夏 锐,卿 敏,王长明,李文良
1.中国地质大学(北京)地质过程与矿产资源国家重点实验室,北京 100083
2.武警黄金地质研究所,河北 廊坊 065000
斑岩型矿床大都具有巨大的经济价值,为世界提供了几乎全部的Mo,同时也是金属Cu和Au的主要来源[1-9]。火山岩浆弧和大陆碰撞带是产出巨型斑岩矿床的两类重要构造环境[10-16],但在中国,陆陆碰撞造山带也是斑岩型矿床形成的重要大地构造环境[6,17]。
近年来,在青海东昆仑地区发现并确认了多处斑岩型矿床(点),自西向东有:乌兰乌珠尔斑岩型Cu矿[18-20],含矿正长花岗岩体 LA-MC-ICPMS锆石 U-Pb年龄为(388.9±3.7)Ma[21],但有研究[22]认为它是伴生Au的似斑岩型Cu、W、Sn矿床;鸭子沟斑岩型Cu-Mo矿床,含矿钾长花岗斑岩的SHRIMP锆石 U-Pb年龄为(224.0±1.6)Ma,矿石的辉钼矿 Re-Os等时线年龄为(224.7±3.4)Ma[23-24];卡而却卡复合矿床[25-26]为斑岩型和矽卡岩型矿(化)体共生于同一个矿区之中,对矿区Ⅶ号带矽卡岩和与矿体紧邻的似斑状黑云母二长花岗岩体进行了 LA-ICP-MS锆石 U-Pb测年,获得年龄为(410.1±2.6)Ma[27],矿区内与矽卡岩型Fe-Cu-Pb-Zn多金属矿化具有密切成因联系的花岗闪长岩,锆石SHRIMP U-Pb年龄为(237±2)Ma[28],矽卡岩型矿床辉钼矿Re-Os同位素定年等时线年龄为(239±11)Ma[29];下得波利铜钼矿花岗斑岩的锆石SIMS U-Pb年龄为(244.2±2.1)Ma[30];哈日扎铜钼矿床含矿花岗闪长斑岩LA-ICP-MS U-Pb年龄为(234.5±4.4)Ma[31];此外有清水河东沟、赛钦南、加当根等[32-33],初步构成了斑岩成矿带的雏形。上述矿床大多分布于昆北带,昆中带和昆南带的斑岩型矿床鲜见报道。
2000 年以前,青海省第一区域地质调查队等单位分别对托克妥矿床所在区域进行了不同比例尺的区域地质调查和物、化探扫面工作,发现了多处矿(化)点,并圈定和评价了数个远景区。自2006年开始,青海地球化学勘查公司和西北有色物探队合作,通过1∶5万水系沉积物测量,确定了托克妥地区是主攻矿种为Pb、Cu、Sb、Co 4个元素的成矿远景区,目前正处于普查阶段。由于托克妥Cu-Au(Mo)矿床发现较晚,工作程度低,缺乏对矿区岩体的成岩时代、地球化学特征、成因和起源、动力学背景的研究,笔者重点对托克妥Cu-Au(Mo)矿床地质特征和含矿岩体的岩石学、地球化学、精细年代学进行了研究,对含矿岩体的成因及动力学背景等进行了初步探讨。研究成果为深化大陆碰撞斑岩型矿床的认识和指导本区同类型矿产找矿工作提供了基础资料和信息。
托克妥Cu-Au(Mo)矿床位于中国大陆中央造山带西段—东昆仑造山带的东昆中构造带[34-35],即伯喀里克—香日德印支期 Au、Pb、Zn(Cu)成矿带[36](图1a)。大地构造属古亚洲构造域和特提斯—喜马拉雅构造域的结合部位[30],记录了早古生代和晚古生代两期构造岩浆事件[37],包括沿东昆中断裂分布的镁铁—超镁铁质杂岩及相关变质岩系[38-39],且主要的变形特征表现为古韧性剪切带的再活动及新生断裂[40]。
矿区出露地层主要如下。古元古代:金水口岩群有片麻岩、斜长角闪岩、混合岩和大理岩;长城纪小庙组为黑云变粒岩-云母石英片岩-砾铁石英变质建造。中、新元古代万宝群:上部白云岩、白云质灰岩夹少量砂岩;中部灰绿色蚀变玄武岩夹少量砂岩、石灰岩;下部砂岩夹千枚岩。下中侏罗统:砾岩、砂砾岩、砂岩、硬砂岩夹炭质页岩和薄煤层,及灰岩、凝灰质砂岩。
矿区构造较为发育,主要分布一系列近东西向相互平行或近于平行的断裂带,宏观上控制了晚印支期潜火山岩、火山岩及金矿(化)体的空间展布,旁侧多为北西西—北西向次级羽状裂隙、断裂,是区内金矿(化)体的主要赋存部位。
矿区岩浆岩主要为印支期肉红色花岗岩、灰白色花岗闪长岩和华力西期中细粒花岗岩、花岗闪长岩及少量燕山期花岗斑岩等(图1b)。印支期是该区Au的主要成矿期。
从矿体中心向外,依次为硅化带、钾化带、青磐岩化带和次生氧化富集带。矿化主要产于二长花岗斑岩、花岗闪长斑岩及其与围岩接触部位的钾硅化带中,硅化和钾长石化的叠加部位往往是工业铜矿体的产出部位。
图1 青海托克妥Cu-Au(Mo)矿床矿区地质简图Fig.1 Simplified and geological map in the Tuoketuo porphyry Cu-Au(Mo)deposit
图2 青海托克妥Cu-Au(Mo)矿床矿石及矿相学照片Fig.2 Ores and mineragraphy photos in the Tuoketuo porphyry Cu-Au(Mo)deposit
矿石类型有角砾岩型(图2a)和细脉浸染状(图2b)两大类。矿石矿物组合简单,主要有黄铁矿和黄铜矿,其次是闪锌矿、褐铁矿和铜蓝等;脉石矿物主要有石英,其次为斜长石、钾长石、黑云母、绿泥石和方解石等。在显微镜下可以观察到黄铁矿中有闪锌矿固溶体,闪锌矿中有黄铜矿固溶体(图2c),黄铁矿石英脉沿裂隙充填,黄铁矿被黄铜矿交代呈骸晶结构(图2d),闪锌矿被黄铜矿沿边交代呈骸晶结构(图2e),可见压溶作用,导致早期的石英颗粒发育溶液以及形成黄铁矿压力影(图2f)。
本次研究的样品为与成矿关系最为密切的靠近矿体的二长花岗斑岩和与二长花岗斑岩呈过渡接触的花岗闪长斑岩(图3,地理坐标为35°55′31.96″N,97°38′23.45″E)。
图3 青海托克妥Cu-Au(Mo)矿床岩石及岩相学照片Fig.3 Rocks and petrogragraphy photos in the Tuoketuo porphyry Cu-Au(Mo)deposit
二长花岗斑岩:呈灰红色—肉红色,似斑状不等粒结构(图3a),块状构造。其主要矿物为钾长石,石英,斜长石:钾长石呈肉红色,体积分数为30%,多为具卡斯巴双晶的正长石(图3c),格子双晶发育,有的钾长石晶体可见到斜长石包体,表面呈泥土状;斜长石呈灰白色,体积分数为35%,镜下可见聚片双晶并发育强烈的绢云母化;石英呈浑圆状颗粒,体积分数为35%。有少量的绿帘石化和方解石化(图3e)。
花岗闪长斑岩:具有似斑状结构(图3b),主要矿物成分为斜长石(约40%)、石英(约25%)、黑云母(约15%)、角闪石(约10%)、钾长石(约3%)、绿泥石(约2%)。显微镜下可见:斜长石多呈半自形柱状,可见聚片双晶和钠长石双晶,环带结构发育,局部有弱蚀变,被绿泥石交代形成斜长石的反应边结构;石英普遍具波状消光,部分有亚颗粒化现象,分布不均匀,多充填在黑云母、角闪石和斜长石的空穴中;角闪石具有显著的角闪石式解理,黄绿色,呈柱状单体(图3d);可见到黄铜矿化和黄铁矿化(图3f)。
挑选新鲜样品在无污染环境下粉碎至200目。全岩主量、微量元素分析在河北省区域地质矿产调查研究所完成。主量元素由Axios X射线荧光光谱仪测定,微量元素由X Serise2等离子体质谱仪测定。
锆石挑选由河北省廊坊市宇能岩石矿物分选技术服务有限公司完成。锆石的制靶和阴极发光显微照相(CL)在北京锆年领航科技有限公司完成,用于控制靶位和检测每个锆石的内部结构及选择合适的分析点位置。LA-MC-ICP-MS锆石 U-Pb测年在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成。锆石定年分析所用仪器为Finnigan Neptune型 MC-ICP-MS及与之配套的 Newwave UP 213激光剥蚀系统。锆石U-Pb定年以锆石GJ-1为外标,U、Th质量分数以锆石M127[41]为外标进行校正。数据处理采用ICPMSDataCal程序[42],详细实验测试过程可参见文献[43]。样品分析过程中,Plesovice标样作为未知样品的分析结果为(336.5±1.1)Ma(n=3,2σ),对应的年龄推荐值为(337.13±0.37)Ma(2σ)[44],两者在误差范围内完全一致。文中采用谐和度大于90%的数据点。
