钱明霞++路正南++王健
摘要以中国产业部门为研究对象,基于投入产出技术分别构建需求拉动下和供给驱动下的碳排放模型,采用碳平均传播长度(APL)指标测算产业部门之间的碳距离,衡量产业部门的碳波及效应,并区分后向碳APL和前向碳APL识别产业部门的碳波及链。实证分析表明,第二产业是中国能源消费碳排放的大户,碳排放量高达165 136.884万t,所占比例达到整个产业部门碳排放的98.23%,尤其是炼焦化工金属产品制造业和电力燃气及水的生产供应业,所占比例高达87.52%,其中,电力燃气及水的生产供应业的碳排放强度最大,为2.123t/万元。计算并对比各部门后向碳APL和前向碳APL的平均值和标准差,结果显示前向碳APL数值较大且分散,说明在“需求拉动经济”的政策背景下,需求拉动作用下的产业部门碳波及效应较供给驱动作用下的碳波及效应更为显著。进一步对各部门碳供给产业和碳需求产业进行识别,发现产业系统的碳波及链呈现出错综复杂的网状结构而非单一的线性链条,机械设备制造业和炼焦化工金属产品制造业位于碳波及链的上游,采掘业和电力燃气及水的生产供应业两大部门位于碳波及链的末端,农林牧渔业、纺织皮革木材造纸制造业、食品制造及烟草加工业、交通运输仓储和邮政业等部门之间相互关联和波及,互相转移和吸收碳排放。因此,产业部门节能减排工作的顺利实施,必须从产业系统总体的角度进行科学规划,清楚地认识到各个产业部门在产业碳波及链中的功能和作用,通过纵向和横向的沟通与竞合,推动部门自身和其他部门之间的协同减排。
关键词投入产出;碳排放;碳波及链
中图分类号F062.9文献标识码A文章编号1002-2104(2014)12-0082-07doi:10.3969/j.issn.1002-2104.2014.12.011
改革开放以来,中国创造了30多年的经济高速增长奇迹,也带来了能耗与排放的大量增长,加剧了节能减排工作和环境治理工作的紧迫性。2013年中共十八大报告强调“形成节约资源和保护环境的空间格局、产业结构、生产方式、生活方式”,2014年中国政府工作报告中也强调“环境污染矛盾突出”,“出重拳强化污染防治”。产业部门作为碳排放的主要源头,肩负着节能减排的重要责任,如何在追求产业发展的同时控制并减少碳排放,促进经济发展与资源环境的相互协调已成为一个重要而紧迫的现实任务。这就要求我们在产业发展的过程中,科学测量各部门的碳排放,合理解析碳排放在各部门间的关联及波及效应。碳排放波及分析的基本依据是,各产业部门在产品或劳务的生产过程中由于能源消耗而产生碳排放,这部分碳排放若是因满足本部门最终需求产生的,可作为直接碳排放,同时产业部门的产品或服务从上游生产过程到下游生产过程,直至消费者的各个环节不可避免的会产生间接碳排放,当某一部门发生变化时,会引起与其直接相关的产业部门碳排放发生变化,而这些产业部门的变化又会导致其他部门碳排放发生变化,这就产生了碳排放波及效应,这一效应正体现了“从摇篮到坟墓”的全程控制思想。随着产业的快速发展和产业结构的逐步合理化,产业各部门之间的关系越来越广泛和复杂,这就要求我们从更深层的部门经济联系出发,深入挖掘碳排放在各产业部门之间的关联和波及效应,研究部门的最终需求变动或投入变动对其他部门碳排放的影响,为落实和贯彻产业碳减排工作提供科学的理论依据和有效的政策支持。
1文献综述
碳减排问题一直是国内外学术界关注的热点问题,产业层面的研究成果主要集中在以下几个方面:第一,某些特定产业部门或者行业的碳排放测算及节能减排研究。何小刚和张耀辉[1]对中国36个工业行业的实证研究发现,高能耗高排放的重化工业行业表现出典型的粗放增长特征,其节能减排潜力巨大;付雪、王桂新等[2]基于中国能源—碳排放—经济投入产出表测算了哥本哈根会议目标下各行业的减排潜力和产业结构调整潜力;徐胜等[3]探讨了海洋产业低碳化核算问题;楚春礼等[4]测算了2007年中国高新技术产业的碳排放量及碳排放强度,同时发现高新技术产业的碳排放主要来自于医药制造业、电子和通讯设备制造业。第二,产业碳排放的影响因素研究。Wang[5]提出应从经济增长、一次能源需求、交通运输及电力生产等方面分析中国产业低碳化发展路径。Agnolucci[6]研究了能源生产部门、商业部门、交通运输部门以及家庭的碳减排效果,提出应该重点降低商业部门和交通运输部门的能源强度。