秦 璠,侯俊秀
B7-H1在恶性肿瘤中的表达进展
秦 璠,侯俊秀
B7-H1(B7 homolog 1)是免疫调节分子B7家族的一个成员,主要分布在心脏、胎盘、肺、脾、淋巴结、胸腺、肾、骨骼肌和胎肝组织中。B7-H1在多种肿瘤细胞上广泛高表达,它与免疫细胞上的程序性死亡分子-1结合后,启动caspase级联反应诱导免疫细胞的凋亡,导致肿瘤免疫逃逸的发生。近年来,有关B7-H1在某一恶性肿瘤中的表达以及它与临床病理、预后和免疫学因素的相关性报道诸多。作者通过总结分析近年来的相关文献,对B7-H1在一些常见恶性肿瘤中的表达进展作一综述。
B7-H1;恶性肿瘤;表达
B7-H1(B7 homolog 1)[1],又称程序性死亡配体1(programmed death-ligand 1,PD-L1)或CD274,是一种Ⅰ型跨膜糖蛋白,含有290个氨基酸,由细胞外区、疏水跨膜区及含30个氨基酸的细胞质区组成。其中,细胞外区含1个免疫球蛋白(immunoglobulin,Ig)V样区、1个IgC样区,其细胞外区与B7-1、B7-2的同源性分别为20%和15%。B7-H1的表达以及它与临床病理、预后和免疫学因素的相关性已经在多种人类恶性肿瘤中被报道,包括肺、肝、结肠直肠、胰腺、乳腺、宫颈、鼻咽部、食管、肾、皮肤等[2-6]。B7-H1在癌症中的过度表达与这些恶性肿瘤的不良预后和抵抗抗癌治疗有关。作者对B7-H1在一些常见恶性肿瘤中的表达进展作一综述。
1.1 肺癌 Konishi等[7]在52例非小细胞肺癌(non-small cell lung cancer,NSCLC)患者冰冻组织样本中首次证实了B7-H1的表达(100%),腺癌和鳞状上皮细胞癌都表达B7-H1,这种表达在肿瘤细胞的细胞膜和细胞质中以分散的方式被观察到。然而,B7-H1的表达与临床病理因素和患者的生存期没有相关性。其中5例肿瘤浸润淋巴细胞(tumorinfiltrating lymphocytes,TILs)的密集度与B7-H1阳性肿瘤部位呈负相关。随后,在2011年,Mu等[8]报道了109例NSCLC的患者石蜡包埋样本中58例(53%)有B7-H1表达;腺癌中的B7-H1阳性细胞比鳞状上皮细胞癌更丰富,它的表达与肺叶切除术后生存期不到3年有关。
Boland等[9]证实了在214例鳞状上皮细胞的NSCLC患者石蜡包埋样本中有42例(20%)表达B7-H1。肿瘤中的B7-H1主要在细胞膜中表达,在细胞质中极低,然而这种表达与临床预后无显著相关性,进一步的研究表明B7-H1在鳞状上皮细胞的NSCLC冰冻样本中的表达很低。
1.2 肝细胞癌 Gao等[10]在204例肝细胞癌(hepa-tocellular carcinoma,HCC)石蜡包埋样本中研究了B7-H1的表达,瘤内的B7-H1表达对于无病生存期是一个独立的预后因素。B7-H1阳性患者的术后复发风险可能是B7-H1阴性患者的2倍多。B7-H1阳性的样本有更多的血管浸润肿瘤。B7-H1的表达被证实与叉头状转录因子(forkhead box P3,FoxP3)正调控TILs相关。TILs是一个抑制癌症免疫反应的免疫调节T细胞群。同年,Wu等[11]报道了71例HCC中35例(49%)有B7-H1高表达,而B7-H1高表达患者的生存率低于低表达患者。
Geng等[12]在60例HCC样本中发现了mRNA和蛋白质层面的B7-H1高表达,这种表达与肿瘤细胞中白介素(interleukin,IL)-10的上调呈正相关。IL-10是一个抑制癌症免疫反应的免疫调节细胞因子。同年,Wang等[13]报道了26例冰冻HCC样本中有24例(93%)B7-H1表达,与较早的肿瘤分期呈正相关,而未发现与肿瘤分级有显著相关性。
Chen等[14]在63例HCC样本肿瘤细胞的细胞膜和细胞质中发现了29例(46%)有B7-H1高表达。B7-H1的高表达与肿瘤相关巨噬细胞群的渗透呈正相关,而这种巨噬细胞群是一个已知的抑制癌症免疫反应的细胞群。
1.3 结直肠癌 Dong等[15]最初在19例结直肠癌患者冰冻样本的免疫组化分析中发现10例(53%)有B7-H1存在。
Xiao等[16]在石蜡包埋的结直肠癌样本中发现了通过原位杂交在TILs中B7-H1分子。B7-H1在肿瘤细胞中的表达水平显著高于在TILs中表达。结直肠癌的转移与B7-H1在肿瘤细胞和TILs的表达水平增加相关。此外,B7-H1在TILs的表达与肿瘤浸润的程度和深度显著相关。该研究表明,B7-H1高表达可能参与了结直肠癌患者TILs的凋亡,从而促进了肿瘤细胞的免疫逃逸。