笔者对青海托克妥Cu-Au(Mo)矿床含矿斑岩体中二长花岗斑岩(B-004)和花岗闪长斑岩(B-006)2件样品进行了锆石U-Pb定年(表1和图4)。这2个样品中的大多数锆石显示较好的生长纹带,大部分呈不完整的不规则棱角状或浑圆状,核部为黑色,少部分为长柱状(长宽比为2∶1~4∶1),黑色生长边较薄或无。
图4 青海托克妥Cu-Au(Mo)矿床含矿斑岩体的锆石U-Pb年龄谐和图和典型的CL图像Fig.4 U-Pb concordia diagrams and cathodoluminescence(CL)images of the ore-bearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
?
?
二长花岗斑岩样品B-004中,18颗锆石的Th/U值为0.39~1.23,206Pb/238U年龄为(232.49±0.93)Ma(MSWD=0.41);花岗闪长斑岩样品B-006中,18颗锆石的Th/U值为0.71~1.19,206Pb/238U年龄为(232.6±1.2)Ma(MSWD=0.32)。
笔者研究的11件东昆中青海托克妥Cu-Au(Mo)矿床样品(其中6件含矿斑岩和5件矿石)均发生了不同程度的蚀变,本次将东昆北卡而却卡斑岩铜金矿床含矿斑岩(6件)[45]、东昆南下得波利斑岩铜钼矿床含矿斑岩(6件)[30]样品数据放入图中,以便后文讨论。
青海托克妥 Cu-Au(Mo)矿床含矿斑岩w(SiO2)为63.11%~71.48%(平均为67.47%),具有高钾(w(K2O)=2.62%~3.61%,平均为3.11%)、高镁(w(MgO)=0.52%~1.89%,平均为1.20%)和低钛(w(TiO2)=0.26%~0.53%,平均为0.39%)、偏铝质(A/CNK=1.05~1.10,平均为1.08)的特征,属于高钾钙碱性系列的二长花岗斑岩或花岗闪长斑岩(表2,图5)。
在以w(SiO2)为横轴的Harker图解(图6)上,样品随w(SiO2)增加,TiO2、Al2O3、TFeO、MgO、CaO和P2O5质量分数降低,表现出明显的线性相关(图6a,b,c,e,f)。样品在 Al2O3/CaO-Na2O/CaO图解上也表现出正线性相关关系(图6i),但MnO、Na2O质量分数均未表现出可识别的趋势(图6d,g),暗示了东昆仑斑岩型矿床含矿岩体主要经历了岩浆的结晶分异作用和有部分岩浆混合作用。
青海托克妥Cu-Au(Mo)矿床含矿斑岩和矿石样品微量元素和稀土元素具有相似的特征(表2,图7),均显示大离子亲石元素Rb、Ba、K和Pb等富集,高场强元素Nb、Ta、Ti和P亏损;具有中等的轻重稀土分馏特征(含矿斑岩平均(La/Yb)N=10.67,矿石平均(La/Yb)N=8.12),中等的Eu异常(含矿斑岩平均δEu=0.95,矿石平均δEu=1.22),且稀土总量低(含矿斑岩平均w(∑REE)=121.31×10-6,矿石平均w(∑REE)=79.34×10-6)。
图5 青海托克妥Cu-Au(Mo)矿床含矿斑岩的地球化学图解Fig.5 Geochemical plots of the ore-bearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
表2 青海托克妥Cu-Au(Mo)矿床矿石和含矿斑岩的主量和微量元素数据Table 2 Major and trace element data in the Tuoketuo porphyry Cu-Au(Mo)deposit
表2(续)
图6 青海托克妥Cu-Au(Mo)矿床含矿斑岩Harker图解Fig.6 Selected geochemical plots of the ore-bearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
青海托克妥Cu-Au(Mo)矿床含矿斑岩样品为偏铝质花岗质岩石,样品中的Zr、Nb、Ce和Y质量分数较低,在w(Ce)-w(SiO2)图解中落入I型花岗岩范围内(图8a),且样品的w(P2O5)随w(SiO2)增加而降低(图6h),与I型花岗岩的演化趋势一致[54-56];在TFeO/MgO-w(Zr+Nb+Ce+Y)散点图中落入了高分异与未分异花岗岩的范围内(图8b),恰好说明了与成矿的关系,二长花岗斑岩更加靠近矿体,钾化蚀变更加强烈;在(Al2O3+CaO)/(TFeO+Na2O+K2O)-100(TFeO+MgO+TiO2)/SiO2散点图上,显示了普通钙碱性岩石特征(图8c)。在CIPW计算中,钛铁矿质量分数平均为0.76%,磷灰石质量分数平均为0.21%,经历了磷灰石、钛铁矿等副矿物和长石类造岩矿物分离结晶作用的I型花岗岩。结合岩相学观察,花岗质岩石中有普通角闪石的出现(图3d),因此,青海托克妥Cu-Au(Mo)矿床含矿斑岩属于I型花岗质岩石。
成岩与成矿是区域构造-岩浆-流体演化一脉相承的产物[13,57],近年来研究认为幔源物质可能是斑岩铜矿中成矿元素的主要来源[58-60]。Bouse等[61]研究证实部分地区的Cu、Mo和岩浆共同来源于下地壳。幔源岩浆与地壳熔体的混合物可能为大规模成矿作用提供成矿元素的认识已经被大部分学者所接受[62-63]。
青海托克妥Cu-Au(Mo)矿床含矿斑岩以较低的w(Yb)(平均1.4×10-6)和w(Y)(平均11.38×10-6)、较高的La/Yb和Sr/Y值为特征(图9a,b),显示典型的埃达克岩特征[65-66],符合后碰撞埃达克质岩高钾(w(K2O)=2.63%~3.66%)、高镁(Mg#=12.27~23.07)的特征[67];结合青海托克妥 Cu-Au(Mo)矿床含矿斑岩属高钾钙碱性系列,富集大离子亲石元素(Rb、Ba、K和Pb)和轻稀土元素,亏损高场强元素(Nb、Ta、Ti和P),其地球化学特征与弧火山岩相似,很可能形成于厚地壳背景下与板片俯冲有关的岛弧环境[68-69]。Nb-Ta的亏损可能是板片断离引起的软流圈上涌过程中与地壳组分混染或与富集岩石圈地幔混合的结果[70],这与东昆仑中生代所处的特殊构造部位及经历的区域构造动力体制时空转换有关,深部特殊地质结构的动力学条件激发了强烈壳-幔相互作用[71-72]。
图7 青海托克妥Cu-Au(Mo)矿床含矿斑岩的原始地幔标准化元素蛛网图(a)和球粒陨石标准化稀土元素配分模式图(b)Fig.7 Primitive mantle-normalized trace-element spidergram(a)and chondrite-normalized REE pattern(b)for the samples in the Tuoketuo porphyry Cu-Au(Mo)deposit
