邢咏梅,李向东,郭顺星
软腐病病原菌对金钗石斛致病性的形态学研究
邢咏梅,李向东,郭顺星
100193 北京,中国医学科学院北京协和医学院药用植物研究所(邢咏梅、郭顺星);100195 北京,中国药材公司(李向东)
旨在研究软腐病病原菌终极腐霉对金钗石斛致病的形态学特征。
利用终极腐霉孢子悬液喷洒法对金钗石斛组培苗叶片进行致病性实验,对健康的以及感染终极腐霉 48 h 后的金钗石斛的叶片应用水压片法在光学显微镜下观察两者的形态差别。对健康的金钗石斛及感染终极腐霉 48 h 后的植株的根、茎、叶进行扫描电镜观察并分别比较致病前后微观结构的差异。
压片法观察叶片部位结果显示,健康的金钗石斛叶片结构完整;致病组可见终极腐霉病原菌在金钗石斛叶片中生长旺盛,大量卵孢子和孢子囊分布于叶肉细胞间。感染病原菌后的叶肉细胞完整性受到严重破坏。扫描显微镜观察结果显示:叶肉细胞、叶鞘组织、幼嫩根尖细胞以及根被为发病的关键部位。在茎部菌丝通过消解细胞壁进入细胞。在根部菌丝除通过消解细胞壁进入细胞外,还通过根被表面的许多孔洞进入细胞。病原菌菌丝体通过叶背面大量分布的气孔结构或叶表面极具破坏性地进入叶片体内,并形成典型的附着胞结构。
终极腐霉主要通过机械穿透和分泌降解酶破坏寄主细胞的细胞壁及其内部结构。
石斛; 植物组成部分; 终极腐霉; 软腐病
石斛属(spp.)是兰科植物的第二大属,目前该属在全世界共发现 1100 多种,在我国有 76 个种和 2 个变种。其中,石斛属药用植物金钗石斛(Lindl)是传统名贵中药,被我国历版药典所收录[1-2],以其干燥或新鲜的茎入药,具有滋阴清热、益胃生津之功效[3]。由于近年来石斛属药用植物被过度挖掘,野生资源濒临枯竭,石斛属药用植物已被国家列为一级保护植物名录。
随着人们对石斛中药材需求量的逐渐增加,目前药用石斛属植物人工栽培的面积不断扩大[4]。然而,随之而来的各种病害不断出现,严重阻碍了人工栽培的进一步发展,并给种植户带来了巨大的经济损失。有研究表明,钟器腐霉曾在云南省导致大规模鼓槌石斛、球花石斛、线叶石斛茎部的腐烂[5]。在以往的研究中,我们鉴定出金钗石斛软腐病的病原真菌为终极腐霉[6]。
为深入研究软腐病病原菌终极腐霉的致病机理,探讨其在导致金钗石斛软腐病病害过程中的机制,金钗石斛的根、茎和叶等部位发生的显微、超微结构变化以及病原菌在植物体内的分布和侵染情况,本研究采用水压片法以及扫描电镜观察法分别对接种终极腐霉病原菌前后金钗石斛苗的根、茎和叶的结构变化进行观察,为深入理解病原菌的侵染过程,揭示其形态学特征和侵染机制,以及为更好预防和控制此病害的发生发展提供重要的理论依据。
1.1.1 植物材料 金钗石斛组培苗为本实验室保存。
1.1.2 主要仪器 ZEISS Axio Imager A1 型光学显微镜购自德国蔡司公司;JSM-6510 LV 型扫描电子显微镜购自日本电子株式会社。
1.2.1 病原菌终极腐霉对金钗石斛的致病性试验 将刚出瓶的生长一致的株高 4 ~ 6 cm 的新鲜金钗石斛组培苗预先栽种在装有灭菌的栗树皮基质的塑料花盆内,每个花盆栽种 3 株组培苗。病原菌为金钗石斛发病植株上分离得到的终极腐霉。采用孢子喷洒叶片的方法进行致病性试验,接种的病原菌为孢子悬浮液(1 × 106个/ml),均匀地喷洒于金钗石斛幼苗的叶片上[7]。对照组喷洒无菌水。致病组和对照组均设 30 个重复。接种后置于 20 ~ 25 ℃温室塑料膜保湿培养 48 h,然后揭去塑料膜,每天观察植株发病情况。
1.2.2 常规水压片法进行光镜观察 取1 滴 10% KOH 溶液滴加到载玻片上,然后取健康的和发病 48 h 的金钗石斛的叶片作为观察对象,徒手切片法切取尽量薄的叶片组织,浸入 KOH 溶液中装片,光学显微镜下观察、照相。
1.2.3 扫描电镜样品的制备流程 取健康的以及发病 48 h 的金钗石斛的根、茎、叶等部位,用于制作扫描电镜样品,样品的处理按文献[8]进行:2.5% 戊二醛室温下固定 4 ~ 6 h 后,以 PBS(pH 6.8,0.1 mol/L)洗涤 3 次,每次 30 min;分别经 30%、50%、70%、80%、90% 以及 100% 丙酮梯度脱水,每个梯度 3 次,每次 30 min;再经纯醋酸异戊酯置换 3 次,每次 30 min;经 CO2临界点干燥、粘样,再经过金离子喷溅,最后于扫描电子显微镜下观察、拍照。
在光学显微镜下,正常的叶肉细胞细胞壁较厚,排列规则,叶绿体分布于细胞的周边(图1A),而发病的叶肉细胞壁变薄,细胞完整性受到破坏,叶绿体分散、零乱(图 1B,C)。终极腐霉病原菌在金钗石斛叶片内大量存在,菌丝生长旺盛,直径可达 11 μm,菌丝体内充满泡囊(图 1C 黑色箭头所示),且具有流动性,这与终极腐霉有关的形态描述[8]相一致。大量的卵孢子和孢子囊分布在叶肉细胞间或内部,卵孢子壁厚 2 ~ 3 μm(图 1B)。
