林乔+王黎+张捷+王捷+周芸+胡宁
摘要:微生物燃料电池(MFC)作为一种新型生物发电技术,目前已得到研究者们的广泛关注。通过文献的数据挖掘,对不同微生物燃料电池运行的机理、产电微生物、底物、电极材料、质子交换膜、反应器设计等方面进行分析,综述了MFC最新研究进展,并对其发展前景进行了展望。
关键词:微生物燃料电池(MFC);产电机理;产电微生物
中图分类号:X703 文献标识码:A 文章编号:0439-8114(2014)18-4257-07
微生物燃料电池(MFC)是一种新型能源回收技术。MFC的作用机制是利用微生物氧化还原有机物,将氧化还原反应中产生的电子通过电子链传递到燃料电池的电极上,从而产生电流,是一个将生物化学能转化为电能的过程。能源问题和环境问题是当今社会关注的两大焦点,利用微生物燃料电池可以在处理污染物的同时产生电能,而且在转化的过程中,MFC具有能量转化率高、燃料多样化、操作条件温和、安全无污染等优点,所以这项技术受到研究者的广泛关注。
MFC在实际中的应用多种多样,例如工业中降解啤酒废水[1-3]、甘蔗废水产电[4],在生活中降解生活污水[5-9]、垃圾渗滤液产电[10,11]等。近些年来,随着MFC技术的发展,可以利用底栖微生物燃料电池的电化学活性来确定细菌的亲缘关系[12],用阴极酶催化微生物燃料电池的生物电流来加强染料脱色[13],并用超声处理的微生物燃料电池来改变污泥中有机质的降解特性等。MFC新技术的不断突破,为中国经济、社会、环境的发展带来巨大的推动力,为资源再生利用和实现可持续发展做出了贡献。
1 主要MFC运行原理比较
根据产电原理的不同,MFC大致可分为3种类型:①产氢MFC,在电极上涂抹化学催化剂,利用微生物分解有机物产氢,将制氢与发电结合在一起;②光能自养MFC,利用感光微生物的光合作用,直接将光能转化为电能;③化能异养MFC,利用厌氧或兼性微生物,在厌氧的条件下利用有机物燃烧提取电子,通过电子转移产生电流。这种也是最常用的MFC反应器。
MFC反应器由阴阳电极、质子交换膜和反应室三部分组成。在厌氧条件下,阳极反应室中植入微生物和有机底物,其中有机底物被微生物分解产生电子、氢离子。电子经外电路传递到阴极,在反应器内部氢离子通过质子交换膜或直接由阳极区传递至阴极区。电子通过电子传递链产生电流,微生物通过获得电子传递中产生的能量而维持生长。
以葡萄糖为例,微生物燃料电池中的反应式如下。
阳极:C6H12O6+6H2O→6CO2+24e-+24H+
阴极:6O2+24e-+24H+→12H2O
MFC运行效果的主要参数有电极电势、内阻、功率、功率密度、库伦效率、能量效率、污染物去除率、污染物负荷率等。而影响MFC性能的主要因素有微生物、底物、电极、反应装置设计、质子交换膜等,本文将从微生物燃料电池的以上几个方面做出总结和阐述。
2 产电微生物及研究进展
产电微生物是MFC中重要的影响因素,它不仅决定着底物的降解速率、电子的释放速率,甚至会影响电池的内阻[14]。研究者们发现不管是纯菌还是混合菌都可作为MFC的接种物。其中纯菌在输出电压、功率密度和输出效率上优于混合菌,但是混合菌的输出稳定电压时间长。于是人们在研究微生物的产电特性的时候通常采用单一菌种。目前被广为研究的是变形菌门(Proteobacteria)和厚壁菌门(Firmicutes)这两种细菌。
2.1 变形菌门(Proteobacteria)
变形菌门是一种利用鞭毛运动的异养型细菌,其大多为厌氧或者兼性细菌,也是目前研究中发现的产电微生物最多的一门。变形菌门里包括α-变形菌、β-变形菌、γ-变形菌和δ-变形菌。其中α-变形菌中最先被发现的是红假单胞菌[15](图1),它是一种紫色光合非硫产电菌,具有高效的产电能力,并且代谢途径多样、底物来源广泛。β-变形菌中的代表是铁还原红螺菌(Rhodoferax ferrireducens),它是一种氧化铁还原微生物,可以直接氧化有机物生成CO2,不需催化剂就可将电子转移到电极上。利用这种细菌的MFC产电迅速而稳定。