航空影像内业处理实验研究

2014-12-01 06:25林黎明张珂霞
科技创新导报 2014年24期
关键词:面向对象

林黎明+张珂霞

摘 要:该文基于笔者多年从事航空影像数据处理的相关工作经验,以航空影像建筑物提取为研究对象,采用面向对象的思路,探讨了预处理、特征选择、外形初步提取等一套流程形成的思路方法,并进行了实验,全文是笔者长期工作实践基础上的理论升华,相信对从事相关工作的同行能有所裨益。

关键词:面向对象 航空影像 建筑物提取 光谱特征

中图分类号:P23 文献标识码:A 文章编号:1674-098X(2014)08(c)-0096-02

面向对象信息提取是以对象为基本单位来进行的,其关键步骤有两个:多尺度影像分割(对象生成)和影像信息提取。其中,分割(对象生成)是面向对象信息提取方法的基础,分割结果的好坏直接关系到后续信息提取结果的精度。该文提出的面向对象的建筑物外形提取基本思路是:预处理→多尺度分割→建筑物特征选择→初步提取→优化外形。

1 预处理

该文的预处理采用影像融合,随着多种遥感卫星的发射成功,我们有了许多可利用的多传感器、多时相、多分辨率和多光谱遥感影像。遥感影像的信息提取常常要求把多传感器、多时相、多光谱和多分辨率影像进行融合分析,以提取感兴趣的信息。

通过实验要求及实验所得效果比较,采用该文主成份变换融合法对Quickbird全色和多光谱图像进行融合。因为本文的融合是一种预处理,所以别的算法在此就不做介绍了,在这里只阐述主成份变换。主成份变换也称PCA变换,是着眼于变量之间的相互关系,尽可能不丢失信息的用几个综合性指标汇集多个变量的测量值而进行描述的方法,是一种最小均方差意义上的最优正交变换。对多光谱图像,由于各波段的数据间存在相关的情况很多,通常采用主成份分析就可以把图像中所包含的大部分信息用少数波段表示出来。主成份分析是基于K-L(Kathunen-Loeve)变换来实现的。

2 建筑物特征选择

建筑物特征选择与提取是在影像分割得到多边形对象基础上进行的,通过分割得到多边形对象并不是最终目的,而是为后续分类提供更多的描述特征,参与影像分类的因子不仅包括对象的光谱信息,还有对象的纹理、形状、拓扑、语义等信息,但并不是特征越多,效果越好,特征提取也是研究的关键。由此,本节重点定量化描述了这些特征,并介绍了特征提取的策略,同时提出并解决了特征选择与提取实现中的关键问题。影像对象包含了丰富的特征信息,它主要包括光谱、几何、纹理等特征。

2.1 光谱特征

光谱特征是所有描述影像对象与像元灰度值相关特征的集合,反映对象的光谱信息。它包括影像对象的均值、均方差、亮度、比率等。

2.2 几何特征

影像对象的形状特征反映了对象的几何特征,形状特征是所有描述影像对象本身形状特征的集合,反映对象的形状方面的信息。它是在提取区域边界点的基础上形成的,计算形状特征的理论基础是根据矢量化后各点的坐标组成的协方差矩阵,即

其中,X和Y分别是该对象的所有像元坐标(x,y)组成的矢量,var(x),var(y)分别是X和Y的方差,cov(XY)是X,Y之间的协方差。

2.3 纹理特征

纹理在遥感影像分类中占有重要地位,描述纹理最常用的方法有灰度共生矩阵(GreyLevel Concurrence Matix,GLC-M)。通过分析与实验,得到建筑物与其他地物对比度较大的有光谱特征和形状特征。所以该文将从光谱特征和形状特征中选择特征参数进行提取建筑物外形。

3 建筑物外形初步提取

该文使用基于模糊规则的分类器进行提取建筑物外形。模糊分类器能够较准确地提取所属类别的对象。选择不同地物最优尺度对原始影像分割而成的多尺度影像是进行地物信息有效提取的前提,它是将固定尺度的影像转换为各种地物对应的尺度影像,使地物在各自的最佳尺度上显示,尺度分割只完成了面向对象影像分析的一部分。要想提取出感兴趣的地物就必须要对影像对象进行分类,研究表明模糊分类器分类影像对象效果较好。一般模糊分类器的设计要考虑以下几方面内容。

(1)模糊特征空间选择,即在众多的特征中选择相对独立的特征组成模糊空间。(2)模糊分类规则的建立。(3)模糊集隶属函数(Member ship Funetion)的选择及参数调节。

建立类别模糊规则库是基于模糊规则分类器的主要内容。首先,在分割好的影像对象层中查看各地物目标的边界、轮廓形状、面积、长、宽等信息,提取包含在其中的信息,如每个地物目标的平均值、标准差、形状特征等。根据类别可分性原理选择不同类别特征响应差别较大的特征作为模糊规则库的判别特征。如植被和水体在近红外波段的光谱差异较大,植被在近红外波段有较大的反射值,而水体在该波段的反射值较小,因此可以选择近红外波段作为植被和水体的判别特征。其次,在获取这些信息后,在分类体系的基础上建立每个类的成员函数。对每一种对象特征都有几个相应的描述函数,如几何形状特征,描述函数有面积、长度、宽度、长宽比、紧密度、最大方向、外边界长度、矩形匹配度等,它提供了特征值和类隶属度之间非常透明的关系。根据不同类别特征响应的差别选择适合的隶属函数建立该特征的模糊判别规则。最后,在前面分析的基础上统筹所有类别,根据“先易后难”的原则先分出较容易区别的类,分层逐步建立一个逻辑层次较强的模糊规则分类库。