青海托克妥Cu-Au(Mo)矿床含矿斑岩显示出岩浆与俯冲有关的特点,暗示岩浆源区可能曾经发生过俯冲板片流体的交代富集作用[73-74]。在 Nb/U-w(Nb)图解(图10a)[75]上,也可以看出岩浆源区曾经发生过俯冲板片流体的交代富集作用;在Nb/Zr-Ba/Th图(图10b)中,低的 Nb/Zr值是地幔因先前的熔融作用而发生亏损的标志[79],显示了亏损地幔源区受到富集地幔源流体影响的地球化学特点;为了限定青海托克妥Cu-Au(Mo)矿床含矿斑岩的岩浆源区,在Mg#-w(SiO2)图解(图10c)中,分别列出了地幔橄榄岩、地壳基性岩和俯冲板片不同源岩实验产生的熔体成分区及地壳和地幔AFC的演化趋势[80],可见与实验确定的由榴辉岩和石榴子石角闪岩产生的部分熔融体成分相近[81],意味着它们主要与俯冲板片或含有一定量幔源组分的镁铁质下地壳(约60%)[82-84](图10d)有关,之后产生埃达克质岩浆熔体[67,85]。在斜长石、钾长石和角闪石的部分分离结晶作用发生时,释放出大量流体,埃达克质岩浆熔体将变得富水并呈高氧化态,成为斑岩铜矿的潜在含矿岩浆[86]。由此认为,青海托克妥Cu-Au(Mo)矿床含矿斑岩发育于板片俯冲断离后碰撞地壳伸展环境,岩浆来源于俯冲板片或含有一定量幔源组分的镁铁质下地壳。
东昆仑深部地球物理探测资料和地质-地球化学研究[87-88]表明,深部岩石圈地幔处于多块体叠瓦向北俯冲、物质与能量会聚和冷岩石圈下沉的区域,并提出了板片断离-岩浆底侵-岩浆混合-拆沉作用模型[89]。李王晔[37]认为东昆南和东昆北地块在泥盆纪时(396~448Ma)沿东昆中断裂已完成碰撞;许志琴等[90]研究认为,东昆仑—巴彦喀拉古特提斯缝合带走滑断裂形成于220~240Ma;郭正府等[91]提出陆内造山阶段于190~230Ma开始。东昆仑含矿斑岩构造-岩浆-成矿系统的时空分布和成因研究为这些模型提供了新的限制和丰富了转换构造动力体制理论[92-97]。
从晚泥盆世—早石炭世开始,东昆仑地块与巴颜喀拉地块之间存在洋盆的扩张、俯冲、消亡的演化过程,经历了板块的裂解与拼合、洋陆的相互转化、古特提斯洋打开[39,91,98],进入洋壳扩张阶段(260~360Ma),以大洋动力体制为主导。苦海—赛什塘蛇绿岩组合40Ar-39Ar年龄为(368±1.4)Ma[99],阿尼玛卿构造带西段布青山地区蛇绿岩锆石U-Pb年龄为(332.8±3.1)Ma[100],德尔尼蛇绿岩熔岩中的锆石 SHRIMP U-Pb平均年龄为(308.2±4.9)Ma[101],均表明了东昆仑地块与巴颜喀拉地块之间存在一个快速扩张的洋脊,东昆仑地区成为复杂的活动大陆边缘(图11a)。
图8 青海托克妥Cu-Au(Mo)矿床含矿斑岩的岩石成因判别图解Fig.8 Distrimination diagrams of petrogenetic types for the ore-bearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
图9 青海托克妥Cu-Au(Mo)矿床含矿斑岩的构造环境判别图解Fig.9 Distriminatize of tectonic settings for the orebearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
随巴颜喀拉—阿尼玛卿洋不断俯冲和楔入,陆续有与洋壳俯冲作用有关的火山喷发和岩浆侵入,下大武弧火山岩基性熔岩全岩Rb-Sr等时线年龄为260Ma左右[102],布尔汗布达岛弧岩浆带237~260 Ma[90],进入了俯冲造山阶段(240~260Ma),相当于邓军等[92]转换动力体制之下的洋陆转换阶段。俯冲的巴颜喀拉—阿尼玛卿洋壳板片与附着其后的东昆仑陆块板片发生断离[105],导致软流圈穿过板片窗上涌,诱发幔源岩浆活动,产生镁铁质岩浆并造成底侵作用,以千瓦大桥北角闪辉长岩体((239±6)Ma)为代表;同时东昆仑陆块下地壳部分熔融,发生壳幔岩浆混合,大量发育 MME包体((241±5)Ma)[103],产生含 Mo岩浆,形成东昆南下得波利斑岩型Cu-Mo矿床((244.0±2.1)Ma)(图11b)。
图10 青海托克妥Cu-Au(Mo)矿床含矿斑岩的源区判别图解Fig.10 Distriminatize of source area for the ore-bearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
图11 东昆仑碰撞带构造-岩浆演化及斑岩成矿作用示意图Fig.11 Schematic illustrations of evolution of the east Kunlun continental orogenic zone
巴颜喀拉—阿尼玛卿洋闭合以后,在240~190 Ma,挤压应力场的持续作用促使陆内碰撞造山作用的发生,转而受大陆动力体制控制。东昆仑南缘碰撞-后碰撞陆内造山产物S型花岗岩同位素年龄为237~190Ma[39],东—西大滩转换挤压构造带[109]形成的走滑断裂时代为237~190Ma[39],岩石圈急剧增厚,整个区域上升成陆,同时形成双岩浆弧,靠近板块边界的火山岩以钙碱性系列为主,远离板块边界则以钾玄岩系列为主[98]。陆陆碰撞触发了俯冲板片的断离或拆沉,导致软流圈上涌,形成下伏镁铁质加厚下地壳,加厚岩石圈拆沉,诱发幔源岩浆底侵作用,如外滩角闪辉长岩((222.2±3.3)Ma)[105];之后镁铁质下地壳的部分熔融和地壳的分异,最终随着造山带的冷却和加厚下地壳的榴辉岩化[15],含矿斑岩系统在靠近俯冲大陆一侧分布[14],形成东昆中托克妥斑岩型 Cu-Au(Mo)矿床((232±0.2)Ma)和东昆北卡而却卡斑岩型Cu-Au矿床((227.3±1.8)Ma)(图11c),这与板片断离有关的岩浆大爆发时间相一致(发生板片断离时间一般在初始碰撞之后10~20Ma[110])。
基于对东昆仑托克妥斑岩Cu-Au(Mo)矿床含矿斑岩岩浆成因、起源、演化及斑岩成矿作用的综合研究,可以得出如下认识:
1)青海托克妥Cu-Au(Mo)矿床含矿斑岩为二长花岗斑岩或花岗闪长斑岩,具有富硅,高钾、高镁和低钛,偏铝质的特征,富集大离子亲石元素,亏损高场强元素;具有中等的轻重稀土分馏特征,中等的Eu异常,且稀土总量低,属于高钾钙碱性系列的I型花岗岩。2)锆石LA-ICP-MS测年结果表明,东昆仑托克妥斑岩Cu-Au(Mo)矿床含矿斑岩二长花岗斑岩年龄为(232.49±0.93)Ma,花岗闪长斑岩年龄为(232.6±1.2)Ma。其形成于大陆动力体制下的伸展背景,与阿尼玛卿洋壳岩石圈北向俯冲碰撞有关的俯冲板片断离有关。3)青海托克妥Cu-Au(Mo)矿床含矿斑岩主要来源于与板片断离引起的软流圈上涌过程中与地壳组分混染或与富集岩石圈地幔(约60%)混合的结果,之后产生埃达克质岩浆熔体,分离结晶作用发生,释放出大量流体,成为斑岩铜矿的潜在含矿岩浆。
锆石U-Pb测年得到中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室侯可军老师的大力支持和协助;葛良胜高级工程师、张静教授在成文过程中提出了宝贵的建议,受益匪浅。谨致谢忱。
(References):
[1]Redmond P B,Einaudi M T,The Bingham Canyon Porphyry Cu-Mo-Au Deposit: I:Sequence of Intrusions,Vein Formation,and Sulfide Deposition[J].Economic Geology,2010,105:43-68.
[2]Rishard H S.Porhyry Copper Systems[J].Economic Geology,2010,105:3-41.
[3]Seedorff E,Dilles J H,Proffett J M,et al.Porphyry Deposits:Characteristics and Origin of Hypogene Features[J].Economic Geology,2005,100:252-298.