γ-变形菌的代表是腐败希瓦氏菌(Shewanella sp.)[16],它是一种兼性厌氧的铁还原菌,主要有Hewanella putrefactions IR-1[17]、 Shewanella oneidensis MR-l、Shewanella oneidensis DSPIO、Shewanella decolo-rationis S12和Shewanella iaponiea等。γ-变形菌中运用较多的还有大肠杆菌(Escherichia coli)[18,19]、铜绿假单胞菌(Pseudomonas aeruginosa)[20]。δ-变形菌中主要有Geobacter sulfurredueens[21]、Desuffobulbus propionlcus、 Geobaeter metalliredueens、 Geopsye-hrobaeter eleetrodiphilus等,它们利用表面交错的导电菌毛参与电子传递。
2.2 厚壁菌门(Firmicutes)
厚壁菌门大多为细胞壁较厚的革兰氏阳性菌[22]。典型的包括丁酸梭菌(Clostridium butyrieum EG3)、链球菌(Streptococcus)[23]和肺炎双球菌(Diplococcus pneumoniae),见图2。它的细胞壁多数比较厚,因此电子传递的速度和发酵的过程都比较慢,进而产电能力也相对较弱。
3 底物
底物是能量转化的来源,其类型和利用效率决定着微生物的生长速度和结构类型,因此它是MFC产电能力的重要因素。目前的研究结果表明,能运用到MFC中的有机物种类很多,常见的有乙酸盐[24,25]、葡萄糖[26-29]、乙醇[30]和纤维素[31,32]等。
乙酸盐的产电性能很高,其启动快,周期稳定,也是厌氧环境中含量最为丰富的脂肪酸。产甲烷细菌(Methanogens)、硫化细菌(Thiobacillus)以及地杆菌属(Geobacter)都可以以乙酸盐作为底物。葡萄糖也是很常用的一种底物,能够利用葡萄糖的微生物种类很多,其产生的代谢副产物也非常丰富。厚壁菌门(Firmicutes)和γ-变形菌纲(Gammaproteobacteria)中的大部分微生物都在葡萄糖的氧化中起着重要的作用。乙醇具有毒性低、来源广、持续性好等优点,是新型能源,需要更进一步的研究。脱硫杆菌(Desul-fobacterium autotrophicum)、蛋白质菌Core-l(Proteobacterium)以及不动杆菌(Acinetobac-ter)等都可以降解乙醇。纤维素是线性葡聚糖链,现如今对其研究还不深入,将解纤维梭菌(Clostridium cellulolyticum)与产电菌硫还原地杆菌(Geobacter sulfurreducens)共同培养可以有效地分解纤维素。各种微生物分解底物产电能力的比较见表1。
随着MFC的研究深入,将污水和产电结合是必然趋势。生活污水、制糖厂污水、啤酒废水以及制药废水中都含有丰富的有机物,利用这些废水作为底物是非常好的可持续节能方法。
4 MFC中的电极材料
在MFC中,电极作为MFC反应器的重要组成部分,其阳极是产电微生物附着而传递电子的重要场所,也是影响MFC产电能力的重要因素,所以具有吸附性好、稳定性好、导电性好特点的材料应作为阳极材料的首选。增大阳极的表面积能够增加微生物的附着量,从而直接影响MFC的性能,Lorenzo等[33]研究发现使用有填充层的不规则石墨颗粒能够增大阳极的表面积,使得库仑率从30%增至80%,完善了MFC的产电性能。阴极进行的是还原反应,需要比较高的活化能,可以通过使用催化剂来降级反应所需要的活化能,既能减少电压损失,也能加快反应速率。
4.1 阳极材料
目前普遍采用的基本阳极材料有石墨、碳纸、碳布、碳毡、活性炭等。另外,已研制出一些导电聚合物复合材料应用于MFC中作为阳极材料以增大发电效率,还有一些阳极通过非金属物质的处理,显著提高了电极表面的产电性能。