在面向对象分类时,经常出现有些类别不能由单条模糊规则进行有效区别。如河流的分类则不仅需要近红外波段低反射值条件还需要形状特征length/width来区分河流和其他的水域,length/width值越大,对象越呈线状,因此水域属于河流。多条件规则表达式的建立需要表示逻辑的“and”、“or”、“not”等连接,如下河流提取表达式:

If(Layermean of Nir(Object)∈[c,d])AND(length/width(Object)∈[e,f])Then class(Object)=riverendprint

这样的分类器一方面可以完成非常复杂的分类任务,另一方面也使得分类过程在细节方面透明、可调节。

4 实验

本实验应用Erdas做影像融合,Ecognition实现分割提取,Matlab优化提取结果。

首先应用主成份变换进行融合,然后对融合后的影像进行多尺度分割。本实验在进行多尺度影像分割之前,充分考虑了以下几点:(1)分割过程应该生成高度同质的分割区域,分割后的小区域具有最优的可分离性与代表性;(2)由于影像分析问题与给定尺度遥感数据的空间结构有关系,那么分割后对象的平均大小必须与建筑物的尺度大小相适宜;(3)分割过程应该具有普遍性,能适用于多种不同类型的数据与问题;分割成果应该具有再生性等。由于实验数据只有四个波段,所以它们将都参与分割,将权重都设置为1。由于建筑物的特殊性选择异质性尺度为50,同质性的颜色因子和形状因子各取0.5,紧凑度和光滑度也各取0.5,进行分割。

融合后的影像被分割成不同的多边形对象,如何将属于建筑物的对象提取出来呢?这就需要分析研究建筑物的特征。首先建筑物的亮度值在(150.5,184),把这个范围内的地物提取出来形成建筑物的候选区。在候选区中我们发现主要是建筑物和道路两种地物,经过反复实验,区别这两种地物的主要特征是形状特征。在形状特征中,由于建筑物的几何特征,本实验首先选择“矩形匹配”特征;其次根据道路的形状特征,选择“最大方向”特征。所谓的“最大方向”特征是指影像对象的空间分布协方差矩阵中最大特征向量的方向特征。根据这两个特征进一步提取,建筑物外形就基本显现出来了。但是由于图像的光谱范围、建筑物自身附带的其他人造目标(如太阳能热水器)等因素影像,提取出来的建筑物外形并不是规则形状。所以下一步就要进行外形优化。

本实验设计了一个方向为26 °,大小9*9的结构元素进行形态学开运算,优化建筑物外形。根据本文提出的方法进行编程和实验,得到的结果图如图1。

5 结语

该文发展了一种面向对象的建筑物外形提取方法。应用多尺度分割技术将具有高空间分辨率和高光谱信息的融合影像分割成不同的对象,依据建筑物特征自定义分类因子,运用模糊分类技术对建筑物外形进行初步提取,最后通过形态学开运算进行结果优化。

参考文献

[1] 唐亮,谢维信.直线Snakes及其在建筑物提取中的应用[J].西安电子科技大报,2005,32(1):60-65.

[2] 宋文涛.基于数字摄影测量的DOM制作与应用研究[J].测绘通报,2010(2).

[3] 杜金莉.正射影像图的制作与应用研究[J].测绘通报,2009(24).

[4] 胡海驹.SPOT-5卫星DOM制作的质量控制研究[J].测绘通报,2008(20).endprint

这样的分类器一方面可以完成非常复杂的分类任务,另一方面也使得分类过程在细节方面透明、可调节。

4 实验

本实验应用Erdas做影像融合,Ecognition实现分割提取,Matlab优化提取结果。

首先应用主成份变换进行融合,然后对融合后的影像进行多尺度分割。本实验在进行多尺度影像分割之前,充分考虑了以下几点:(1)分割过程应该生成高度同质的分割区域,分割后的小区域具有最优的可分离性与代表性;(2)由于影像分析问题与给定尺度遥感数据的空间结构有关系,那么分割后对象的平均大小必须与建筑物的尺度大小相适宜;(3)分割过程应该具有普遍性,能适用于多种不同类型的数据与问题;分割成果应该具有再生性等。由于实验数据只有四个波段,所以它们将都参与分割,将权重都设置为1。由于建筑物的特殊性选择异质性尺度为50,同质性的颜色因子和形状因子各取0.5,紧凑度和光滑度也各取0.5,进行分割。

