唐吉林++刘魁德
摘 要:针对佛山某管线GPS网复测工作,对数据处理过程进行了较为详细的阐述,包括起算点兼容性的分析、GPS网平差计算、光电测距的改化计算、点位稳定性分析等;并且在数据处理的基础上进行了一些总结,提出了一些建议。
关键词:GPS控制网 数据分析
中图分类号:TB21 文献标识码:A 文章编号:1672-3791(2014)07(b)-0039-02
我院承担某输水管线第三方测量工作。我院对工程的平面和高程控制网进行了首次测量,2009年3月按照周期规定又进行了控制网的第一次复测工作。复测采用9台仪器同步观测4个小时,共1个时段,采用间隔为20s,基线解算及网平差采用BALNET软件。由于本次复测中CX06点的GPS接收数据异常,无法参与计算。为了增强结果的可靠性,又对所有通视的点进行全站仪测边测角的检核。
1 已知点兼容性分析
GPS约束平差是通过固定联测的城市已有已知点的坐标来实现的,那么这些已知点必须是兼容的,否则会损害GPS原有的精度。虽然这是复测工作,控制点应该在初测时已经经过分析,但是按照作业的规范以及作业的严密性这一项工作不能省略,特别是为了控制网的成果与过江管工程一致除了城市二等控制点G2101、JY2、GJ15作为起算点外,还增加了过江管工程原有点CX01为起算点,那么CX01的稳定性一定要进行分析。
已知点兼容性分析采用尺度参数分析法。尺度参数是反应已有控制点与GPS网的比例关系,在约束平差时当选取的几个已知控制点精度不高或相互不一致时,会使约束平差的精度大大降低,这就会必然反应在尺度参数上。分析时将已知点两两分组,分别进行约束平差计算尺度参数。如果尺度参数呈现一致性则说明已知点符合较好,反之则表明已知点间存在粗差。
根据尺度分析法,把四个已知点G2101、JY2、GJ15、CX01两两组成六组进行约束平差。平差时一定要固定一点的准确三维坐标,否则无法正确反映尺度参数,但是由于四个已知点只有一个具有准确高程,所以首先进行无约束平差求得大地高差,通过一点的准确高程进而求得其他点较准确的高程。平差求得的尺度参数K值见表1。
从表2中可以看出尺度参数最大为8.226个ppm,最小仅为-0.054ppm。根据经验,上海城市二等点与GPS的尺度差异一般在百万分之几(即1~10个ppm之间),所以判断四个控制点间符合度较好,所以和初测时相同采用固定G2101、JY2、GJ15、CX01四个点进行约束平差。
2 平差计算
GPS平面控制网采集的数据,采用Balnet基线解算软件和网平差软件进行数据处理,首先进行基线解算,然后选择合理基线进行网平差计算。网平差时,首先对整个GPS控制网在WGS84坐标系中进行无约束平差,然后固定起算点坐标进行约束平差,约束平差时采用54椭球,中央子午线选择上海独立网中央子午线,投影面高程为5m。平差后最弱闭合环相对误差为6.04ppm;最弱点点位中误差为0.41cm;最弱边相对中误差为4.30ppm。可见此次平差计算精度较好,完全符合技术设计的要求。
3 全站仪测角测边检核数据处理
众所周知,光电测距所采集的边长投影到高斯平面是有长度变形的。而长度变形受两方面的影响:一方面是从地面边长投影到椭球面的长度变形△S1,它与该边长S的椭球面Hm高程有关:即△S1/S=Hm/R,R为地球半径(一般取6370 km),一般来讲该项改正为负值。另一方面是从椭球面投影到高斯面的改正△S2,它与距中央子午线的距离ym有关(ym两端点相对于中央子午线投影而成的纵坐标轴的横坐标的平均值):△S2/S =ym2/(2R2),该项改正为正值。由于本工程所在的测区的横坐标较大,一般在20多公里,所以高斯投影的改正必须考虑。对复测采集的边长进行两差改正见表4。