2.2.1 金钗石斛植株被病原菌侵染前后的根表面和横切面显微结构 由图 2 可以看出,未被病原菌侵染的金钗石斛植株根的表面结构保持完整(图 2A),根被细胞显示出典型的网状纤维样结构,皮层细胞结构较完整,其体积明显比根被细胞大,有较多颗粒样物质(图 2B 上箭头),推测为淀粉粒样的结构,根的中柱髓部(图 2B 下箭头)结构也较完整,细胞排列规则。被病原菌侵染的金钗石斛植株根的表面分布有大量的病原菌终极腐霉的菌丝(图 2C 箭头),病原菌菌丝体穿过根被死亡细胞表面的各种孔洞,在根部蔓延和穿行,交织成网状,进而深入根皮层细胞,破坏皮层细胞的细胞壁而导致细胞的坏死(图 2C,D),终极腐霉高密度分布是宿主植物发病的基础,同时说明这种土传植物病害病原菌终极腐霉首先必须在基质中侵入根部组织进而侵染其他组织导致植株的发病和死亡,这为我们提供了终极腐霉侵染植株直观的显微依据。
2.2.2 金钗石斛植株被病原菌侵染前后的茎表面显微结构 由图 3 可以看出,未被病原菌侵染的金钗石斛植株茎表面保持完整的结构,茎叶鞘部位细胞纵向分布,排列极其规则,散在分布有气孔样结构(图 3A)。金钗石斛植株受到病原菌侵染后,终极腐霉菌丝大量在茎表面穿行(图 3B 白色箭头)、纵横交错,使该部位的结构完整性受到严重破坏,茎表面出现了大大小小的孔洞;金钗石斛茎表面的终极腐霉菌丝产生分支(图 3B 黑色*)后,通过机械穿透作用进入组织内部(图 3B 白色*),后又穿行暴露于茎表面(图 3B 黑色**);终极腐霉菌丝出现不规则膨大,形成附着胞,并牢牢地黏附在茎表面(图 3B 黑色箭头),并将继续侵染植株的深部组织。
图 1 水压片法观察被终极腐霉病原菌侵染前后的金钗石斛叶片部位的显微结构[A:健康叶片,比例尺:10 μm;B:感染终极腐霉 48 h 后金钗石斛叶肉组织中,大量卵孢子形成(箭头所示),比例尺:10 μm;C:感染终极腐霉 48 h 在叶肉组织中生长旺盛的终极腐霉菌丝,含有丰富的泡囊结构,比例尺:10 μm]
Figure 1 Microstructure of theleaf area before and afterinfection using free-hand sectioning [A: The healthy leaf withoutinfection, scar bar, 10 μm; B: After being infected byfor 48 hrs, a lot of oospores (black arrow) and sporangia indicated by the arrow were found inmesophyll tissue, scar bar, 10 μm; C: After being infected byfor 48 hrs,mycelia grew vigorously in the mesophyll tissue with abundant vesicles, scar bar, 10 μm]
图 2 扫描电镜观察金钗石斛植株被软腐病病原菌侵染前后的根部超微结构[A:健康金钗石斛根表面,比例尺:100 μm;B:健康金钗石斛根横切面,上、下箭头分别显示皮层薄壁细胞(内含大量颗粒状物质)和中柱层,比例尺:50 μm;C:被终极腐霉侵染 48 h 后的金钗石斛根表面,箭头所示为病原菌菌丝体,比例尺:10 μm;D:被终极腐霉侵染 48 h 后的金钗石斛的根横切面,大量终极腐霉菌丝交织成网状,比例尺:20 μm]
Figure 2 Ultrastructure of theroot segment before and afterinfection using scanning electronic microscope (A: The healthy root withoutinfection, scar bar, 100 μm; B: The cross section of the healthyroot segment, with the column layer indicated by the lower arrow and the cortex parenchyma cells with a lot of granulated substances indicated by the upper arrow, scar bar, 50 μm; C: After being infected byfor 48 hrs, the pathogenic fungal mycelia existed on the surface of theroot, scar bar, 10 μm; D: After being infected byfor 48 hrs, a lot ofinterwove like mesh, scar bar, 20 μm)