4.1.1 导电聚合物复合材料 已有研究者研制出以多孔壳聚糖为支架,掺碳纳米管的阳极(CHIT-CNT)[34],这种电极的壳聚糖通过脱乙酰作用高压灭菌等处理后,使用不同的交联剂与碳纳米管镶嵌而得到阳极。这种电极表面的多空结构有助于维持微生物的繁殖与在MFC中操作的顺利进行。在非搅拌续批模式下,外电路电池电压为600 mV时,这种电极得到的电流密度为16 A/m3,最大功率密度能达到4.75 W/m3,而使用碳毡电极只能在电流密度为7 A/m3时,得到3.5 W/m3的最大功率密度,这表明CHIT-CNT电极产电性能要优于一般的碳毡电极,CHIT-CNT还能够和多种支架材料相结合来形成混合电极材料,进一步优化电极性能,具有很大的应用前景。
4.1.2 非金属处理的阳极 在某些情况下,对阳极进行一些非金属物质的处理,能够提高其极传递电子的能力,增强产电效率。把镍和β碳化钼进行复合处理,来作为阳极催化剂,发现在有肺炎杆菌的情况下,Ni/β-Mo2C能够促进甲酸盐、乳酸盐、乙醇和2,6-二叔丁基苯醌等肺炎杆菌主要代谢产物的氧化,且表现出很高的催化活性,发现在以Ni/β-Mo2C作为阳极催化剂的情况下,其功率密度比以β-Mo2C为催化剂的功率密度更高[35]。用硝酸和乙二胺分别处理过的碳纤维来作为阳极与未经处理的阳极进行比较,发现用硝酸处理过阳极的MFC的启动时间减少了45%,其功率密度增加了58%;而经过乙二胺处理过阳极的MFC的启动时间减少了51%,功率密度增加了25%,这表明经过这两种物质处理过的阳极都能够增强MFC的产电性能,提高产电量且缩短启动时间,这是因为修饰过的阳极有助于产电细菌附着在电极上更好的生长[23]。有些电极经过胺的处理,能够增强电极表面的电荷量,加快了微生物附着于电极表面的速度,从而提高了产电量,缩短了系统的启动时间[36]。另外还有些阳极通过重氮化合物的修饰,能够在对微生物的生物活性不产生影响的情况下,提高微生物在电极表面的附着量,从而可提高产电率[53,54]。
4.2 阴极材料
阴极是影响MFC产电效率的重要原因之一,因为阴极一般把氧气作为电子受体,氧的还原速度的快慢会直接影响产电性能。阴极通常在碳纸、碳布、石墨等基本材料上涂上催化剂,以提高反应速率,降低阴极反应的活化能。
4.2.1 阴极催化剂 目前的大多数MFC都采用Pt作为催化剂,因其与氧气较容易结合,可以催化电极反应,同时还可以防止氧气向阳极的扩散。Yang等[27]使用涂有Pt的竹炭作为阴极,发现MFC的输出功率比没有Pt催化剂的MFC要高,这是因为在阴极附近形成了生物膜,能够阻止氧气向阳极扩散,从而增大了速出功率和库仑率。但由于Pt的价格昂贵,不适合大规模应用。Wang等[37]采用裂解铁乙二胺四乙酸作为阴极催化剂,这种催化剂是在有氩气的情况下,使混合有铁螯合的乙二胺四乙酸的碳热解得到的,用这种催化剂替换Pt,发现其最大功率能达到1 122 mW/m2,与Pt/C阴极得到的最大功率(1 166 mW/m2)相近,说明这种催化剂也具有很好的催化活性,基本能达到Pt催化剂的效果,且价格比铂催化剂要低得多,具有很强的实际操作性。Luo等[38]的研究发现采用漆酶电极的MFC的催化性也与Pt电极相近,具有可替代性。
4.2.2 复合型阴极 有些阴极材料采用的是一些价格较为低廉的原材料,进行复合重组,形成新型的复合材料,同样能够提高MFC的产电性能。Zhang等[39]考察了用石墨纤维刷和石墨颗粒合成的生物阴极,并将其与只含有石墨纤维和只含有石墨颗粒作为阴极的MFC相比较,发现启动时间减少了一半多,库仑率增加了(21.0±2.7)%,最大功率密度增加了(38.2±12.6)%,这种复合型电极能够增大电极的表面积,使能起到催化作用的微生物在表面健康生长,增加催化性能,且价格经济低廉。