Hua等[17]在33例结直肠癌样本中发现15例(45%)有B7-H1高表达。B7-H1的表达与肿瘤巢和肿瘤间质中的CD3+TILs密度呈显著负相关。B7-H1高表达组的CD4+FoxP3+和CD8+FoxP3+Tregs密度显著高于B7-H1低表达组。其他的临床病理因素未被证实。
1.4 肾细胞癌 肾细胞癌(renal cell carcinoma,RCC)是世界上第三大最常见的癌症,该病通常是早期无症状,但高度转移。Thompson等[18]在196例冰冻RCC样本的肿瘤细胞和TILs中发现130例(66%)有B7-H1表达,瘤内B7-H1的高表达与不良病理特征显著相关,包括更高的核级、局部的淋巴结受累、组织的肿瘤坏死和远处转移。TILs或肿瘤中B7-H1高表达的RCC患者病死数可能是B7-H1低表达的4.5倍。2005年,他们报道在26例冰冻RCC肿瘤转移样本的肿瘤细胞和TILs中发现17例(65%)有B7-H1表达[19]。B7-H1在肿瘤和(或)TILs中的高表达与病死风险的增加呈正相关。2006年,他们又报道在306例石蜡包埋RCC肿瘤样本中有73例(24%)B7-H1的表达与不良的病理性特征呈正相关,包括晚期的临床肿瘤分期、肿瘤大小的增加、高核级和凝固性肿瘤坏死,B7-H1阳性RCC患者病死数可能是B7-H1阴性的4倍,B7-H1的表达与转移的进展呈正相关[20]。
Krambeck等[21]在298例石蜡包埋RCC样本中发现70例(24%)B7-H1阳性RCC患者病死数可能是B7-H1阴性的4倍,B7-H1的表达与RCC的病死率有独立相关性。
1.5 黑色素瘤 黑色素瘤是皮肤癌中最致命的。Hino等[22]在59例石蜡包埋黑色素瘤样本中发现34例(58%)有B7-H1高表达,B7-H1高表达组的肿瘤厚度比低表达组更厚,肿瘤晚期比肿瘤早期有更高的B7-H1表达,有淋巴结转移的患者比没有淋巴结转移的患者有更高的B7-H1表达,B7-H1高表达组比低表达组的生存期更短。因此,B7-H1表达是一个整体生存期预测指标。
Gadiot等[23]在63例石蜡包埋黑色素瘤患者样本中发现卫星转移瘤(25%)和中途转移瘤(40%)的B7-H1阳性染色更强。B7-H1表达被认为是加快了疾病的进展。
Taube等[24]发现150例石蜡包埋黑色素瘤患者样本中57例(38%)有B7-H1表达。B7-H1表达与炎性浸润有显著相关性,肿瘤厚度和临床肿瘤分期在内的临床病理因素与B7-H1表达没有相关性。转移性黑色素瘤患者B7-H1的表达与生存期的显著提高相关,而这个结论可能会造成误导。因为包含在该项研究中的43%的转移性黑色素瘤患者已经接受了系统的免疫治疗,包括大剂量的IL-2、干扰素(interferon,IFN)-α、抗程序性死亡分子-1(programmed death-1,PD-1)单克隆抗体/疫苗的单一或联合治疗。B7-H1在未经治疗黑色素瘤患者冰冻样本免疫逃逸中的作用以及与黑色素瘤患者整个生存期的相关性尚待进一步研究。
1.6 甲状腺癌 近年来,甲状腺癌的发病率逐渐增加。Cunha等[25]通过免疫组化及定量聚合酶链反应的方法在407例甲状腺结节患者中研究了B7-H1的表达,研究发现恶性组织相比良性组织表达更高的B7-H1染色和更高的mRNA水平(两者P<0.000 1),B7-H1蛋白水平的升高与CD4+、CD8+、CD20+、FoxP3+淋巴细胞(P<0.05)、肿瘤相关巨噬细胞(P<0.000 1)以及骨髓衍生的抑制细胞(P=0.032 56)的存在有关,Ⅱ~Ⅳ期患者表达的B7-H1 mRNA水平比Ⅰ期更高(P=0.035 22),而在淋巴结转移的病例中B7-H1蛋白显示低表达(P=0.015 2)。