[4]Yang Z M,Hou Z Q,White N C,et al.Geology of the Post-Collisional Porphyry Copper-Molybdenum Deposit at Qulong,Tibet[J].Ore Geology Reviews,2009,36:133-159.
[5]张金树,多吉,夏代祥,等.西藏冈底斯驱龙斑岩型铜钼-矽卡岩型铜矿成矿体系:辉钼矿Re-Os同位素年代学证据[J].吉林大学学报:地球科学版,2013,43(5):1366-1376.Zhang Jinshu,Duo Ji,Xia Daixiang,et al.Qulong Porphyry-Skarn Metallogenic System in Gangdese Belt, Tibet: Evidence from Molybdenite Re-Os Geochronology[J].Journal of Jilin University:Earth Science Edition,2013,43(5):1366-1376.
[6]侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报,2009,83(12):1779-1817.Hou Zengqian,Yang Zhiming.Porphyry Deposits in Continental Settings of China:Geological Characteristics,Magmatic-Hydrothermal System,and Metallogenic Model[J].Acta Geologica Sinica,2009,83(12):1779-1817.
[7]徐文刚,张德会.还原性流体与斑岩型矿床成矿机制探讨[J].地质学报,2012,86(3):495-502.Xu Wengang,Zhang Dehui.An Interpretation of the Role of Reduced Fluid in Porphyry Metallogenesis[J].Acta Geologica Sinica,2012,86(3):495-502.
[8]杨帅师.内蒙古北山北带斑岩型矿床特征与成矿系统分析[D].北京:中国地质大学,2012.Yang Shuaishi.Characteristics of Porphyry-Type Ore Deposits and Ore-Forming System Analysis in North Beishan Area,Inner Mongolia[D].Beijing:China University of Geosciences,2012.
[9]杨言辰,韩世炯,孙德有,等.小兴安岭—张广才岭成矿带斑岩型钼矿床岩石地球化学特征及其年代学研究[J].岩石学报,2012,28(2):379-390.Yang Yanchen,Han Shijiong,Sun Deyou,et al.Geological and Geochemical Features and Geochronology of Porphyry Molybdenum Deposits in the Lesser Xing’an Range-Zhangguangcai Range Metallogenic Belt[J].Acta Petrologica Sinica,2012,28(2):379-390.
[10]Richards J P.Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au)Deposit Formation[J].Economic Geology,2003,98(8):1515-1533.
[11]Sillitoe R H.A Plate Tectonic Model for the Origin of Porphry Copper Deposits[J].Economic Geology,1972,67(2):184-197.
[12]陈衍景.大陆碰撞成矿理论的创建及应用[J].岩石学报,2013,29(3):1-17.Chen Yanjing,The Development of Continental Collision Metallogeny and Its Application[J].Acta Petrologica Sinica,2013,29(3):1-17.
[13]邓军,杨立强,葛良胜,等.滇西富碱斑岩型金成矿系统特征与变化保存[J].岩石学报,2010,26(6):1633-1645.Deng Jun,Yang Liqiang,Ge Liangsheng,et al.Character and Post-Ore Changes,Modifications and Preservation of Cenozoic Alkali-Rich Porphyry Gold Metallogenic System in Western Yunnan,China[J].Acta Petrologica Sinica,2010,26(6):1633-1645.
[14]侯增谦,郑远川,杨志明,等.大陆碰撞成矿作用:I:冈底斯新生代斑岩成矿系统[J].矿床地质,2012,31(4):647-670.Hou Zengqian,Zheng Yuanchuan,Yang Zhiming,et al.Metallogenesis of Continental Collision Setting:Part I:Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet[J].Mineral Deposits,2012,31(4):647-670.
[15]罗照华,卢欣祥,陈必河,等.碰撞造山带斑岩型矿床的深部约束机制[J].岩石学报,2008,24(3):447-456.Luo Zhaohua,Lu Xinxiang,Chen Bihe,et al.The Constraints from Deep Processes on the Porphyry Metallogenesis in Collisional Orogens[J].Acta Petrologica Sinica,2008,24(3):447-456.
[16]芮宗瑶,侯增谦,李光明,等.俯冲、碰撞、深断裂和埃达克岩与斑岩铜矿[J].地质与勘探,2006,42(1):1-6.Rui Zongyao,Hou Zengqian,Li Guangming,et al.Subduction,Collision,Deep Fracture,Adakite and Porphyry Copper Deposits[J].Geology and Prospecting,2006,42(1):1-6.
[17]侯增谦,杨志明.中国大陆环境典型斑岩型矿床成矿规律和找矿模型研究进展[J].矿床地质,2012,31(4):645-646.Hou Zengqian, Yang Zhiming.Research of Metallogeny and Prospecting Model of Porphyry Deposits in Continental Settings of China[J].Mineral Deposits,2012,31(4):645-646.