4.2.3 活性炭纤维毡阴极 一般认为在有催化剂作用下MFC的产电量会更高,但在升流式MFC中,活性炭纤维毡阴极在没有金属催化剂的条件下,产电功率比有Pt催化剂的碳纸阴极还要高。试验证明,活性炭纤维毡电极能达到的最大功率为315 mW/m2,比碳纸(67 mW/m2),碳毡(77 mW/m2)或是涂有Pt的碳纸(124 mW/m2,0.2 mg/Ptcm2)阴极得到的最大功率都要高。而当这种活性碳纤维毡电极加上Pt催化剂后,能够得到更大的输出功率。如增加阴极的表面积且把这种材料做成管状结构,能够更进一步增加其功率密度(784 W/m3),当做成颗粒状时,不同的粒径得到的功率密度也不同(粒径为0.5 cm时,最大功率密度为481 W/m3; 粒径为1.0 cm 时,最大功率密度为667 W/m3)。这说明,同种材料的电极做成不同的形状,也会影响产电效率[55]。各种电极材料总结如表2。
5 质子交换膜材料
质子交换膜(PEM)在MFC研究初期属于必不可少的组成部分,其对MFC的输出功率具有很强的影响,所以能直接影响MFC的产电性能。MFC中的质子传导材料应当能够抑制底物和电子受体等物质的转移,Nafion凭借其对质子具有很好的选择透过性,因此在MFC中的PEM很多都是采用的Nafion,但是由于Nafion的价格较高,增加了MFC的成本,还可能使氧渗透,因此在使用上有一定的局限性[40-42]。现已研究出用一些新型的材料如盐桥[43,44]、Ultrex[45]、瓷等来替代Nafion,但效果还是差于Nafion。Behera等[46]采用没有PEM的砂锅MFC与有PEM的MFC进行试验比较,发现砂锅自身能够作为质子交换的媒介,且砂锅MFC的COD去除率比有PEM的MFC的COD去除率高。在外电路电阻为100Ω时,砂锅MFC和有PEM的MFC能达到的最大功率密度分别为2.30 W/m3和0.53 W/m3,表明砂锅MFC具有很好的产电性能,且在处理污水方面,效果也很好,是一种有效可行的替代方式。Jana等[47]研究出用陶柱来作为MFC的阳极室,且不使用PEM,与有PEM的一般MFC进行对比,发现前者的内阻小于后者,且前者得到的最大功率大于后者,具有很好的产电效果,且COD的去除率能够达到90%以上,在污水处理方面也有很好的表现,对于质子转移方面,比PEM能达到更好的效果,价格低廉,是替代Nafion作为转移质子的高效材料之一。另外有些研究发现,AEM(Anion exchange membrane)能够通过使用磷酸盐或是碳酸盐作为质子载体和pH缓冲区来促进质子转移[44]。
6 MFC反应器的结构
目前MFC的基本结构可分为双室和单室两种。其中双室MFC主要是由2个分隔的反应室构成,即阴极室和阳极室,内部一般通过质子交换材料相连通,外部连接导线形成循环电路。现提出了一种连续流态的空气阴极MFC[43],这种双室MFC通过媒介能够优化电力的生产率,因其动力常量都已被精确的确定出,为研究其动力学提供了有力的依据,且此方法能重复进行,可得到单位体积的高生产率,还能节省劳动力(图3)。Picot等[48]采用了“H” 型MFC,这种MFC制作比较简便,但是其必须用溶解态的氧气作为氧化剂,造成了需求量大、溶解度小的问题,单室MFC能够利用气态氧来完善“H”型MFC的不足。单室MFC由于阳极和阴极的距离近,可加快传质速率,又因其不用曝气,可节省运行费用。Lorenzo等[49]把单室MFC作为生物传感器,发现在外电路50Ω时,单室MFC的测量范围比双室MFC大得多,测量值的重复性高,证明反应器稳定性较高。Zhu等[50]采用无膜降流式单室MFC来产电,发现溶解氧的浓度对产能的影响很小,且构型配置简单,操作便利,能获得较高的功率密度,容易进行放大应用,如图4所示。此外升流式单室MFC因其使用的是生物阴极,具有以下优势:由于在阴极上的微生物自身具有催化作用,能够代替金属催化剂,从而节省了因金属催化剂产生的费用;生物阴极能够进行反硝化作用,在阴极的藻类能够通过光合作用产生氧气,节省了供氧费用,微生物还能够被利用来合成有用的化合物,去除不需要的化合物(图5)[47]。但不论是双室MFC还是单室MFC,都会因阳极的极化电阻而限制系统的性能,已有科学家发现生物膜的生长能够显著减小阳极的极化电阻,促进电化学反应的进行,从而使这个问题得到改善[51]。另外,还有些微型MFC的研究已受到人们的关注,Wang等[52]对mL级和μL级的MFC进行了比较,现有的mL级MFC比μL级MFC的产电量高得多,这是因为μL级MFC的电阻较大,但是μL级MFC能够迅速筛选电化学微生物,辨别电极性能,使其也具有很大的发展前景,微型MFC的可应用性为其在未来发展中提供了条件。