2.1 适应性免疫反应激活的经典机制 树突状细胞(dendritic cells,DCs)是启动免疫反应的抗原提呈细胞(antigen presenting cells,APCs)中最关键的[26]。未成熟的DCs存在于非淋巴组织中,表达主要组织相容性复合体(major histocompatibility complex,MHC)-Ⅱ和其他共刺激分子[27]。DCs上调细胞表面的MHC-Ⅱ分子,并移动到来自外来物或其他危险相关分子刺激的淋巴组织上。此阶段,可能遇到幼稚T细胞。幼稚CD4+辅助T细胞的活化需要与成熟DCs上抗原提呈的MHC-Ⅱ的T细胞受体(T cell receptor,TCR)结合,同时CD8+细胞毒素T淋巴细胞的活化需要与APCs上抗原提呈的MHC-Ⅰ的TCR结合[28]。这叫做第1信号。第1信号之后,另一个协同刺激信号是T细胞诱导有效的免疫应答和随后诱导靶细胞凋亡所需的[29]。CD28是一个主要的协同刺激受体,在CD4+辅助T细胞和CD8+CTLs上表达[29-30]。同时成功产生第1信号和包含在CD28上的共刺激配体,B7-1(也叫CD80)或B7-2(也叫CD86),在DCs/APCs上产生第2信号[31]。第2信号通过降低TCR发出信号的阈值刺激T细胞,它是通过免疫突触的形成触发IL-2产生和上调保护来自细胞凋亡T细胞的Bcl-X2抗细胞凋亡蛋白完成的[32-33]。随后,T细胞的增殖与细胞毒素和细胞溶解分子的分泌引起肿瘤/靶细胞死亡,例如穿孔素和颗粒酶[31]。
2.2 B7-H1的上调和免疫反应的抑制 缺乏第2信号使T细胞无活性[33]。局部组织中APCs上B7-H1表达的持续抗原提呈导致T细胞上的PD-1上调[34]。随后B7-H1/PD-1通过含有Src同源2结构域的酪氨酸磷酸酶-1和Src同源2结构域的酪氨酸磷酸酶-2的相互作用抑制TCR的信号传递[35]。这些酶传达了一个终止信号,因此限制了T细胞上APCs/DCs的相互作用[36]。这种高表达和抑制分子的相互作用,通过损害它们的新陈代谢、抑制Bcl-X2抗细胞凋亡蛋白的释放[32-33]、损害效应器细胞因子(如IL-2和IFN-γ)的产生和T细胞的增殖,导致T细胞衰竭和(或)细胞凋亡[34,37-38]。B7-H1/PD-1轴也被证实通过促进抑制效应器细胞因子产生和T细胞增殖[39-40],增加了局部组织环境里的 FoxP3+Tregs的数量[41],更进一步抑制免疫反应。B7-H1阻断被证实是保护调节性T细胞介导的免疫调节,表明了B7-H1在调节性T细胞的生成和免疫调节功能中的关键作用[42]。
肿瘤位点通常装载着TILs[43],从逻辑上讲,这应该有助于免疫系统在肿瘤细胞的清除。甚至T细胞、骨髓DCs和自然杀伤细胞的浸润在卵巢癌[44]和胃癌[45]患者中与一个良好的预后相关。然而,这个因素也与B7-H1阳性的RCC患者的一个不良预后有关[46]。此外,B7-H1阳性与肿瘤转移和增加RCC患者病死风险相关。因此,虽然肿瘤细胞可能利用B7-H1的表达来战胜TILs介导的免疫反应,但B7-H1表达是TILs伴有不良预后的原因[43]。
2.3 通过肿瘤细胞上调B7-H1的机制 肿瘤细胞通过2种作用机制表达B7-H1,即固有免疫抵抗和适应性免疫抵抗[47]。固有免疫抵抗相当于在肿瘤细胞中通过致癌信号通路使B7-H1上调。比如,在淋巴瘤和肺癌中发出信号的间变性淋巴因子通过信号传导与转录激活因子3发出信号上调B7-H1[48]。
适应性免疫抵抗指的是PD-1配体的利用,通过肿瘤细胞上的B7-H1逃避内源性免疫应答[47]。B7-H1的表达通常是为了保护一个组织免受免疫攻击。然而,癌细胞利用它来保护自己免受细胞溶解。肿瘤细胞的适应性免疫抵抗被认为通常是IFN,尤其是IFN-γ诱发B7-H1表达[49]。虽然IFN-γ有预防病毒感染的作用,但它也在非淋巴组织中上调B7-H1的表达[50]。IFN-γ通过诱发转录因子和干扰素调节因子-1的表达,发挥着抑制免疫力的作用。干扰素调节因子-1上有B7-H1基因的启动区,导致B7-H1基因表达[51]。因此,IFN-γ在自身免疫环境中的益处和它在肿瘤免疫耐受中的作用可能在一定程度上归因于B7-H1在炎症性位点的上调,它通过B7-H1/PD-1相互作用破坏免疫应答。
B7-H1的表达已经在多种恶性肿瘤中被报道,B7-H1的表达与恶性肿瘤的临床病理、预后和免疫学因素存在相关性。因此,检测肿瘤细胞表面B7-H1的表达水平对预测肿瘤预后会有一定的参考价值。同时,若对B7-H1通路进行靶向干预,也可在一定程度上对传统的抗癌治疗起到辅助作用。