[18]景向阳,王维,张永胜,等.青海省茫崖镇乌兰乌珠尔铜矿床地质特征、成因类型及其找矿前景分析[J].矿产与地质,2010,24(3):222-228.Jing Xiangyang,Wang Wei,Zhang Yongsheng,et al.Analysis on Geological Characteristics,Genetic Type and Ore-Finding Prospect of Wulanwuzhuer Copper Deposit in Mangya,Qinghai Province[J].Mineral Resources and Geology,2010,24(3):222-228.
[19]佘宏全,张德全,景向阳,等.青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J].中国地质,2007,34(2):306-314.She Hongquan,Zhang Dequan,Jing Xiangyang,et al.Geological Characteristics and Genesis of the Ulan Uzhur Porphyry Copper Deposit in Qinghai[J].Geology in China,2007,34(2):306-314.
[20]石天成,张占玉.乌兰乌珠尔铜矿床基本特征及找矿潜力分析[J].青海科技,2007,14(6):26-28.Shi Tiancheng,Zhang Zhanyu.Geological Features and Analysis of the Prospecting Potential of Wulanwuzhuer Copper Deposit[J].Qinghai Science and Technology,2007,14(6):26-28.
[21]郭通珍,刘荣,陈发彬,等.青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICP-MS锆石 U-Pb定年及地质意义[J].地质通报,2011,30(8):1203-1211.Guo Tongzhen,Liu Rong,Chen Fabin,et al.LAMC-ICP-MS Zircon U-Pb Dating of Wulanwuzhuer Porphyritic Syenite Granite in the Qimantag Mountain of Qinghai and Its Geological Significance[J].Geological Bulletin of China,2011,30(8):1203-1211.
[22]胡永达.青海东昆仑乌兰乌珠尔铜矿地质特征及成矿远景评价[D].长春:吉林大学,2007.Hu Yongda.Geological Characteristics and Mineralizing Perspective Evaluation of Wulanwuzhuer Copper Deposit in the Eastern Kunlun Orogenic Belt,Qinghai Province[D].Changchun:Jilin University,2007.
[23]何书跃,李东生,李良林,等.青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J].大地构造与成矿学,2009,33(2):236-242.He Shuyue,Li Dongsheng,Li Lianglin,et al.Re-Os Age of Molybdenite from the Yazigou Copper(Molybdenum)Mineralized Area in Eastern Kunlun of Qinghai Province,and Its Geological Significance[J].Geotectonice et Metallogenia,2009,33(2):236-242.
[24]李世金,孙丰月,王力,等.青海东昆仑卡尔却卡多金属矿区斑岩型铜矿的流体包裹体研究[J].矿床地质,2008,27(3):399-406.Li Shijin,Sun Fengyue,Wang Li,et al.Fluid Inclusion Studies of Porphyry Copper Mineralization in Kaerqueka Polymetallic Ore District,East Kunlun Mountains,Qinghai Province[J].Mineral Deposits,2008,27(3):399-406.
[25]吴健辉,丰成友,张德全,等.柴达木盆地南缘祁漫塔格—鄂拉山地区斑岩-矽卡岩矿床地质[J].矿床地质,2010,29(5):760-774.Wu Jianhui,Feng Chengyou,Zhang Dequan,et al.Geology of Porphyry and Skarn Type Copper Polymetallic Deposits in Southern Margin of Qaidam Basin[J].Mineral Deposits,2010,29(5):760-774.
[26]李大新,丰成友,赵一鸣,等.青海卡而却卡铜多金属矿床蚀变矿化类型及矽卡岩矿物学特征[J].吉林大学学报:地球科学版,2011,41(6):1818-1830.Li Daxin,Feng Chengyou,Zhao Yiming,et al.Mineralization and Alteration Types and Skarn Mineralogy of Kaerqueka Copper Polymetallic Deposit in Qinghai Province[J].Journal of Jilin University:Earth Science Edition,2011,41(6):1818-1830.
[27]陈博,张占玉,耿建珍,等.青海西部祁漫塔格山卡尔却卡铜多金属矿床似斑状黑云二长花岗岩LAICP-MS锆石 U-Pb年龄[J].地质通报,2012,31(2):463-468.Chen Bo,Zhang Zhanyu,Geng Jianzhen,et al.Zircon LA-ICP-MS U-Pb Age of Monzogranites in the Kaerqueka Copper-Polymetallic Deposit of Qimantag,Western Qinghai Province[J].Geological Bulletin of China,2012,31(2):463-468.
[28]王松,丰成友,李世金,等.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].中国地质,2009,36(1):74-84.Wang Song,Feng Chengyou,Li Shijin,et al.Zircon SHRIMP U-Pb Dating of Granodiorite in the Kaerqueka Polymetallic Ore Deposit,Qimantage Mountain,Qinghai Province,and Its Geological Implications[J].Geology in China,2009,36(1):74-84.
[29]丰成友,张德全,李东生,等.青海祁漫塔格成矿带斑岩-矽卡岩多金属成矿作用时限及动力学背景[J].矿物岩石地球化学通报,2009,28(增刊):200.Feng Chengyou,Zhang Dequan,Li Dongsheng,et al.Metallogenic Ages and Corresponding Geodynamic Processes of Porphyry-Skarn Ore-Forming in the Qimantage Metallogenic Belt,Eastern Kunlun Area[J].Bulletin of Mineralogy, Petrology and Geochemistry,2009,28(Sup.):200.
[30]刘建楠,丰成友,亓锋,等.青海都兰县下得波利铜钼矿区锆石U-Pb测年及流体包裹体研究[J].岩石学报,2012,28(2):679-690.Liu Jiannan,Feng Chengyou,Qi Feng,et al.SIMS Zircon U-Pb Dating and Fluid Inclusion Studies of Xiadeboli Cu-Mo Ore District in Dulan County,Qinghai Province,China[J].Acta Petrologica Sinica,2012,28(2):679-690.
[31]宋忠宝,张雨莲,陈向阳,等.东昆仑哈日扎含矿花岗闪长斑岩LA-ICP-MS锆石定年及地质意义[J].矿床地质,2013,32(1):157-168.Song Zhongbao,Zhang Yulian,Chen Xiangyang,et al.Geochemical Characteristics of Harizha Granite Diorite-Porphyry in East Kunlun and Geological Implications[J].Mineral Deposits,2013,32(1):157-168.
[32]丰成友,李东生,吴正寿,等.青海东昆仑成矿带斑岩型矿床的确认及找矿前景分析[J].矿物学报,2009,29(增刊):171-172.Feng Chengyou,Li Dongsheng,Wu Zhengshou,et al.The Confirmation of Porphyry Deposits in East Kunlun Mountain Mineralization Belt and Its Ore-Search Prospects, Qinghai Province[J].Acta Mineralogica Sinica,2009,29(Sup.):171-172.
[33]于淼,丰成友,肖晔,等.青海共和县加当根斑岩铜矿床成矿流体特征及演化[J].矿床地质,2013,32(1):133-147.Yu Miao,Feng Chengyou,Xiao Ye,et al.Features and Evolution of Metallogenic Fluid in Jiadanggen Porphyry Copper Deposit of Gonghe County,Qinghai Province[J].Mineral Deposits,2013,32(1):133-147.