7 展望
微生物燃料电池因其操作简便、清洁高效等特点已受到广泛的关注。近年来对微生物燃料电池的研究取得了很大的进展,研究者们发现MFC不仅可以进行污水处理,还能产生电能,同时还可作为生物传感器[55]以及其他应用。但目前设计出的MFC的输出功率离实际应用要求还有一定的距离,可以通过筛选高效的产电微生物,优化电极材料,设计出更合理的反应器来提高输出功率。随着研究的不断深入,微生物燃料电池作为一种清洁能源,必然会成为未来能源技术的核心力量。
参考文献:
[1]LARROSA-GUERRERO A,SCOTT K,HEAD I M,et al. Effect of temperature on the performance of microbial fuel cells[J]. Fuel,2010,89(12):3985-3994.
[2] WEN Q,WU Y,ZHAO L,et al. Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell[J]. Fuel,2010,89(2):1381-1385.
[3] WEN Q,WU Y,CAO D,et al. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater[J]. Bioresource Technology,2009,100(18):4171-4175.
[4] KIM R J,PREMIER C G,HAWKES R F,et al.Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate[J]. Bioresource Technology,2010,101(4):1190-1198.
[5] BOROLE P A,HAMILTONB Y C,VISHNIVETSKAYA T,et al. Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems[J].Biochemical Engineering Journal,2009,48(1):71-80.
[6] HE G,GU Y,HE S,et al. Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells[J]. Bioresource Technology,2011,102(22):10763-10766.
[7] ALDROVANDI A,MARSILI E,STANTE L,et al.Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell[J]. Bioresource Technology,2009, 100(13):3253-3260.
[8] CUSICK D R,KIELY D P,LOGAN E B. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters[J] .International Journal of Hydrogen Energy,2010,35(17):8855-8861.
[9] CHAE J K,CHOI J M,KIM Y K,et al. Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells[J]. Bioresourece Technology,2010,101(14):5350-5357.
