比、流量下圆头量水柱临界淹没度的测试,得出其临界淹没度可达0.90,说明该量水柱具有较大的自由出流范围。
3.4 圆头量水柱的水头损失
水流在通过装有圆头量水柱的U形渠道时,由于侧收缩的存在,速度沿水流方向增加,由于边界层及水流混掺碰撞的影响产生了局部水头损失,由摩阻引起的沿程水头损失比由于喉口形状变化所引起的局部水头损失小得多,因此沿程水头损失可以忽略不计。通过增加尾翼对圆柱形量水槽进行体型优化,得到的圆头量水柱可以有效地减小水头损失。试验结果表明,在渠道比降为1/2 000,喉口收缩比为0.63,流量为0.035 m3/s情况下,无尾翼(L/D=1)的圆柱形量水槽水头损失为7.94%,而L/D= 3/2 和L/D=2的圆头量水柱的水头损失分别为6.82%和6.11%,可知相同喉口收缩比下有尾翼的圆头量水柱比无尾翼圆柱形量水槽的水头损失要小。图6反映了圆头量水柱L/D=3/2时,不同渠道比降及喉口收缩比(ε=0.56,0.63,0.70,0.75)下圆头量水柱的水头损失占上游总水头的比例,由于喉口收缩比过小(ε=0.50,0.44)时下游水头损失较大,故本研究不考虑,相应数据在图6中未列出。
从图6可以看出,当喉口收缩比为0.56~0.75时,圆头量水柱的水头损失hf最小为上游总水头H1的1.5%左右,水头损失最大为上游总水头的 9.5% 左右。文献[15]中长喉道量水槽水头损失约为13%,与之相比圆头量水柱的水头损失较小。
3.5 圆头量水柱的测流精度
测流精度一般用测流相对误差表示,相对误差为计算流量值与实际流量值之差与实际流量值的百分比[16]。根据3.1节中拟合的公式(8)、(9)、(10)、(11)计算过槽流量,结果表明,计算流量与实际流量之间的最大误差为6.79%,平均误差仅为0.32%。在一定喉口收缩比范围内,测流误差均小于5%。如当渠道比降为1/1 000、收缩比为0.50~0.70时,测流误差最大为4.70%,最小为0.29%。
4 结论与讨论
本研究通过对U形渠道4种渠道比降、6种喉口收缩比的圆头量水柱进行试验,分析了喉口收缩比、渠道比降等渠道结构参数与圆头量水柱水力性能的关系。在试验测流流量为0.015~0.055 m3/s条件下,建立了基于驻点水深的流量公式,该公式简单实用,测流误差最大为6.79%;选择的适宜喉口收缩比为0.50~0.70,具体选择时应视渠道比降大小而定,比降较小的渠道应选取较大的喉口收缩比;比降较大的渠道应选取较小的喉口收缩比。这与张鲁婧等[17]关于矩形渠道半圆柱形量水槽的研究成果一致。
渠道过流能力取决于过水断面的形状、尺寸、比降及糙率,量水设施的结构应根据实际情况加以变化,并与渠道条件相配合,对于不同比降、渠道尺寸适宜的圆头量水柱体型及流量公式尚需进一步试验,以便于该量水设施的推广应用。
[1] Hager W H.Modified venture channel [J].Journal of Irrigation and Drainage Engineering,1985,111(1):19-35.
[2] Hager W H.Modified trapezoidal venture channel [J].Journal of Irrigation and Drainage Engineering,1986,112(3):225-241.
[3] Hager W H.Mobile flume for circular channel [J].Journal of Irrigation and Drainage Engineering,1988,114(3):520-534.
[4] 吴高巍,周子奎.柱形量水槽的研制及应用 [J].灌溉排水,1991,10(3):46-51.
Wu G W,Zhou Z K.Development and application of cylindrical flume [J].Journal of Irrigation and Drainage,1991,10(3):46-51.(in Chinese)
[5] Samani Z,Magallanez H.Measuring water in trapezoidal canals [J].Journal of Irrigation and Drainage Engineering,1993,119(1):181-186.
[6] Samani Z,Magallamez H.Simple flume for flow measurement in open channel [J].Journal of Irrigation and Drainage Engineering, 2000,126(2):127-129.
[7] Samani Z,Magallanez H.Simple measuring-flume in trapezoidal channel [J].Journal of Irrigation and Drainage Engineering,1993,119(1):127-129.
[8] 何武全,王玉宝,蔡明科.U形渠道圆柱体量水槽研究 [J].水利学报,2006,5(5):573-577.
He W Q,Wang Y B,Cai M K.Cylinder flow measuring flume for U-shape channel [J].Journal of Hydraulic Engineering,2006,5(5):573-577.(in Chinese)
[9] 吉庆丰,何钟宁,龚 懿,等.U形渠道圆柱形量水槽试验研究 [J].灌溉排水学报,2007,26(6):30-32.
Ji Q F,He Z N,Gong Y,et al.Experimental research on cylinder measuring flume in U-shape channel [J].Journal of Irrigation and Drainage,2007,26(6):30-32.(in Chinese)
[10] 刘嘉美,王文娥,胡笑涛,等.梯形渠道圆柱形(带尾翼)量水槽试验研究 [J].灌溉排水学报,2013,32(6):23-26.