[34]殷鸿福,张克信.中央造山带的演化及其特点[J].地球科学:中国地质大学学报,1998,23(5):3-5.Yin Hongfu, Zhang Kexin.Evolution and Characteristics of the Central Orogenic Belt[J].Earth Science:Journal of China University of Geosciences,1998,23(5):3-5.
[35]李碧乐,沈鑫,陈广俊,等.青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因[J].吉林大学学报:地球科学版,2012,42(6):1676-1687.Li Bile, Shen Xin, Chen Guangjun, et al.Geochemical Features of Ore-Forming Fluids and Metallogenesis of Vein I in Asiha Gold Ore Deposit,Eastern Kunlun,Qinghai Province[J].Journal of Jilin University:Earth Science Edition,2012,42(6):1676-1687.
[36]许志琴,杨经绥,李海兵,等.中央造山带早古生代地体构架与高压/超高压变质带的形成[J].地质学报,2006,80(12):1793-1806.Xu Zhiqin,Yang Jingsui,Li Haibing,et al.The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure(HP)and Ultra-High Pressure(UHP)Metamorphic Belts at the Central Orogenic Belt(COB)[J].Acta Geologica Sinica,2006,80(12):1793-1806.
[37]李王晔.西秦岭—东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究:对特提斯洋演化的制约[D].合肥:中国科学技术大学,2008.Li Wangye.Geochronology and Geochemistry of the Ophiolites and Island-Arc-Type Igneous Rocks in the Western Qinling Orogen and the Eastern Kunlun Orogen:Implication for the Evolution of the Tethyan Ocean[D].Hefei: University of Science and Technology of China,2008.
[38]Yang J S,Robinson P T,Jiang C F,et al.Ophiolites of the Kunlun Mountains,China and Their Tectonic Implications[J].Tectonophysics,1996,258:215-231.
[39]莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,13(3):403-414.Mo Xuanxue,Luo Zhaohua,Deng Jinfu,et al.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J].Geological Journal of China Universities,2007,13(3):403-414.
[40]许志琴,李海兵,唐哲民,等.大型走滑断裂对青藏高原地体构架的改造[J].岩石学报,2011,27(11):3157-3170.Xu Zhiqin,Li Haibing,Tang Zhemin,et al.The Transformation of the Terrain Structures of the Tibet Plateau Through Large-Scale Strike-Slip Faults[J].Acta Petrologica Sinica,2011,27(11):3157-3170.
[41]Nasdala L,Hofmeister W,Norberg N,et al.Zircon M257:A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon[J].Geostandards and Geoanalytical Research,2008,32(3):247-265.
[42]Liu Y S,Gao S,Hu Z C,et al.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating,Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J].Journal of Petrology,2010,51:537-571.
[43]侯可军,李延河,田有荣.LA-MC-ICP-MS锆石微区原位 U-Pb定年技术[J].矿床地质,2009,28(4):481-492.Hou Kejun,Li Yanhe,Tian Yourong.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS[J].Mineral Deposits,2009,28(4):481-492.
[44]Slama J,Kosler J,Condon D,et al.Plesovice Zircon:A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis[J].Chemical Geology,2008,249:1-35.
[45]丰成友,王松,李国臣,等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报,2012,28(2):665-678.Feng Chengyou,Wang Song,Li Guochen,et al.Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China: Chronology,Geochemistry and Metallogenic Significances[J].Acta Petrologica Sinica,2012,28(2):665-678.
[46]Misra K C.Understanding Mineral Deposit[M].Dordrecht:Kuwer Academic Publishers,2000:353-413.
[47]De la Roche,Leterrier J,Grandclaude P,et al.A Classification of Volcanic and Plutonic Rocks UsingR1-R2Diagram and Major-Element Analyses :Its Relationships with Current Nomenclature[J].Chemical Geology,1980,29(1/2/3/4):183-210.
[48]Rollinson H R.Using Geochemical Data:Evaluation,Presentation,Interpretation[M].New York:Longman Group UK Ltd,1993:1-352.
[49]Sun S S,McDonough W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.London:Geological Society,1989:313-345.
[50]Boynton W V.Geochemistry of the Rare Earth Elements:Meteorite Studies[C]// Henderson P.Rare Earth Element Geochemistry.Amsterdam:Elsevier,1984:63-114.
[51]Collins W J,Beams S D,White A J R,et al.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia[J].Contributions to Mineralogy and Petrology,1982,80:189-200.
[52]Whalen J B,Currie K L,Chappell B W.A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95:407-419.
[53]Eyal M,Litvinovsky B A,Katzir Y,et al.The Pan-African High-K Calc-Alkaline Peraluminous Elat Granite from Southern Israel:Geology,Geochemistry and Petrogenesis[J].Journal of African Earth Sciences,2004,40:115-136.
[54]Chappell B W,Stephens W E.Origin of Infracrustal(I-Type)Granite Magmas[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,1988(2/3):71-86.
[55]Li X H,Li Z X,Li W X,et al.U-Pb Zircon,Geochemical and Sr-Nd-Hf Isotopic Constraints On Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong,South China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?[J].Lithos,2007,96:186-204.
[56]Wu F Y,Jahn B M,Wilde S A,et al.Highly Fractionated I-Type Granites in NE China:I:Geochronology and Petrogenesis[J].Lithos,2003,66:241-273.
[57]邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展[J].岩石学报,2011,27(9):2501-2509.Deng Jun, Yang Liqiang, Wang Changming.Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys[J].Acta Petrologica Sinica,2011,27(9):2501-2509.
[58]Mungall J E.Roasting the Mantle:Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits[J].Geology,2002,30:915-918.
[59]Sillitoe R H.Characteristics and Controls of the Largest Porphyry Copper-Gold and Epithermal Gold Deposits in the Circum-Pacific Region[J].Australian Journal of Earth Sciences,1997,44(3):373-388.
[60]Solomon M.Subduction,Arc Reversal,and the Origin of Porphyry Copper-Gold Deposits in Island Arcs[J].Geology,1990,18(7):630-633.
[61]Bouse R M,Ruiz J,Titley S R,et al.Lead Isotope Compositions of Late Cretaceous and Early Tertiary Igneous Rocks and Sulfide Minerals in Arizona Implications for the Sources of Plutons and Metals in Porphyry Copper Deposits[J].Economic Geology,1999,94(2):211-244.
[62]Hawkesworth C J,Clarke C.Partial Melting in the Lower Crust:New Constraints on Crustal Contamination Processes in the Central Andes[C]//Tectonics of the Southern Central Andes,Structure and Evolution of an Active Continental Margin.Berlin:Springer Verlag,1994:93-101.
[63]Ramos V A.Plate Tectonic Setting of the Andean Cordillera[J].Episodes,1999,22(3):183-190.
[64]Defant M J,Drummond M S.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere[J].Nature,1990,34:662-665.
[65]朱章显,赵财胜,杨振强.苏拉威西埃达克岩、类埃达克岩分布与特征[J].吉林大学学报:地球科学版,2009,39(1):80-88.Zhu Zhangxian,Zhao Caisheng,Yang Zhenqiang.Distribution and Geochemical Characteristics of Adakites and Adakite-Like Rocks in Sulawesi,Indonisia[J].Journal of Jilin University:Earth Science Edition,2009,39(1):80-88.
[66]Rapp R P,Watson E B.Dehydration Melting of Metabasalt at 8-32kbar: Implications for Continental Growth and Crust-Mantle Recycling[J].Journal of Petrology,1995,36(4):891-931.