[10] GREENMANA J,G?魣LVEZB A,GIUSTI L,et al.Electricity from landfill leachate using microbial fuel cells:Comparison with a biological aerated filter[J]. Enzyme and Microbial Technology,2009,44(2):112-119.
[11] G?魣LVEZ A,GREENMAN J,IEROPOULOS I. Landfill leachate treatment with microbial fuel cells; scale-up through plurality[J]. Bioresourece Technology,2009,100(21):5085-5091.
[12] MARTINS G,PEIXOTO L,RIBEIRO C D,et al. Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores): Phylogenetic affiliation and electrochemical activity of sediment bacteria[J]. Bioelectrochemistry,2010,78(1):67-71.
[13] BAKHSHIAN S,KARIMINIA H,ROSHANDEL R. Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization[J]. Bioresource Technology,2011,102(2):6761-6765.
[14] LYON Y D,BURET F,VOGEL M T,et al. Is resistance futile Changing external resistance does not improve microbial fuel cell performance[J]. Bioelectrochemistry,2010,78(1):2-7.
[15] KIM M S,LEE Y J. Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel-cell[J]. International Journal of Hydrogen Energy,2010,35(23):13028-13034.
[16] OH S T,KIM J R,PREMIER G C,et al. Sustainable wastewater treatment: How might microbial fuel cells contribute[J]. Biotechnology Advances,2010,28(6):871-881.
[17] MARTINS G,PEIXOTO L,RIBEIRO D C,et al. Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores):Phylogenetic affiliation and electrochemical activity of sediment bacteria[J]. Bioelectrochemistry,2010,78(1):67-71.
[18] SAMROT A,SENTHILKUMAR P,PAVANKUMAR K,et al. Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell[J]. International Journal of Hydrogen Energy,2010,35(15):7723-7729.
[19] WANG C T,CHEN W J,HUANG R Y. Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli[J]. International Journal of Hydrogen Energy,2010,25(13):7217-7223.
[20] DANIEL D K, MANKIDY B D, AMBARISH K,et al. Construction and operation of a microbial fuel cell for electricity generation from wastewater[J]. International Journal of Hydrogen Energy,2009,34(17):7555-7560.
[21] NIMJE R V,CHEN C Y,CHEN C C,et al. Glycerol degradation in single-chamber microbial fuel cells[J]. Bioresource Technology,2011,102(3):2629-2634.
[22] LIU M,YUAN Y,ZHANG L X,et al. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells[J]. Bioresource Technology,2010,101(6):1807-1811.
[23] ZHU N,CHEN X,ZHANG T,et al. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes[J]. Bioresource Technology,2011,102(1):422-426.
[24] THYGESEN A,POULSEN F W,MIN B,et al. The effect of different substrates and humic acid on power generation in microbial fuel cell operation[J]. Bioresource Technology,2009, 100(3):1186-1191.
[25] ZHANG Y,MIN B,HUANG L,et al. Electricity generation and microbial community response to substrate changes in microbial fuel cell[J]. Bioresource Technology,2011,102(2):1166-1173.
[26] PANT D,BOGAERT V G,DIELS L,et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresource Technology,2010,101(6):1533-1543.
[27] YANG S Q,JIA B,LIU H. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell[J]. Bioresource Technology,2009,100(3):1197-1202.
[28] DENG Q,LI X Y,ZUO J,et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell[J]. Journal of Power Sources,2010,195(4):1130-1135.
[29] FISCHER F,BASTIAN C,HAPPE M,et al. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite[J]. Bioresource Technology,2011,102(10):5824-5830.
[30] KIELY D P,RADER G,REGAN M J,et al. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts[J]. Bioresource Technology,2011,102(1):361-366.
[31] WANG A J,SUN D,CAO G L,et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell[J]. Bioresource Technology,2011,102(5):4137-4143.
[32] IEROPOULOS I,WINFIELD J,GREENMAN J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells[J]. Bioresource Technology,2010,101(10):3520-3525.