图 3 扫描电镜观察金钗石斛植株被病原菌侵染前后的茎部超微结构[A:健康金钗石斛茎表面,比例尺:60 μm;B:被终极腐霉侵染 48 h 后的金钗石斛茎表面,可见从茎表面进入的终极腐霉菌丝(白色箭头),以及菌丝膨大形成的附着胞结构(黑色箭头),菌丝分支(黑色*)后穿入茎深部组织(白色*),又穿出茎表面(黑色**),比例尺:10 μm]
Figure 3 Ultrastructure of thestem surface before and afterinfection using scanning electronic microscope [A: The healthy stem surface withoutinfection, scar bar, 60 μm; B: After being infected byfor 48 hrs, the pathogenic fungal mycelia entered inside from the stem surface indicated by the white arrow, the appressorium formed by the swelled mycelia could also be seen (black arrow), the mycelia branched (black *) and penetrated through the stem tissue (white *) and then went out of the stem surface (black **), scar bar, 10 μm]
2.2.3 金钗石斛植株被病原菌侵染的叶背面和横切面显微结构 图 4A 显示未被病原菌侵染的金钗石斛植株叶部的完整结构,横切面可以看到完整的维管束结构。图 4B 显示许多终极腐霉菌丝末端膨大,纵横排列,形成类似吸盘的特殊结构(图4B 黑色箭头),牢固地附着于叶背面,从多个角度和部位黏附、侵染叶背面。图 4C 显示大量病原菌菌丝从气孔处争相侵入寄主体内。图 4D 显示终极腐霉菌丝在气孔处发生断裂后,可见许多泡囊结构,这是终极腐霉的典型特征之一[9]。
图 4 扫描电镜观察金钗石斛植株叶部被病原菌侵染前后的超微结构[A:健康金钗石斛叶横切处面,比例尺:20 μm;B:被终极腐霉侵染 48 h 后的金钗石斛叶背面,终极腐霉菌丝末端膨大形成吸盘样结构(黑色箭头),比例尺:6 μm;C:被终极腐霉侵染 48 h 后的金钗石斛叶背面,比例尺:4 μm;D:被终极腐霉侵染 48 h 后的金钗石斛叶背面,菌丝断裂处显示泡囊结构,比例尺:1 μm]
Figure 4 Ultrastructure of theleaf segment before and afterinfection using scanning electronic microscope [A: The healthy cross section of the leaf withoutinfection, scar bar, 20 μm; B: After being infected byfor 48 hrs, the pathogenic fungal mycelia swelled at the end and formed sucker like structures on the back of the leaf indicated by the black arrows, scar bar, 6 μm; C: After being infected byfor 48 hrs, the pathogenic fungal mycelia penetrated through the leaf tissue from the stoma of the back of the leaf, scar bar, 4 μm; D: After being infected byfor 48 hrs, vesicles were seen at the site of the broken mycelia, scar bar, 1μm]
图 5 扫描电镜观察金钗石斛植株被软腐病病原菌侵染的叶表面超微结构[A:显示典型的菌丝膨大形成的孢子囊结构,比例尺:4 μm;B:藏卵器和藏精器结构,比例尺:2 μm,C:显示菌丝体侧向膨大形成的孢子囊结构,比例尺:4 μm]