第三,隐含碳排放及碳减排差别责任研究。陈红敏[7]采用扩展的投入产出方法,同时计算各部门由能源消耗导致的隐含碳排放和由某些工业生产过程导致的隐含碳排放,发现建筑业是隐含碳排放最高的产业部门,非金属矿物制品业的生产过程隐含碳排放占总隐含碳排放的比率最高。钱明霞等[8]基于假设抽取法测算了产业部门的碳排放转移,发现电力燃气及水的生产供应业的碳转移量最大。碳减排差别责任的研究主要围绕“污染者付费”原则以及由此衍生的“国家领土内的责任”与“生产者污染负担”原则而展开。Cole[9]、Van Asselt[10]分别立足于发展中国家和发达国家质疑了“生产者污染负担”原则的公平性。Peters[11]主张“消费者污染负担”,提出消费者应为与生产过程相关的温室气体排放负责。在“生产者污染负担”和“消费者污染负担”原则基础上,不少学者根据不同的研究对象,提出了“进口国和出口国共同分担”[12]、“生产者与消费者共同分担”[13]和“产业链上下游共同分担”[14]等原则。徐盈之与邹芳[15]以“生产者与消费者共同分担”原则计算了中国各产业部门生产者减排责任与消费者减排责任,刘海啸等[16]统筹考虑各产业部门对碳排放的依赖度和对整个经济的影响度来确定产业部门的碳减排责任。
从研究方法来看,投入产出分析被广泛应用于产业部门能源消费及碳排放的研究中。但现有研究往往局限于一个部门与另一个部门之间的直接或完全联系,而忽略了多个部门之间顺次形成的更深层的部门经济联系,基于此,Lahr & Dietzenbacher[17]首次从宏观视角提出了“生产链”,Dietzenbacher[18-19]又提出了平均传播长度(Average Propagation Lengths,简称APL)测算模型描述产业部门经济距离(Economic Distance Between Sectors),并实证分析了西班牙安达卢西亚地区的生产链演化情况。随后有不少学者又致力于旅游生产链[20]、生物能生产链[21]等研究。国内学者邓志国和陈锡康[22-23]利用中国多张序列投入产出表发现国民经济中存在的重要生产链条,并对农业生产链的演化情况进行分析,采用脉冲响应函数和方差分解分析产业链上下游部门之间的动态影响情况。
现有文献虽取得了较多极具影响力的研究成果,但是较少地深入产业系统内部,未能将产业部门间的深层经济联系和碳排放的顺次转移进行有效对接,导致产业部门碳排放波及效应的研究呈现空白。同时,现有的研究都直接考察一个部门与另一个部门的联系或某一部门变化对另一部门碳排放的影响,将多个部门同时纳入相互关联的研究尚不成熟。鉴于此,本研究借鉴于“生产链”概念的提出,利用投入产出技术构建碳APL测算指标,并以此对产业碳排放波及效应及碳波及链进行识别,为产业系统的碳减排研究开辟新的视角。
钱明霞等:产业部门碳排放波及效应分析中国人口·资源与环境2014年第12期2研究方法设计
2.1产业部门能源消费碳排放强度测算方法
国际原子能机构(International Atomic Energy Agency, 简称IAEA)的研究报告中曾指出,在整个能源消耗温室气体排放中,一次能源(煤、石油、天然气)产生的碳排放量最多,因此,依据一次能源的消耗量测算碳排放,公式如(1)所示:
其中,R是直接分配系数矩阵,其元素rij表示产业部门j消耗的i种中间产品在总产出中所占的比例;G是产业部门的完全供给系数矩阵,反映的是价格变动导致最初投入增加一个单位对于总产出的影响;Gc是产业部门完全供给碳排放强度矩阵,反映了最初投入增加一单位对于产业部门碳排放的影响。同理,式(4)也能被理解为初始影响及对所有其他部门碳排放的直接影响CR、一步间接影响CR2、……,n-1步间接影响CRn。
2.2.3碳排放APL的测算
著名投入产出学家Erik Dietzenbacher于2005年提出APL模型,将产业部门之间的直接影响和间接影响定量化,借助于产业部门间经济距离来测算部门间的深层经济关联。借鉴Dietzenbacher的研究思路,碳排放的波及效应采用产业部门碳距离来体现,描述衡量产业部门最终需求变动一单位或是最初投入变动一单位对于各部门碳排放的直接影响和间接影响。产业系统各部门的碳排放,不仅表现为本部门能源消耗引发的碳排放,更需要区分碳排放在部门之间的转移,以及区分碳排放在本部门的初始影响、对于其他部门的直接影响、一步间接影响等。