[67]侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:III:后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629-651.Hou Zengqian,Qu Xiaoming,Yang Zhusen,et al.Metallogenesis in Tibetan Collisional Orogenic Belt:III: Mineralization in Post-Collisional Extension Setting[J].Mineral Deposits,2006,25(6):629-651.
[68]朱弟成,潘桂棠,莫宣学,等.冈底斯中北部晚侏罗世—早白垩世地球动力学环境:火山岩约束[J].岩石学报,2006,22(3):534-546.Zhu Dicheng,Pan Guitang,Mo Xuanxue,et al.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese: New Insights from Volcanic Rocks[J].Acta Petrologica Sinica,2006,22(3):534-546.
[69]朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报,2008,27(9):1535-1550.Zhu Dicheng,Pan Guitang,Wang Liquan,et al.Tempo-Spatial Variations of Mesozoic Magmatic Rocks in the Gangdise Belt,Tibet,China,with a Discussion of Geodynamic Setting-Related Issues[J].Geological Bulletin of China,2008,27(9):1535-1550.
[70]张亮亮,朱弟成,赵志丹,等.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报,2011,27(7):1938-1948.Zhang Liangliang,Zhu Dicheng,Zhao Zhidan,et al.Early Cretaceous Granitoids in Xainza, Tibet:Evidence of Slab Break-Off[J].Acta Petrologica Sinica,2011,27(7):1938-1948.
[71]葛良胜,邓军,杨立强,等.滇西地区深部构造特征及其对成岩-成矿的控制作用[J].岩石学报,2012,28(5):1387-1400.Ge Liangsheng,Deng Jun,Yang Liqiang,et al.Characteristics of Deep-Seated Structure and Its Control Action for Magmatic Activity and Mineralization in Western Yunnan Province[J].Acta Petrologica Sinica,2012,28(5):1387-1400.
[72]Ge Liangsheng,Deng Jun,Guo Xiaodong,et al.Deep-Seated Structure and Metallogenic Dynamics of the Ailaoshan Polymetallic Mineralization Concentration Area,Yunnan Province,China[J].Science in China:Series D:Earth Sciences,2009,52(10):1624-1640.
[73]Miker C,Schuster R,Klotzli U,et al.Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis[J].Journal of Petrology,1999,40(9):1399-1424.
[74]Wang J H,Yin A,Harrison T M,et al.A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone[J].Earth and Planetary Science Letters,2001,188(1/2):123-133.
[75]杨志明,侯增谦,杨竹森,等.青海纳日贡玛斑岩钼(铜)矿床:岩石成因及构造控制[J].岩石学报,2008,24(3):489-502.Yang Zhiming,Hou Zengqian,Yang Zhusen,et al.Genesis of Porphyries and Tectonic Controls on the Narigongma Porphyry Mo(Cu)Deposit,Southern Qinghai[J].Acta Petrologica Sinica,2008,24(3):489-502.
[76]Abratis M.Geochemical Variations in Magmatic Rocks from Southern Costa Rica as a Consequence of Cocos Ridge Subduction and Uplift of the Cordillera de Talamanca[M].[S.l.]:Georg-August-Universitätzu Göttingen,1998:61.
[77]Stern C R,Kilian R.Role of the Subducted Slab,Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone[J].Contributions to Mineralogy and Petrology,1996,123:263-281.
[78]Sylvester P J.Post-Collisional Strongly Peraluminous Granites[J].Lithos,1998,45:29-44.
[79]Pearce J A,Norry M J.Petrogenetic Implications of Ti,Zr,Y,and Nb Variations in Volcanic Rocks[J].Contributions to Mineralogy and Petrology,1979,69(1):33-47.
[80]马昌前,明厚利,杨坤光.大别山北麓的奥陶纪岩浆弧:侵入岩年代学和地球化学证据[J].岩石学报,2004,20(3):393-402.Ma Changqian,Ming Hongli,Yang Kunguang.An Ordovician Magmatic Arc at the Northern Foot of Dabie Mountains:Evidence from Geochronology and Geochemistry of Intrusive Rocks[J].Acta Petrologica Sinica,2004,20(3):393-402.
[81]张洪瑞,侯增谦,杨天南,等.青藏高原北羌塘南缘俯冲型石英正长斑岩的发现:来自地球化学分析证据[J].地质论评,2010,56(3):403-412.Zhang Hongrui,Hou Zengqian,Yang Tiannan,et al.Subduction-Related Quartz Syenite Porphyries in the Eastern Qiangtang Terrane, Qinghai-Xizang Plateau:Constraints from Geochemical Analyses[J].Geological Review,2010,56(3):403-412.
[82]Zhu D C,Mo X X,Niu Y,et al.Zircon U-Pb Dating and In-Situ Hf Isotopic Analysis of Permian Peraluminous Granite in the Lhasa Terrane,Southern Tibet:Implications for Permian Collisional Orogeny and Paleogeography[J].Tectonophysics,2009,469(1):48-60.
[83]朱弟成,赵志丹,牛耀龄,等.西藏拉萨地块过铝质花岗岩中继承锆石的物源区示踪及其古地理意义[J].岩石学报,2011,27(7):1917-1930.Zhu Dicheng,Zhao Zhidan,Niu Yaoling,et al.Tracing the Provenance of Inherited Zircons from Peraluminous Granites in the Lhasa Terrane and Its Paleogeographic Implications[J].Acta Petrologica Sinica,2011,27(7):1917-1930.
[84]张晓倩,朱弟成,赵志丹,等.西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义[J].岩石学报,2010,26(6):1793-1804.Zhang Xiaoqian,Zhu Dicheng,Zhao Zhidan,et al.Petrogenesis of the Nixiong Pluton in Coqen,Tibet and Its Potential Significance for the Nixiong Fe-Rich Mineralization[J].Acta Petrologica Sinica,2010,26(6):1793-1804.
[85]Hou Z Q,Gao Y F,Qu X M,et al.Origin of Adakitic Intrusives Generated During Mid-Miocene East-West Extension in Southern Tibet[J].Earth and Planetary Science Letters,2004,220(1/2):139-155.
[86]侯增谦,孟祥金,曲晓明,等.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J].矿床地质,2005,24(2):108-121.Hou Zengqian,Meng Xiangjin,Qu Xiaoming,et al.Copper Ore Potential of Adakitic Intrusives in Gangdese Porphyry Copper Belt:Constrains from Rock Phase and Deep Melting Process[J].Mineral Deposits,2005,24(2):108-121.
[87]Jiang M,Galve A,Him A,et al.Crustal Thickening and Variations in Architecture from the Qaidam Basin to the Qangtang(North-Central Tibetan Plateau)from Wide-Angle Reflection Seismology[J].Tectonophysics,2006,412(3):121-140.
[88]程顺有.中央造山系及其邻区岩石圈三维结构与动力学意义[D].西安:西北大学,2006.Cheng Shunyou.3-D Structure of the Lithosphere and Its Dynamic Implications of Central Orogenic System and Vicinity in the Chinese Mainland[D].Xi’an:Northwest University,2006.
[89]谌宏伟,罗照华,莫宣学,等.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J].中国地质,2005,32(3):386-395.Chen Hongwei,Luo Zhaohua,Mo Xuanxue,et al.Underplating Mechanism of Triassic Granite of Magma Mixing Origin in the East Kunlun Orogenic Belt[J].Geology in China,2005,32(3):386-395.