[33] LORENZO D M,SCOTTB K,CURTIS P T,et al. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal,2010,156(1):40-48.
[34] HIGGINS S R,FOERSTER D,CHEUNG A,et al. Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation[J]. Enzyme and Microbial Technology,2011,48(6-7):458-465.
[35] ZENG L Z,ZHAO S F,WANG Y Q,et al. Ni/β-Mo2C as noble-metal-free anodic electrocatalyst of microbial fuel cell based on Klebsiella pneumoniae[J]. International Journal of Hydrogen Energy,2011, 37(5):4590-4596.
[36] DU F Z,XIE B Z,DONG W B,et al. Continuous flowing membraneless microbial fuel cells with separated electrode chambers[J]. Bioresource Technology,2011,102(19):8914-8920.
[37] WANG L,PENG L,ZHANG J,et al. Activity and stability of pyrolyzed iron ethylenediaminetetraacetic acid as cathode catalyst in microbial fuel cells[J]. Bioresource Technology,2011,102(8):5093-5097.
[38] LUO H P,JIN S,FALLGREN H P,et al. A novel laccase-catalyzed cathode for microbial fuel cells[J]. Chemical Engineering Journal,2010,165(2):524-528.
[39] ZHANG G D,ZHAO Q L,JIAO Y,et al. Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules[J]. Journal of Power Sources,2011,196(15):6036-6041.
[40] CHOI M J,CHAE K J,AJAYI F F,et al. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance[J]. Bioresource Technology,2011,102(1):298-303.
[41] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.
[42] HUANG Y L,HE Z,MANSFELD F. Performance of microbial fuel cells with and without Nafion solution as cathode binding agent[J]. Bioelectrochemistry,2010,79(2):261-264.
[43] RAHIMNEJAD M,GHOREYSHI A A,NAJAFPOUR G,et al. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations[J]. Applied Energy,2011,88(11):3999-4004.
[44] LI W W,SHENG G P,LIU X W,et al. Recent advances in the separators for microbial fuel cells[J]. Bioresource Technology,2011,102(1):244-252.
[45] CERCADO-QUEZADA B,DELIA M,BERGEL A. Testing various food-industry wastes for electricity production in microbial fuel cell[J]. Bioresource Technology,2010,101(8):2748-2754.
[46] BEHERA M, JANA S P, MORE T T, et al. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH[J]. Bioelectrochemistry,2010,79(2):228-233.
[47] JANA P S,BEHERA M,GHANGREKAR M M. Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder[J]. International Journal of Hydrogen Energy,2010,35(11):5681-5686.
[48] PICOT M,LAPINSONNI?REA L,ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011,28(1):181-188.
[49] LORENZO M D,CURTIS T P,HEAD I M,et al. A single-chamber microbial fuel cell as a biosensor for wastewaters[J].Water Research,2009,43(13):3145-3154.
[50] ZHU F,WANG W C,ZHANG X Y,et al. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode[J]. Bioresource Technology,2011,102(15):7324-7328.
[51] REN Z Y,RAMASAMY R P,CLOUD-OWEN S R,et al. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells[J]. Bioresource Technology,2011,102(1):416-421.
[52] WANG H Y,BERNARDA A,HUANG C Y,et al. Micro-sized microbial fuel cell: A mini-review[J]. Bioresource Technology,2011,102(1):235-243.
[53] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.
[54] PICOTA M, LAPINSONNI?REA L, ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011, 28(1):181-188.
[55] DENG Q,LI X Y,ZUO J,et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell[J]. Journal of Power Sources,2010,195(4):1130-1135.
[40] CHOI M J,CHAE K J,AJAYI F F,et al. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance[J]. Bioresource Technology,2011,102(1):298-303.
[41] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.
[42] HUANG Y L,HE Z,MANSFELD F. Performance of microbial fuel cells with and without Nafion solution as cathode binding agent[J]. Bioelectrochemistry,2010,79(2):261-264.