假设某一产业部门对其他产业部门碳排放的直接影响就是一步碳距离造成的,将其量化为1×ci×aij,即为CA;某一产业部门对其他产业部门碳排放的一步间接影响就是二步碳距离造成的,将其量化为2×ci∑kaikakj=2CA2;……;以此类推,可以得到一部门最终需求变化对各部门碳排放的影响及波及,即为碳APL。在利用投入产出技术测度后向关联和前向关联的方法中,最被学术界认同的是基于Leontief模型测算后向关联,基于Ghosh模型测算前向关联,因此根据影响因素的不同,可分为后向碳APLb和前向碳APLf。基于Leontief模型的后向碳APLb值Mij和基于Ghosh模型的前向碳APLf值Nij定义为:
其他服务业共4个。进一步识别对上述4个产业存在碳供给的部门,发现建筑业同时对交通运输仓储和邮政业、其他服务业存在碳供给,农林牧渔业对食品制造及烟草加工业存在碳供给。至此,识别出了最终的二级碳供给产业。若将阀值调整为2.5,又可识别出农林牧渔业对批发零售住宿餐饮业有直接的碳供给,其他服务业依次对交通运输仓储和邮政业、采掘业存在碳供给。
同理,选取阀值为2,利用前向碳APLf值识别碳需求产业,结果发现主要识别出了炼焦化工金属产品制造业和机械设备制造业的碳需求产业,它们是:农林牧渔业、采掘业、食品制造及烟草加工业、纺织皮革木材造纸制造业、电力燃气及水的生产供应业、建筑业、交通运输、仓储和邮政业、批发零售住宿餐饮业。其他服务业的碳需求产业是农林牧渔业、采掘业、食品制造及烟草加工业、电力燃气及水的生产供应业、建筑业、交通运输、仓储和邮政业、批发零售住宿餐饮业。进一步识别碳需求的二级产业,发现农林牧渔业的碳需求产业是食品制造及烟草加工业;纺织皮革木材造纸制造业的碳需求产业是采掘业、食品制造及烟草加工业、交通运输、仓储和邮政业及批发零售住宿餐饮业;建筑业的碳需求产业是采掘业、电力燃气及水的生产供应业、交通运输、仓储和邮政业及批发零售住宿餐饮业;批发零售住宿餐饮业的碳需求产业是采掘业。
通过对各产业部门碳供给产业和碳需求产业的识别,形成了产业系统碳波及链,如图1所示(阀值均为2),特点如下:其一,从产业上下游之间的关联角度来看,产业部门之间的碳波及链实际上已经呈现出错综复杂的“网状”结构,而非单一的“链状”结构。其二,产业系统碳波及链以机械设备制造业和炼焦化工金属产品制造业为上游部门,在部门自身发展的过程中产生了碳排放并直接和间接的影响了其他部门的碳排放;其三,农林牧渔业、纺织皮革木材造纸制造业、食品制造及烟草加工业、交通运输仓储和邮政业等部门之间相互关联和波及,互相转移和吸收碳排放,这也同现阶段产业融合发展的特征相呼应。让人颇感意外的是采掘业和电力燃气及水的生产供应业两大部门均位于产业碳波及链的末端,在其产业部门自身发展的过程中受到机械设备制造业、炼焦化工金属产品制造业等部门的碳波及但未对其他部门产生影响,究其原因,与采掘业在寻找及开发矿产及油气资源中需要先进的机械设备、电力燃气及水的生产供应业在自身发展中需要大量的炼焦产品作支撑是密不可分的。
图1产业部门碳波及链结构图
Fig.1Structure of carbon spread chains
of industrial sectors4结论和启示
本文基于投入产出技术,构建了需求推动和供给驱动下的碳排放模型,并结合2007年中国投入产出表衡量了产业部门碳排放的波及效应,进一步识别了产业系统碳波及链,主要的结论与启示如下:①第二产业是能源消费碳排放的大户,尤其是炼焦化工金属产品制造业和电力燃气及水的生产供应业,其中,电力燃气及水的生产供应业的碳排放强度最大,为2.123t/万元。②在“需求拉动经济”的政策背景下,需求拉动作用下的产业部门碳波及效应较供给驱动作用下的碳波及效应更为显著。③产业系统的碳波及已经呈现出错综复杂的网状结构而非单一的线性链条,因此,节能减排工作的顺利实施,必须从产业系统总体的角度进行规划,清楚地认识到各个产业部门在产业碳波及链中的功能和作用,通过纵向和横向的沟通与竞合,推动部门自身和其他部门之间的协同减排。