Liu J M,Wang W E,Hu X T,et al.The study on trapezoidal channel with cylindrical measuring flume [J].Journal of Irrigation and Drainage,2013,32(6):23-26.(in Chinese)
[11] 吕宏兴,裴国霞,杨玲霞.水力学 [M].北京:中国农业出版社,2002.
Lü H X,Pei G X,Yang L X.Hydraulics [M].Beijing:China Agriculture Press,2002.(in Chinese)
[12] 马孝义,王文娥,吕宏兴,等.U形渠道量水槽的性能分析与筛选研究 [J].农业工程学报,2002,18(4):44-49.
Ma X Y,Wang W E,Lü H X,et al.Analysis of U-shaped channel flow measurement flume properties and selection [J].Transaction of the Chinese Society of Agricultural Engineering,2002,18(4):44-49.(in Chinese)
[13] 胥纤维,吕宏兴,潘志宝.末级渠道机翼形量水槽标准化试验研究 [J].节水灌溉,2010(1):39-41.
Xu X W,Lü H X,Pan Z B. Experimental research of airfoil-shaped measuring flume standardization in last stage channel [J].Water Saving Irrigation,2010(1):39-41.(in Chinese)
[14] 吕宏兴,刘焕芳,朱晓群,等.机翼形量水槽的试验研究 [J].农业工程学报,2006,22(9):119-123.
Lü H X,Liu H F,Zhu X Q,et al.Experimental research on airfoil-shaped flow flume [J].Transaction of the Chinese Society of Agricultural Engineering,2006,22(9):119-123.(in Chinese)
[15] 李国佳,牟献友,李金山,等.U形渠道直壁式量水槽水力特性的研究 [J].中国农村水利水电,2010(5):124-127.
Li G J,Mou X Y,Li J S,et al.Research on the hydraulic characteristics of U-shaped channel of straight wall tanks [J].China Rural Water and Hydropower,2010(5):124-127.(in Chinese)
[16] U形渠道量水设备试验研究课题组.U形渠道平底抛物线形量水槽的研究 [M].陕西水利,1990(4):16-19.
Test Research Group of U-shaped Channel Measuring Water Equipment.Research on flat parabolic flume of U-shaped channel [M].Shaanxi Water Conservancy,1990(4):16-19.(in Chinese)
[17] 张鲁婧,吕宏兴,张晓斐.矩形渠道半圆柱形量水槽试验研究 [J].节水灌溉,2008(11):46-50.
Zhang L J,Lü H X,Zhang X F.Experimental research on semicylindrical measuring flume for rectangular canal [J].Water Saving Irrigation,2008(11):46-50.(in Chinese)
Factors affecting hydraulic performance of water-measuring pillar with round head in U-shaped channel
LIU Ying1,WANG Wen-e1,HU Xiao-tao1,TAN Xiao-fan2
(1CollegeofWaterConservancyandArchitectureEngineering,NorthwestA&FUniversity,Yangling,Shaanxi712100,China;2PumingStreetOffice,Mianyang,Sichuan621000,China)
【Objective】 This paper studied the factors affecting hydraulic performance of water-measuring pillar with round head based on the principle of critical flow to improve its application in irrigation areas of North China.【Method】 The hydraulic performance on flow measurement formula,proper throat contraction ratio,head loss,critical submergence degree, and flow measurement precision of water-measuring pillar with round head with six contraction ratios (ε=0.75,0.70,0.63,0.56,0.50,and 0.44) in U-shaped channel was tested based on five discharge rates (Q=0.015,0.025,0.035,0.045,and 0.055 m3/s) and four channel slopes (i=1/1 000,1/2 000,1/3 000,and 1/5 000).【Result】 There existed a good exponential correlation between the stagnation-point depth of the water-measuring pillar with round head and the discharge with coefficient of correlation of 0.997.Discharge formulas of four channel slopes were obtained through the regression analysis of experiment data,the fitted discharge formula which was in line with the dimension concordant principle met the flow measurement accuracy,and the maximum error between the measured discharge and the calculated discharge was 6.79%.When the proper throat contraction ratio was within 0.50 to 0.70 and the upstream backwater as well as the water head loss was small,it had a high critical submergence degree of up to 0.90.【Conclusion】 The water-measuring pillar with round head has a simple structure and can resist sludge plugging, which suits the channels with sediment-carried water in North China.
U-shaped channel;water-measuring pillar with round head;hydraulic performance;throat contraction ratios
2013-10-22
国家自然科学基金项目(51179163,50909083);国家“十二五”科技支撑计划项目(2011BAD29B01);中央高校基本科研业务费专项(QN2011127);西北农林科技大学青年学术骨干支持计划项目
刘 英(1989-),女,河北衡水人,在读硕士,主要从事工程水力学研究。E-mail:lykl2008@126.com
王文娥(1975-),女,河南孟县人,副教授,硕士生导师,主要从事节水灌溉技术、流体机械及排灌设备等研究。 E-mail:wangwene@nwsuaf.edu.cn
时间:2015-01-05 08:59
10.13207/j.cnki.jnwafu.2015.02.032
S274.4
A
1671-9387(2015)02-0228-07
网络出版地址:http://www.cnki.net/kcms/detail/61.1390.S.20150105.0859.032.html