[1]Dong H,Zhu G,Tamada K,et al.B7-H1,a third member of the B7 family,co-stimulates T-cell proliferation and interleukin-10 secretion[J].Nat Med,1999,5(12):1365-1369.
[2]Wang L,Ma Q,Chen X,et al.Clinical significance of B7-H1 and B7-1 expressions in pancreatic carcinoma[J]. World J Surg,2010,34(5):1059-1065.
[3]Hasan A,Ghebeh H,Lehe C,et al.Therapeutic targeting of B7-H1 in breast cancer[J].Expert Opin Ther Targets,2011,15(10):1211-1225.
[4]Karim R,Jordanova ES,Piersma SJ,et al.Tumor-expressed B7-H1 and B7-DC in relation to PD-1+T-cell infiltration and survival of patients with cervical carcinoma[J].Clin Cancer Res,2009,15(20):6341-6347.
[5]Hsu MC,Hsiao JR,Chang KC,et al.Increase of programmed death-1-expressing intratumoral CD8 T cells predicts a poor prognosis for nasopharyngeal carcinoma[J]. Mod Pathol,2010,23(10):1393-1403.
[6]Loos M,Langer R,Schuster T,et al.Clinical significance of the costimulatory molecule B7-H1 in Barrett carcinoma [J].Ann Thorac Surg,2011,91(4):1025-1031.
[7]Konishi J,Yamazaki K,Azuma M,et al.B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression[J].Clin Cancer Res,2004,10(15):5094-5100.
[8]Mu CY,Huang JA,Chen Y,et al.High expression of PDL1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation[J].Med Oncol,2011,28(3):682-688.
[9]Boland JM,Kwon ED,Harrington SM,et al.Tumor B7-H1 and B7-H3 expression in squamous cell carcinoma of the lung[J].Clin Lung Cancer,2013,14(2):157-163.
[10]Gao Q,Wang XY,Qiu SJ,et al.Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma[J].Clin Cancer Res,2009,15(3):971-979.
[11]Wu K,Kryczek I,Chen L,et al.Kupffer cell suppression of CD8+T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions[J]. Cancer Res,2009,69(20):8067-8075.
[12]Geng L,Deng J,Jiang G,et al.B7-H1 up-regulated expression in human hepatocellular carcinoma tissue:correlation with tumor interleukin-10 levels[J].Hepatogastroenterology,2011,58(107/108):960-964.