另外,本文所运用的基于投入产出分析的碳APL识别技术是一种较为简单的方法,忽略了隐含碳排放在各部门间的流动和分配,一定程度上影响到碳排放的波及效应。阀值的选取也限制了碳波及链的识别结果。其次,本文的实证结果是依据2007年的投入产出表获得的,数据的滞后性以及单一年份的计算结果也影响了结论的时效性和可靠性。如何获得最新的数据解析中国产业系统碳排放的演变规律及隐含碳排放的动态关联及波及效应,促进产业的低碳化发展是未来研究的重要课题。
(编辑:李琪)
参考文献(References)
[1]何小刚,张耀辉. 技术进步、节能减排与发展方式转型[J]. 数量经济技术经济研究,2012,(3):76-90. [He Xiaogang, Zhang Yaohui. Technology Progress, Energy Save and Emission Reduce and Development Pattern Transformation [J]. The Journal of Quantitative & Technical Economics, 2012, (3):76-90.]
[2]付雪,王桂新,彭希哲. 哥本哈根会议目标下中国行业实际减排潜力研究:基于2007年中国能源-碳排放-经济投入产出表的最优化模型[J]. 复旦学报:社会科学版,2012,(4):114-124. [Fu Xue, Wang Guixin, Peng Xizhe. A Study on the Actual Potentialities of Reducing Emissions for Chinas Industries by the Goals Set at the Copenhagen Conference:An Optimization Model Based on Chinas 2007 EnergiesCarbon EmissionEconomic Input and Output Table[J]. Journal of Fudan University: Social Science, 2012, (4): 114-124.]
[3]徐胜,赵艳香. 我国海洋产业碳排放核算研究[J]. 生态经济,2012,(8):102-106. [Xu Sheng, Zhao Yanxiang. Research on Marine Industries Carbon Emission Calculation [J]. Ecological Economy, 2012, (8):102-106.]
[4]楚春礼,郭彩霞,鞠美庭,等.中国高新技术产业能源消耗与碳排放分析[J]. 环境污染与防治,2011,33(8):23-28. [Chu Chunli, Guo Caixia, Ju Meiting, et al. Analysis of Energy Consumption and Low Carbon Strategies on the HighTech Industry of China [J]. Environmental Pollution & Control, 2011, 33(8):23-28.]
[5]Wang T, Watson J. Scenario Analysis of Chinas Emissions Pathways in the 21st Century for Low Carbon Transition [J]. Energy Policy, 2010, 38(7): 3537-3546.
[6]Agnolucci P, Ekins P, Iacopini G, et al. Different Scenarios for Achieving Radical Reduction in Carbon Emissions: a Decomposition Analysis [J]. Ecological Economics, 2009, 68(6): 1652-1666.
[7]陈红敏. 包含工业生产过程碳排放的产业部门隐含碳研究[J]. 中国人口·资源与环境,2009,19(3): 25-30. [Chen Hongmin. Analysis on Embodied CO2 Emissions Including Industrial Process Emissions [J]. China Population, Resources and Environment, 2009, 19(3):25-30.]