[90]许志琴,杨经绥,李化启,等.中国大陆印支碰撞造山系及其造山机制[J].岩石学报,2012,28(6):1697-1709.Xu Zhiqin,Yang Jingsui,Li Huaqi,et al.Indosinian Collision-Orogenic System of Chinese Continent and Its Orogenic Mechanism[J].Acta Petrologica Sinica,2012,28(6):1697-1709.
[91]郭正府,邓晋福,许志琴,等.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):51-59.Guo Zhengfu,Deng Jinfu,Xu Zhiqin,et al.Late Palaeozoic-Mesozoic Intracontinental Orogenic Process and Intermenate-Acidic Igneous Rocks from the Eastern Kunlun Mountains of Northwestern China[J].Geoscience,1998,12(3):51-59.
[92]邓军,葛良胜,杨立强.构造动力体制与复合造山作用:兼论三江复合造山带时空演化[J].岩石学报,2013,29(4):1099-1114.Deng Jun,Ge Liangsheng,Yang Liqiang.Tectonic Dynamic System and Compound Orogeny:Additionally Discussing the Temporal-Spatial Evolution of Sanjing Orogeny.Southwest China[J].Acta Petrologica Sinica,2013,29(4):1099-1114.
[93]邓军,王长明,李龚建.三江特提斯叠加成矿作用样式及过程[J].岩石学报,2012,28(5):1349-1361.Deng Jun,Wang Changming,Li Gongjian.Style and Process of the Superimposed Mineralization in the Sanjiang Tethys[J].Acta Petrologica Sinica,2012,28(5):1349-1361.
[94]邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展[J].岩石学报,2011,27(9):2501-2509.Deng Jun, Yang Liqiang, Wang Changming.Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys[J].Acta Petrologica Sinica,2011,27(9):2501-2509.
[95]邓军,杨立强,葛良胜,等.滇西富碱斑岩型金成矿系统特征与变化保存[J].岩石学报,2010,26(6):1633-1645.Deng Jun,Yang Liqiang,Ge Liangsheng,et al.Character and Post-Ore Changes,Modifications and Preservation of Cenozoic Alkali-Rich Porphyry Gold Metallogenic System in Western Yunnan,China[J].Acta Petrologica Sinica,2010,26(6):1633-1645.
[96]邓军,侯增谦,莫宣学,等.三江特提斯复合造山与成矿作用[J].矿床地质,2010,29(1):37-42.Deng Jun,Hou Zengqian,Mo Xuanxue,et al.Superimposed Orogenesis and Metallogenesis in Sanjiang Tethys[J].Mineral Deposits,2010,29(1):37-42.
[97]夏锐,邓军,卿敏,等.青海大场金矿田矿床成因:流体包裹体地球化学及H-O同位素的约束[J].岩石学报,2013,29(4):1358-1376.Xia Rui,Deng Jun,Qing Min,et al.The Genesis of the Dachang Gold Ore Field in Qinghai Province:Constraints on Fluid Inclusion Geochemistry and H-O Isotopes[J].Acta Petrologica Sinica,2013,29(4):1358-1376.
[98]罗照华,邓晋福,曹永清,等.青海省东昆仑地区晚古生代—早中生代火山活动与区域构造演化[J].现代地质,1999,13(1):51-56.Luo Zhaohua,Deng Jinfu,Cao Yongqing,et al.On Late Paleozoic-Early Mesozoic Volcanism and Regional Tectonic Evolution of Eastern Kunlun,Qinghai Province[J].Geoscience,1999,13(1):51-56.
[99]张智勇,殷鸿福,王秉璋,等.昆秦接合部海西期苦海—赛什塘分支洋的存在及其证据[J].地球科学:中国地质大学学报,2004,29(6):691-696.Zhang Zhiyong,Yin Hongfu,Wang Bingzhang,et al.Presence and Evidence of Kuhai-Saishitang Branching Ocean in Copulae Between Kunlun-Qinling Mountains[J].Earth Science:Journal of China University of Geosciences,2004,29(6):691-696.
[100]刘战庆,裴先治,李瑞保,等.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J].地质学报,2011,85(2):185-194.Liu Zhanqing,Pei Xianzhi,Li Ruibao,et al.LAICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A’nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication[J].Acta Geologica Sinica,2011,85(2):185-194.
[101]杨经绥,王希斌,史仁灯,等.青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳[J].中国地质,2004,31(3):225-239.Yang Jingsui,Wang Xibin,Shi Rendeng,et al.The Dur’ngoi Ophiolite in East Kunlun,Northern Qinghai-Tibet Plateau:A Fragment of Paleo-Tethyan Oceanic Crust[J].Geology in China,2004,31(3):225-239.
[102]Yang J S,Robinson P T,Jiang C F,et al.Ophiolites of the Kunlun Mountains,China and Their Tectonic Implications[J].Tectonophysics,1996,258(1):215-231.
[103]Liu C D,Mo X X,Luo Z H,et al.Mixing Events Between the Crustand Mantle-Derived Magmas in Eastern Kunlun:Evidence from Zircon SHRIMP II Chronology[J].Chinese Science Bulletin,2004,49(8):823-834.
[104]刘成东,莫宣学,罗照华,等.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据[J].科学通报,2004,49(6):596-602.Liu Chengdong,Mo Xuanxue,Luo Zhaohua,et al.Magma-Mixing Between Mantle-and Crustal-Derived Melts in the Process of Magmatism,East Kunlun:Constraints from Zircon SHRIMP Chronology[J].Chinese Science Bulletin,2004,49(6):596-602.
[105]罗照华,柯珊,曹永清,等.东昆仑印支晚期幔源岩浆活动[J].地质通报,2002,21(6):292-297.Luo Zhaohua,Ke Shan,Cao Yongqing,et al.Late Indosinian Mantle-Derived Magmatism in the East Kunlun[J].Geological Bulletin of China,2002,21(6):292-297.
[106]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992:25-234.Jiang Chunfa,Yang Jingsui,Feng Binggui,et al.Opening and Closing Tectonics of Kunlun Mountains[M].Beijing:Geological Publishing House,1992:25-234.
[107]徐荣华,Harris N B W,Lewis C L,等.拉萨至格尔木的同位素地球化学[C]//中英青藏高原综合地质考察队.青海高原地质演化.北京:科学出版社,1990:302-382.Xu Ronghua,Harris N B W,Lewis C L,et al.Isotopic Geochemistry of the 1985Tibet Geotraverse:Lhasa to Golmud[C]//Sino-British Collaborative Integrated Geological Expedition to Qinghai-Xizang Plateau, Chinese Academy of Scinces.The Geological Evolution of the Tibetan Plateau.Beijing:Science Press,1990:302-382.
[108]Zhu D C,Zhao Z D,Niu Y,et al.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau[J].Gondwana Research,2012,doi:10.1016/j.gr.2012.02.002.
[109]许志琴,李海兵,杨经绥,等.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J].地质学报,2001,75(2):156-164.Xu Zhiqin,Li Haibing,Yang Jingsui,et al.A Large Transpression Zone at the South Margin of the East Kunlun Mountains and Oblique Subduction[J].Acta Geologica Sinica,2001,75(2):156-164.
[110]Van Hunen J,Allen M B.Continental Collision and Slab Break-Off:A Comparison of 3-D Numerical Models with Observations[J].Earth and Planetary Science Letters,2011,302(1/2):27-37.