[43] RAHIMNEJAD M,GHOREYSHI A A,NAJAFPOUR G,et al. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations[J]. Applied Energy,2011,88(11):3999-4004.
[44] LI W W,SHENG G P,LIU X W,et al. Recent advances in the separators for microbial fuel cells[J]. Bioresource Technology,2011,102(1):244-252.
[45] CERCADO-QUEZADA B,DELIA M,BERGEL A. Testing various food-industry wastes for electricity production in microbial fuel cell[J]. Bioresource Technology,2010,101(8):2748-2754.
[46] BEHERA M, JANA S P, MORE T T, et al. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH[J]. Bioelectrochemistry,2010,79(2):228-233.
[47] JANA P S,BEHERA M,GHANGREKAR M M. Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder[J]. International Journal of Hydrogen Energy,2010,35(11):5681-5686.
[48] PICOT M,LAPINSONNI?REA L,ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011,28(1):181-188.
[49] LORENZO M D,CURTIS T P,HEAD I M,et al. A single-chamber microbial fuel cell as a biosensor for wastewaters[J].Water Research,2009,43(13):3145-3154.
[50] ZHU F,WANG W C,ZHANG X Y,et al. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode[J]. Bioresource Technology,2011,102(15):7324-7328.
[51] REN Z Y,RAMASAMY R P,CLOUD-OWEN S R,et al. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells[J]. Bioresource Technology,2011,102(1):416-421.
[52] WANG H Y,BERNARDA A,HUANG C Y,et al. Micro-sized microbial fuel cell: A mini-review[J]. Bioresource Technology,2011,102(1):235-243.
[53] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.
[54] PICOTA M, LAPINSONNI?REA L, ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011, 28(1):181-188.
[55] DENG Q,LI X Y,ZUO J,et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell[J]. Journal of Power Sources,2010,195(4):1130-1135.
[40] CHOI M J,CHAE K J,AJAYI F F,et al. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance[J]. Bioresource Technology,2011,102(1):298-303.
[41] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.
[42] HUANG Y L,HE Z,MANSFELD F. Performance of microbial fuel cells with and without Nafion solution as cathode binding agent[J]. Bioelectrochemistry,2010,79(2):261-264.
[43] RAHIMNEJAD M,GHOREYSHI A A,NAJAFPOUR G,et al. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations[J]. Applied Energy,2011,88(11):3999-4004.
[44] LI W W,SHENG G P,LIU X W,et al. Recent advances in the separators for microbial fuel cells[J]. Bioresource Technology,2011,102(1):244-252.
[45] CERCADO-QUEZADA B,DELIA M,BERGEL A. Testing various food-industry wastes for electricity production in microbial fuel cell[J]. Bioresource Technology,2010,101(8):2748-2754.
[46] BEHERA M, JANA S P, MORE T T, et al. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH[J]. Bioelectrochemistry,2010,79(2):228-233.
[47] JANA P S,BEHERA M,GHANGREKAR M M. Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder[J]. International Journal of Hydrogen Energy,2010,35(11):5681-5686.
[48] PICOT M,LAPINSONNI?REA L,ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011,28(1):181-188.
[49] LORENZO M D,CURTIS T P,HEAD I M,et al. A single-chamber microbial fuel cell as a biosensor for wastewaters[J].Water Research,2009,43(13):3145-3154.
[50] ZHU F,WANG W C,ZHANG X Y,et al. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode[J]. Bioresource Technology,2011,102(15):7324-7328.
[51] REN Z Y,RAMASAMY R P,CLOUD-OWEN S R,et al. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells[J]. Bioresource Technology,2011,102(1):416-421.
[52] WANG H Y,BERNARDA A,HUANG C Y,et al. Micro-sized microbial fuel cell: A mini-review[J]. Bioresource Technology,2011,102(1):235-243.
[53] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.
[54] PICOTA M, LAPINSONNI?REA L, ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011, 28(1):181-188.
[55] DENG Q,LI X Y,ZUO J,et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell[J]. Journal of Power Sources,2010,195(4):1130-1135.