[8]钱明霞,路正南,王健. 基于假设抽取法的产业部门碳排放关联分析[J]. 中国人口·资源与环境,2013, 23(9):34-41. [Qian Mingxia, Lu Zhengnan, Wang Jian. Analysis of Linkage of Carbon Emissions in Industrial Sectors based on Hypothetical Extraction Method [J]. China Population, Resources and Environment, 2013, 23(9):34-41.]
[9]Cole M A, Elliott R J R. FDI and the Capital Intensity of “Dirty” Sectors: A Missing Piece of the Pollution Haven Puzzle [J]. Review of Development Economics, 2005, 9(4): 530-548.
[10]Van Asselt H, Biermann F. European Emissions Trading and the International Competitiveness of Energyintensive Industries: A Legal and Political Evaluation of Possible Supporting Measures [J]. Energy Policy, 2007, 35(1): 497-506.
[11]Peters G P, Hertwich E G. CO2 Embodied in International Trade with Implications for Global Climate Policy [J]. Environmental Science & Technology, 2008, 42(5): 1401-1407.
[12]Ferng J J. Allocating the Responsibility of CO2 OverEmissions from the Perspectives of Benefit Principle and Ecological Deficit [J]. Ecological Economics, 2003, 46(1): 121-141.
[13]Lenzen M, Murray J, Sack F, et al. Shared Producer and Consumer Responsibility:Theory and Practice [J]. Ecological Economics, 2007, 61(1): 27-42.
[14]Bastianoni S, Pulselli FM, Tiezzi E. The Problem of Assigning Responsibility for Greenhouse Gas Emissions [J]. Ecological Economics, 2004, 49(3): 253-257.
[15]徐盈之,邹芳. 基于投入产出分析法的我国各产业部门碳减排责任研究[J]. 产业经济研究,2010,(5): 27-35. [Xu Yingzhi, Zou Fang. Carbon Reduction Responsibility of Chinas Industries Based on the InputOutput Analysis [J]. Industrial Economics Research, 2010, (5): 27-35.]
[16]刘海啸,张晓津,曲文静. 基于发展视角的各产业部门碳减排责任研究:以河北省为例[J]. 燕山大学学报:哲学社会科学版,2011,12(3):123-127. [Liu Haixiao, Zhang Xiaojin, Qu Wenjing. Carbon Reduction Responsibility of Industries on Development Perspective:A Case Study of Hebei Province [J]. Journal of Yanshan University: Philosophy and Social Science Edition, 2011, 12(3):123-127.]
[17]Lahr M L, Dietzenbacher E. InputOutput Analysis: Frontiers and Extensions[M]. Basingstoke: Palgrave Macmillan, 2001.
[18]Dietzenbacher E, Romero I, Bosma N S. Using Average Propagation Lengths to Identify Production Chains in the Andalusian Economy [J]. Estudios de Economia Aplicada, 2005, 23(8): 405-422.
[19]Dietzenbacher E, Romero I. Production Chains in an Interregional Framework:Identification by Means of Average Propagation Lengths [J]. International Regional Science Review, 2007, 30(4):362-383.
[20]Sun Y Y. Adjusting InputOutput Models for Capacity Utilization in Service Industries [J]. Tourism Management, 2007, 28(6): 1507-1517.
[21]Yazan D M, Garavelli A C, Petruzzeli A M, et al. The Effect of Spatial Variables on the Economic and Environmental Performance of Bioenergy Production Chains[J]. International Journal of Production Economics, 2011, 131 (1): 224-233.
[22]邓志国,陈锡康. 基于APL模型的中国部门生产链演化分析[J]. 数学的实践与认识,2008,38(1):53-59. [Deng Zhiguo, Chen Xikang. Analysis on Chinese Product Sectors Production Chains and Their Evolution Based on APL Model [J]. Mathematics in Practice and Theory, 2008, 38(1):53-59.]
[23]邓志国,陈锡康. 中国部门生产链演化趋势及动态影响分析[J]. 运筹与管理,2009,18(5):19-23. [Deng Zhiguo, Chen Xikang. Analysis of the Evolvement Trend and Dynamic Impact of Sectors Production Chains in China[J]. Operations Research and Management Science, 2009, 18(5):19-23.]