[13]Wang BJ,Bao JJ,Wang JZ,et al.Immunostaining of PD-1/ PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma[J].World J Gastroenterol,2011,17 (28):3322-3329.
[14]Chen J,Li G,Meng H,et al.Upregulation of B7-H1 expression is associated with macrophage infiltration in hepatocellular carcinomas[J].Cancer Immunol Immunother,2012,61(1):101-108.
[15]Dong H,Strome SE,Salomao DR,et al.Tumor-associated B7-H1 promotes T-cell apoptosis:a potential mechanism of immune evasion[J].Nat Med,2002,8(8):793-800.
[16]Xiao JX,Bai PS,Lai BC,et al.B7 molecule mRNA expression in colorectal carcinoma[J].World J Gastroenterol,2005,11(36):5655-5658.
[17]Hua D,Sun J,Mao Y,et al.B7-H1 expression is associated with expansion of regulatory T cells in colorectal carcinoma[J].World J Gastroenterol,2012,18(9):971-978.
[18]Thompson RH,Gillett MD,Cheville JC,et al.Costimulatory B7-H1 in renal cell carcinoma patients:indicator of tumor aggressiveness and potential therapeutic target[J].Proc Natl Acad Sci USA,2004,101(49):17174-17179.
[19]Thompson RH,Gillett MD,Cheville JC,et al.Costimulatory molecule B7-H1 in primary and metastatic clear cell renal cell carcinoma[J].Cancer,2005,104(10):2084-2091.
[20]Thompson RH,Kuntz SM,Leibovich BC,et al.Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up[J].Cancer Res,2006,66(7):3381-3385.
[21]Krambeck AE,Dong H,Thompson RH,et al.Survivin and b7-h1 are collaborative predictors of survival and represent potential therapeutic targets for patients with renal cell carcinoma[J].Clin Cancer Res,2007,13(6):1749-1756.
[22]Hino R,Kabashima K,Kato Y,et al.Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma[J].Cancer,2010,116(7):1757-1766.
[23]Gadiot J,Hooijkaas AI,Kaiser AD,et al.Overall survival and PD-L1 expression in metastasized malignant melanoma[J].Cancer,2011,117(10):2192-2201.
[24]Taube JM,Anders RA,Young GD,et al.Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape[J].Sci Transl Med,2012,4 (127):127ra37.
[25]Cunha LL,Marcello MA,Morari EC,et al.Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation[J].Endocr Relat Cancer,2013,20 (1):103-110.
[26]Bell D,Chomarat P,Broyles D,et al.In breast carcinoma tissue,immature dendritic cells reside within the tumor,whereas mature dendritic cells are located in peritumoral areas[J].J Exp Med,1999,190(10):1417-1426.
[27]Lutz MB,Kurts C.Induction of peripheral CD4+T-cell tolerance and CD8+T-cell cross-tolerance by dendritic cells [J].Eur J Immunol,2009,39(9):2325-2330.
[28]Inman BA,Frigola X,Dong H,et al.Costimulation,coinhibition and cancer[J].Curr Cancer Drug Targets,2007,7 (1):15-30.
[29]Greenwald RJ,Freeman GJ,Sharpe AH.The B7 family revisited[J].Annu Rev Immunol,2005,23:515-548.
[30]Lenschow DJ,Walunas TL,Bluestone JA.CD28/B7 system of T cell costimulation[J].Annu Rev Immunol,1996,14: 233-258.
[31]Dermime S,Aljurf MD.Current advances,problems and prospects for vaccine-based immunotherapy in follicular non-Hodgkin′s lymphoma[J].Leuk Lymphoma,2005,46 (4):497-507.
[32]Salomon B,Bluestone JA.Complexities of CD28/B7: CTLA-4 costimulatorypathwaysin autoimmunityand transplantation[J].Annu Rev Immunol,2001,19:225-252.
[33]Foell J,Hewes B,Mittler RS.T cell costimulatory and inhibitory receptors as therapeutic targets for inducing antitumor immunity[J].Curr Cancer Drug Targets,2007,7 (1):55-70.
[34]Hofmeyer KA,Jeon H,Zang X.The PD-1/PD-L1(B7-H1)pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion[J].J Biomed Biotechnol,2011,2011:451694.