融合后的影像被分割成不同的多边形对象,如何将属于建筑物的对象提取出来呢?这就需要分析研究建筑物的特征。首先建筑物的亮度值在(150.5,184),把这个范围内的地物提取出来形成建筑物的候选区。在候选区中我们发现主要是建筑物和道路两种地物,经过反复实验,区别这两种地物的主要特征是形状特征。在形状特征中,由于建筑物的几何特征,本实验首先选择“矩形匹配”特征;其次根据道路的形状特征,选择“最大方向”特征。所谓的“最大方向”特征是指影像对象的空间分布协方差矩阵中最大特征向量的方向特征。根据这两个特征进一步提取,建筑物外形就基本显现出来了。但是由于图像的光谱范围、建筑物自身附带的其他人造目标(如太阳能热水器)等因素影像,提取出来的建筑物外形并不是规则形状。所以下一步就要进行外形优化。

本实验设计了一个方向为26 °,大小9*9的结构元素进行形态学开运算,优化建筑物外形。根据本文提出的方法进行编程和实验,得到的结果图如图1。

5 结语

该文发展了一种面向对象的建筑物外形提取方法。应用多尺度分割技术将具有高空间分辨率和高光谱信息的融合影像分割成不同的对象,依据建筑物特征自定义分类因子,运用模糊分类技术对建筑物外形进行初步提取,最后通过形态学开运算进行结果优化。

参考文献

[1] 唐亮,谢维信.直线Snakes及其在建筑物提取中的应用[J].西安电子科技大报,2005,32(1):60-65.

[2] 宋文涛.基于数字摄影测量的DOM制作与应用研究[J].测绘通报,2010(2).

[3] 杜金莉.正射影像图的制作与应用研究[J].测绘通报,2009(24).

[4] 胡海驹.SPOT-5卫星DOM制作的质量控制研究[J].测绘通报,2008(20).endprint

这样的分类器一方面可以完成非常复杂的分类任务,另一方面也使得分类过程在细节方面透明、可调节。

4 实验

本实验应用Erdas做影像融合,Ecognition实现分割提取,Matlab优化提取结果。

首先应用主成份变换进行融合,然后对融合后的影像进行多尺度分割。本实验在进行多尺度影像分割之前,充分考虑了以下几点:(1)分割过程应该生成高度同质的分割区域,分割后的小区域具有最优的可分离性与代表性;(2)由于影像分析问题与给定尺度遥感数据的空间结构有关系,那么分割后对象的平均大小必须与建筑物的尺度大小相适宜;(3)分割过程应该具有普遍性,能适用于多种不同类型的数据与问题;分割成果应该具有再生性等。由于实验数据只有四个波段,所以它们将都参与分割,将权重都设置为1。由于建筑物的特殊性选择异质性尺度为50,同质性的颜色因子和形状因子各取0.5,紧凑度和光滑度也各取0.5,进行分割。

融合后的影像被分割成不同的多边形对象,如何将属于建筑物的对象提取出来呢?这就需要分析研究建筑物的特征。首先建筑物的亮度值在(150.5,184),把这个范围内的地物提取出来形成建筑物的候选区。在候选区中我们发现主要是建筑物和道路两种地物,经过反复实验,区别这两种地物的主要特征是形状特征。在形状特征中,由于建筑物的几何特征,本实验首先选择“矩形匹配”特征;其次根据道路的形状特征,选择“最大方向”特征。所谓的“最大方向”特征是指影像对象的空间分布协方差矩阵中最大特征向量的方向特征。根据这两个特征进一步提取,建筑物外形就基本显现出来了。但是由于图像的光谱范围、建筑物自身附带的其他人造目标(如太阳能热水器)等因素影像,提取出来的建筑物外形并不是规则形状。所以下一步就要进行外形优化。

本实验设计了一个方向为26 °,大小9*9的结构元素进行形态学开运算,优化建筑物外形。根据本文提出的方法进行编程和实验,得到的结果图如图1。

5 结语

该文发展了一种面向对象的建筑物外形提取方法。应用多尺度分割技术将具有高空间分辨率和高光谱信息的融合影像分割成不同的对象,依据建筑物特征自定义分类因子,运用模糊分类技术对建筑物外形进行初步提取,最后通过形态学开运算进行结果优化。

参考文献

[1] 唐亮,谢维信.直线Snakes及其在建筑物提取中的应用[J].西安电子科技大报,2005,32(1):60-65.

[2] 宋文涛.基于数字摄影测量的DOM制作与应用研究[J].测绘通报,2010(2).

[3] 杜金莉.正射影像图的制作与应用研究[J].测绘通报,2009(24).

[4] 胡海驹.SPOT-5卫星DOM制作的质量控制研究[J].测绘通报,2008(20).endprint

猜你喜欢
面向对象
面向对象方法在水蓄冷PLC编程中应用分析
基于python的面向对象传感器库类抽象方法
面向对象的计算机网络设计软件系统的开发
面向对象的数据交换协议研究与应用
面向对象Web开发编程语言的的评估方法
基于面向对象的Office评测系统的分析
峰丛洼地农作物面向对象信息提取规则集
基于E-cognition的面向对象的高分辨率遥感图像分类研究
基于面向对象的车辆管理软件的研制与开发
面向对象的SoS体系结构建模方法及应用