[24]国家统计局. 中国统计年鉴:2008[M]. 北京: 中国统计出版社,2008. [National Bureau of Statistics of China. China Statistical Yearbook:2008[M]. Beijing: China Statistics Press,2008. ]
Analysis of Carbon Propogation Effects of Industrial Sectors
QIAN Mingxia1, 2LU Zhengnan2WANG Jian1
(1. School of Finance & Economics, Jiangsu University, Zhenjiang Jiangsu 212013,China;
2. School of Management, Jiangsu University, Zhenjiang Jiangsu 212013,China)
AbstractWith the Chinese industrial sectors as the object, the demanddriven and supplydriven carbon emission models are first built based on the inputoutput technique, and then the carbon propagation effects are measured by computing the distance between different industrial sectors with the average propagation length (APL) index for carbon emission. Based on this measurement, the carbon propagation chain of industrial sectors is finally identified using the backward carbon APL and forward carbon APL. The empirical analysis shows that the carbon emission of the second industry is 1 651 368 840 ton accounting for 98.23% of the whole carbon emissions of all industrial sectors. For this reason, the second industry is responsible for the major carbon emission. Especially, the carbon emission of coking coal, chemical and metal manufacture sector and the electricity, gas and water production/supply sector make up 87.52% of the whole carbon emission of all industrial sectors, where the electricity, gas and water production/supply sector is the most remarkable one in carbon emission intensity with 2.123 ton per 10 000 Yuan. The computation and comparison results of the mean value and standard deviation of the backward carbon APL and forward carbon APL indexes show that the forward carbon APL is big and decentralized, and that the demanddriven carbon propogation effect is more remarkable than the supplydriven one under the demanddriveeconomy background. The further identifications of carbon supply industry and carbon demand industry show that the carbon propagation chain presents an intricate network structure rather than simple linear structure. In this network structure, the machinery equipment manufacturing sector and coking coal, chemical and metal manufacture sector are in the upstream of the carbon propagation chain, while the mining sector and electricity, gas and water production/supply sector are in the downstream. For the agriculture, forestry, animal husbandry and fishery sector, textile, leather, wood and paper manufacturing sector, foods and tobacco manufacturing sector, transport, storage and post sector, their carbon emissions associate and propagate each other, and hence their carbon emissions can transfer and absorb each other. Therefore, in order to effectively reduce the carbon emissions, it is essential to realize the function and effect of sectors in carbon propagation chain and to promote the cooperation between each other by vertical and horizontal communication and competition.
Key wordsinputoutput; carbon emissions; carbon propagation chains
[23]邓志国,陈锡康. 中国部门生产链演化趋势及动态影响分析[J]. 运筹与管理,2009,18(5):19-23. [Deng Zhiguo, Chen Xikang. Analysis of the Evolvement Trend and Dynamic Impact of Sectors Production Chains in China[J]. Operations Research and Management Science, 2009, 18(5):19-23.]