Figure 5 Ultrastructure of theleaf surface afterinfection using scanning electronic microscope [A: The black arrow indicated the typical sporangium in the middle of the swelled mycelia, scar bar, 4 μm; B: Oogonium (white arrow) and antheridium (black arrow), scar bar, 2 μm; C: The sporangium formed by the swelled mycelia at the side direction, scar bar, 4 μm]
2.2.4 金钗石斛植株被病原菌终极腐霉侵染的叶表面形态结构 由图 5 可以看出,叶表面分布的病原菌菌丝体中间出现膨大形成典型的孢子囊结构(图5A黑色箭头)。图 5B 示藏精器(黑色箭头)和藏卵器(白色箭头)的结构,它们是终极腐霉病原菌的有性繁殖器官,核配以后形成卵孢子进而产生下一代病原菌菌丝体。图 5C 示菌丝侧生的孢子囊结构,此孢子囊结构也称为厚垣孢子,其具有抵抗恶劣或极端环境的能力。
病原菌终极腐霉是全球性的重要植物病原菌,可引起多种农作物和经济作物的病害,给国家造成巨大的经济损失。终极腐霉侵染石斛属植物的现象越来越普遍,目前国内外对终极腐霉的致病机制报道较少,侵染寄主的具体过程尚不明确,给该病原菌导致的病害的防治带来了极大困难。以往的研究表明,终极腐霉能够产生多种蛋白以及纤维素酶、同工酶等细胞壁降解酶,导致细胞壁的降解,从而引起胡萝卜空斑症的发生[10]。本研究系统地研究了终极腐霉感染金钗石斛前后的形态学变化,由徒手切片以及扫描电镜观察推测,终极腐霉主要通过表皮、气孔等结构进行机械穿透、形成附着胞以及类似吸盘等特殊形态结构并分泌降解酶破坏金钗石斛细胞的细胞壁及其内部结构,并在细胞间延伸侵染,使根、茎、叶组织严重破坏,进而蔓延发病。植物病原菌侵染寄主是一个极其复杂的过程[11],在今后的研究中,利用胶体金标记技术及荧光标记技术系统地进行终极腐霉对金钗石斛不同器官致病性的细胞化学研究,以及深入探讨终极腐霉与金钗石斛相互作用的分子机制,不仅有利于终极腐霉致病机制的揭示,同时为开发有效的真菌抑制剂提供重要的理论基础。
[1] Qi J, Zhang DW, Chen J, et al. HIV-1 integrase inhibitory activity of endophytic fungi from five species of medicinal Dendrobium. Chin Med Biotechnol, 2013, 8(1):36-40. (in Chinese)
祁婧, 张大为, 陈娟, 等. 五种药用石斛内生真菌抑制HIV-1整合酶活性研究. 中国医药生物技术, 2013, 8(1):36-40.
[2] Liu ZJ, Zhang YT, Wang Y, et al. Recent developments in the study of rapid propagation of Dendrobium catenatum Lindl. with a discussion on its scientific and Chinese names. Plant Sci J, 2011, 29(6):763-772. (in Chinese)
刘仲健, 张玉婷, 王玉, 等. 铁皮石斛(Dendrobium catenatum)快速繁殖的研究进展——兼论其学名与中名的正误. 植物科学学报, 2011, 29(6):763-772.
[3] Bao YH, Bai Y, Chen JX. Histochemical localization of alkaloid in Dendrobium nobile. Guihaia, 2013, 33(2):199-202, 190. (in Chinese)
包英华, 白音, 陈珺霞. 金钗石斛生物碱的组织化学定位研究. 广西植物, 2013, 33(2):199-202, 190.
[4] Yao NC. Status quo of Dendrobium sp. resource in Yunnan and utilization skills. Forest Inventory Plann, 2004, 29(4):80-82, 87. (in Chinese)
姚能昌. 浅述云南石斛资源现状及开发利用技术. 林业调查规划, 2004, 129 (4):80-82, 87.