[35]Chemnitz JM,Parry RV,Nichols KE,et al.SHP-1 and SHP-2 associate with immunoreceptortyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation,but only receptor ligation prevents T cell activation[J].J Immunol,2004,173(2):945-954.
[36]Fife BT,Pauken KE,Eagar TN,et al.Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal[J].Nat Immunol,2009,10(11): 1185-1192.
[37]Freeman GJ,Long AJ,Iwai Y,et al.Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation[J].J Exp Med,2000,192(7):1027-1034.
[38]Carter L,Fouser LA,Jussif J,et al.PD-1:PD-L inhibitory pathway affects both CD4(+)and CD8(+)T cells and is overcome by IL-2[J].Eur J Immunol,2002,32(3):634-643.
[39]Ng WF,Duggan PJ,Ponchel F,et al.Human CD4(+) CD25(+)cells:a naturally occurring population of regulatory T cells[J].Blood,2001,98(9):2736-2744.
[40]Thornton AM,Shevach EM.CD4+CD25+immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production[J].J Exp Med,1998,188(2):287-296.
[41]Hori S,Nomura T,Sakaguchi S.Control of regulatory T cell development by the transcription factor Foxp3[J].Science,2003,299(5609):1057-1061.
[42]Kitazawa Y,Fujino M,Wang Q,et al.Involvement of the programmed death-1/programmed death-1 ligand pathway in CD4+CD25+regulatory T-cell activity to suppress alloimmune responses[J].Transplantation,2007,83(6):774-782.
[43]Dong H,Chen X.Immunoregulatory role of B7-H1 in chronicity of inflammatory responses[J].Cell Mol Immunol,2006,3(3):179-187.
[44]Zhang L,Conejo-Garcia JR,Katsaros D,et al.Intratumoral T cells,recurrence,and survival in epithelial ovarian cancer[J].N Engl J Med,2003,348(3):203-213.
[45]Ishigami S,Natsugoe S,Tokuda K,et al.Clinical impact of intratumoral natural killer cell and dendritic cell infiltration in gastric cancer[J].Cancer Lett,2000,159(1):103-108.
[46]Webster WS,Lohse CM,Thompson RH,et al.Mononuclear cell infiltration in clear-cell renal cell carcinoma independently predicts patient survival[J].Cancer,2006,107 (1):46-53.
[47]Pardoll DM.The blockade of immune checkpoints in cancer immunotherapy[J].Nat Rev Cancer,2012,12(4):252-264.
[48]Marzec M,Zhang Q,Goradia A,et al.Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274(PD-L1,B7-H1)[J].Proc Natl Acad Sci USA,2008,105(52):20852-20857.
[49]Wilke CM,Wei S,Wang L,et al.Dual biological effects of the cytokines interleukin-10 and interferon-γ[J].Cancer Immunol Immunother,2011,60(11):1529-1541.
[50]Carreno BM,Collins M.BTLA:a new inhibitory receptor with a B7-like ligand[J].Trends Immunol,2003,24(10): 524-527.
[51]Lee SJ,Jang BC,Lee SW,et al.Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1(CD274)[J]. FEBS Lett,2006,580(3):755-762.
Progress of B7-H1 expression in malignant tumors
QIN Fan,HOU Junxiu
(The Affiliated Hospital of Inner Mongolia Medical University,Huhhot Inner Mongolia 010050,China)
B7 homolog 1(B7-H1),a member of B7 family of immunoregulatory molecule,was widely expressed in cells and organs,including heart,placenta,lung,spleen,lymph node,thymus,kidney,skeletal muscle,as well as fetal hepatic tissues.Also,it is highly expressed in tumor cells.It could be apoptosis of immunocytes through triggering the caspase cascade reaction by combining with programmed death-1(PD-1),which finally resulted in tumor immune escape.Recently,extensive studies have been conducted to investigate its expression in malignant tumor,and its association with clinicopathological,prognostic and immunological factors.In this review,we summarized the expression of B7-H1 in common malignant tumors.
B7 homolog1(B7-H1);Mlignant tumors;Expression
R392.3;R73
A
2095-3097(2015)01-0056-05
10.3969/j.issn.2095-3097.2015.01.015
2014-11-02 本文编辑:徐海琴)
010050内蒙古 呼和浩特,内蒙古医科大学附属医院(秦 璠,侯俊秀)
侯俊秀,E-mail:houjunxiu1962@126.com