晏华辉+顾广泽
摘要:定义了在所谓的具有一片平的边界的有界光滑区域内退化线性椭圆的非常弱解的概念,然后利用变法方法与退化椭圆方程的极值原理等证明了该问题非常弱解的存在唯一性结果.
关键词:存在性; 唯一性; 非常弱解; 退化椭圆方程
中图分类号:O175.25 文献标识码:A
他们需要得到上面问题非常弱解的存在唯一性结果.
[1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.
[2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.
[3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.
[4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.
[5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.
[6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.
[7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.
[8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.
摘要:定义了在所谓的具有一片平的边界的有界光滑区域内退化线性椭圆的非常弱解的概念,然后利用变法方法与退化椭圆方程的极值原理等证明了该问题非常弱解的存在唯一性结果.
关键词:存在性; 唯一性; 非常弱解; 退化椭圆方程
中图分类号:O175.25 文献标识码:A
他们需要得到上面问题非常弱解的存在唯一性结果.
[1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.
[2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.
[3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.
[4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.
[5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.
[6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.
[7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.
[8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.
摘要:定义了在所谓的具有一片平的边界的有界光滑区域内退化线性椭圆的非常弱解的概念,然后利用变法方法与退化椭圆方程的极值原理等证明了该问题非常弱解的存在唯一性结果.
关键词:存在性; 唯一性; 非常弱解; 退化椭圆方程
中图分类号:O175.25 文献标识码:A
他们需要得到上面问题非常弱解的存在唯一性结果.
[1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.
[2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.
[3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.
[4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.
[5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.
[6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.
[7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.
[8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.