[5] Tao YH, Zeng F, Ho HH, et al. Pythium vexans causing stem rot of Dendrobium in Yunan Province, China. J Phytopathol, 2011, 159(4): 255-259.
[6] Li XD, Wang YQ, Wang H, et al. The isolation and identification of pathogen of Dendrobium nobile and Dendrobium candidum damping- off disease. Chin Pharm J, 2011, 46(4):249-252. (in Chinese)
李向东, 王云强, 王卉, 等. 金钗石斛和铁皮石斛软腐病原菌的分离和鉴定. 中国药学杂志, 2011, 46(4):249-252.
[7] Cheng XL, Cheng ZH, Zou Y, et al. Screen of evaluation methodology of Garlic resistance to tip blight. J Huazhong Agric Univ, 2010, 29(1): 26-30. (in Chinese)
程晓兰, 程智慧, 邹燕, 等. 大蒜叶枯病抗性鉴定方法的筛选. 华中农业大学学报, 2010, 29(1):26-30.
[8] Kang ZS. Ultrastructure of phytopathogenic fungi. Beijing: China Science and Technology Press, 1996. (in Chinese)
康振生. 植物病原真菌的超微结构. 北京: 中国科学技术出版社, 1996.
[9] Wei JC. Fungi identification manual. Shanghai: Shanghai Science and Technology Press, 1979. (in Chinese)
魏景超. 真菌鉴定手册. 上海: 上海科学与技术出版社, 1979.
[10] Campion C, Massiot P, Rouxel F. Aggressiveness and production of cell-wall degrading enzymes by Pythium violae, Pythium sulcatum and Pythium ultimum, responsible for cavity spot on carrots. Eur J Plant Pathol, 1997, 103(8):725-735.
[11] Kang ZT, Jiang LM, Luo YY, et al. The research advances of mechanism of pathogenicity of Alternaria phytopathogenic fungi. Chin Bull Life Sci, 2013, 25(9):908-914. (in Chinese)
康子腾, 姜黎明, 罗义勇, 等. 植物病原链格孢属真菌的致病机制研究进展. 生命科学, 2013, 25(9):908-914.
Morphological studies ofinfected by the pathogen of the damping-off disease
XING Yong-mei, LI Xiang-dong, GUO Shun-xing
To investigate the morphological characteristics ofdue to the damping-off disease caused by.
The pathogenic experiment onwas conducted usingspore suspension spraying method. Then the differences of the healthy and the diseasedleaf tissue infected byfor 48 hrs were observed using the free-hand sectioning by microscope. In addition, the different characteristics of the root, the stem and the leaf between the healthy and the diseasedinfected byfor 48 hrs were observed using scanning electronic microscope (SEM).
Due to the observation using free-hand sectioning, the healthy leaf kept intact. However, in the diseased group, a lot ofmycelia were found inside theleaf tissue. There were many oospores and sporangia residing in the mesophyll cells of. The integrity of the mesophyll cells was seriously destroyed. The observation of the scanning electronic microscope indicated that the mesophyll cells, the sheath tissue, the root tip cells and the root sheath were easily infected by the pathogenic fungus. The pathogenic fungal mycelia in the stem digested and degraded the cells, and entered the other tissues. In the root site, the fungal mycelia infected the host plant in the same way as it did in the stem site on the one hand and entered the host plant through the holes of the velamen as well.mycelia went into thethrough the stomas of the surface and the opposite side of the leaf tissue with great destroyed effects. At the same time, the specific structure appressorium formed.
infectsby mechanical penertrating and secreting degraded enzymes to destroy the host cell walls and its internal structure.
DENDROBIUM LOODIGESII; Plant components;; Damping-off disease
GUO Shun-xing, Email: sxguo1986@163.com
10.3969/cmba.j.issn.1673-713X.2014.03.008
药植所创新团队发展计划资助(IT1302);教育部博士点基金项目(20131106130002)
郭顺星,Email:sxguo1986@163.com
2014-02-27
Author Affiliations: The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China (XING Yong-mei, GUO Shun-xing); China National Corporation of Traditional and Herbal Medicine, Beijing, 100195, China (LI Xiang-dong)