[24]国家统计局. 中国统计年鉴:2008[M]. 北京: 中国统计出版社,2008. [National Bureau of Statistics of China. China Statistical Yearbook:2008[M]. Beijing: China Statistics Press,2008. ]
Analysis of Carbon Propogation Effects of Industrial Sectors
QIAN Mingxia1, 2LU Zhengnan2WANG Jian1
(1. School of Finance & Economics, Jiangsu University, Zhenjiang Jiangsu 212013,China;
2. School of Management, Jiangsu University, Zhenjiang Jiangsu 212013,China)
AbstractWith the Chinese industrial sectors as the object, the demanddriven and supplydriven carbon emission models are first built based on the inputoutput technique, and then the carbon propagation effects are measured by computing the distance between different industrial sectors with the average propagation length (APL) index for carbon emission. Based on this measurement, the carbon propagation chain of industrial sectors is finally identified using the backward carbon APL and forward carbon APL. The empirical analysis shows that the carbon emission of the second industry is 1 651 368 840 ton accounting for 98.23% of the whole carbon emissions of all industrial sectors. For this reason, the second industry is responsible for the major carbon emission. Especially, the carbon emission of coking coal, chemical and metal manufacture sector and the electricity, gas and water production/supply sector make up 87.52% of the whole carbon emission of all industrial sectors, where the electricity, gas and water production/supply sector is the most remarkable one in carbon emission intensity with 2.123 ton per 10 000 Yuan. The computation and comparison results of the mean value and standard deviation of the backward carbon APL and forward carbon APL indexes show that the forward carbon APL is big and decentralized, and that the demanddriven carbon propogation effect is more remarkable than the supplydriven one under the demanddriveeconomy background. The further identifications of carbon supply industry and carbon demand industry show that the carbon propagation chain presents an intricate network structure rather than simple linear structure. In this network structure, the machinery equipment manufacturing sector and coking coal, chemical and metal manufacture sector are in the upstream of the carbon propagation chain, while the mining sector and electricity, gas and water production/supply sector are in the downstream. For the agriculture, forestry, animal husbandry and fishery sector, textile, leather, wood and paper manufacturing sector, foods and tobacco manufacturing sector, transport, storage and post sector, their carbon emissions associate and propagate each other, and hence their carbon emissions can transfer and absorb each other. Therefore, in order to effectively reduce the carbon emissions, it is essential to realize the function and effect of sectors in carbon propagation chain and to promote the cooperation between each other by vertical and horizontal communication and competition.
Key wordsinputoutput; carbon emissions; carbon propagation chains
[23]邓志国,陈锡康. 中国部门生产链演化趋势及动态影响分析[J]. 运筹与管理,2009,18(5):19-23. [Deng Zhiguo, Chen Xikang. Analysis of the Evolvement Trend and Dynamic Impact of Sectors Production Chains in China[J]. Operations Research and Management Science, 2009, 18(5):19-23.]
[24]国家统计局. 中国统计年鉴:2008[M]. 北京: 中国统计出版社,2008. [National Bureau of Statistics of China. China Statistical Yearbook:2008[M]. Beijing: China Statistics Press,2008. ]
Analysis of Carbon Propogation Effects of Industrial Sectors
QIAN Mingxia1, 2LU Zhengnan2WANG Jian1
(1. School of Finance & Economics, Jiangsu University, Zhenjiang Jiangsu 212013,China;
2. School of Management, Jiangsu University, Zhenjiang Jiangsu 212013,China)
AbstractWith the Chinese industrial sectors as the object, the demanddriven and supplydriven carbon emission models are first built based on the inputoutput technique, and then the carbon propagation effects are measured by computing the distance between different industrial sectors with the average propagation length (APL) index for carbon emission. Based on this measurement, the carbon propagation chain of industrial sectors is finally identified using the backward carbon APL and forward carbon APL. The empirical analysis shows that the carbon emission of the second industry is 1 651 368 840 ton accounting for 98.23% of the whole carbon emissions of all industrial sectors. For this reason, the second industry is responsible for the major carbon emission. Especially, the carbon emission of coking coal, chemical and metal manufacture sector and the electricity, gas and water production/supply sector make up 87.52% of the whole carbon emission of all industrial sectors, where the electricity, gas and water production/supply sector is the most remarkable one in carbon emission intensity with 2.123 ton per 10 000 Yuan. The computation and comparison results of the mean value and standard deviation of the backward carbon APL and forward carbon APL indexes show that the forward carbon APL is big and decentralized, and that the demanddriven carbon propogation effect is more remarkable than the supplydriven one under the demanddriveeconomy background. The further identifications of carbon supply industry and carbon demand industry show that the carbon propagation chain presents an intricate network structure rather than simple linear structure. In this network structure, the machinery equipment manufacturing sector and coking coal, chemical and metal manufacture sector are in the upstream of the carbon propagation chain, while the mining sector and electricity, gas and water production/supply sector are in the downstream. For the agriculture, forestry, animal husbandry and fishery sector, textile, leather, wood and paper manufacturing sector, foods and tobacco manufacturing sector, transport, storage and post sector, their carbon emissions associate and propagate each other, and hence their carbon emissions can transfer and absorb each other. Therefore, in order to effectively reduce the carbon emissions, it is essential to realize the function and effect of sectors in carbon propagation chain and to promote the cooperation between each other by vertical and horizontal communication and competition.
Key wordsinputoutput; carbon emissions; carbon propagation chains