经过两差改正后的距离与GPS平差后的平面距离的比较见表3,实测的角度与GPS平差后反算的角度见表4。从表3,表4中可见边长检核最大差异为12.72mm此边为最长边,最差相对精度为1/181472;角度最大差值为4.1″;完全符合技术设计要求,可见此次GPS成果与全站仪成果符合性较好,也证明了此次成果的可靠性。
4 点位稳定性分析
每次复测结束后,应根据复测结果进行平面控制点的稳定性分析,分析判别方法如下:
(1)根据GB50308-2008《城市轨道交通工程测量规范》中的规定,原测GPS网和复测网的网中的最弱点的点位中误差均应达到:。
(2)两次网的点位坐标变动允许值估算
(1)
、分别为原测网与复测网的最弱点点位中误差,均取其最大值,则可知:
mm (2)
(3)两次网中同一点位较差为:
(3)
、为原测网中某点的坐标。
、为复测网中某点的坐标。
因此,对于网中任一点,如果两次点位坐标的较差大于3.4cm,则可认为该点位有变动,应对坐标值进行修正。
从表5中可以看出,CX05点位的坐标变化值 cm,超出了3.4cm的限差,而其他点位较差都很小,加上前面的分析表明此次成果是可靠的,所以判断CX05号点发生了位移。
5 结语及建议
本文针对GPS网复测工作,对数据处理过程进行了较为详细的阐述,对结果进行了较为严密的分析,现对此次控制网复测数据处理得出的总结及建议阐述如下。
(1)GPS控制网平差前必须要进行已知点兼容性的分析以保证成果的准确性。
(2)由于本工程所在区域离中央子午线较远,光电测距后的边长一定要进行两差改正,否则将不满足检测精度要求。比如本工程中边CX04-CX05,如果不进行改正,其与GPS成果的边长差距将为24.52 mm,这将达不到设计中要求的1/10000的检测精度。
(3)实际工程中对实测边长进行两差改正较为麻烦,建议在今后类似工程建立坐标系时可以适当降低投影面高程,使高程投影误差与高斯投影误差尽量抵消一点,这样即不用改正实测边长也可以保证成果变化不大。
参考文献
[1] 傅晓明,沈云中.GPS起算点坐标的兼容性分析[J].测绘通报,2002,9:10-14.
[2] 施一民.现代大地控制测量[M].佛山:测绘出版社,2003.endprint
摘 要:针对佛山某管线GPS网复测工作,对数据处理过程进行了较为详细的阐述,包括起算点兼容性的分析、GPS网平差计算、光电测距的改化计算、点位稳定性分析等;并且在数据处理的基础上进行了一些总结,提出了一些建议。
关键词:GPS控制网 数据分析
中图分类号:TB21 文献标识码:A 文章编号:1672-3791(2014)07(b)-0039-02
我院承担某输水管线第三方测量工作。我院对工程的平面和高程控制网进行了首次测量,2009年3月按照周期规定又进行了控制网的第一次复测工作。复测采用9台仪器同步观测4个小时,共1个时段,采用间隔为20s,基线解算及网平差采用BALNET软件。由于本次复测中CX06点的GPS接收数据异常,无法参与计算。为了增强结果的可靠性,又对所有通视的点进行全站仪测边测角的检核。
1 已知点兼容性分析
GPS约束平差是通过固定联测的城市已有已知点的坐标来实现的,那么这些已知点必须是兼容的,否则会损害GPS原有的精度。虽然这是复测工作,控制点应该在初测时已经经过分析,但是按照作业的规范以及作业的严密性这一项工作不能省略,特别是为了控制网的成果与过江管工程一致除了城市二等控制点G2101、JY2、GJ15作为起算点外,还增加了过江管工程原有点CX01为起算点,那么CX01的稳定性一定要进行分析。
已知点兼容性分析采用尺度参数分析法。尺度参数是反应已有控制点与GPS网的比例关系,在约束平差时当选取的几个已知控制点精度不高或相互不一致时,会使约束平差的精度大大降低,这就会必然反应在尺度参数上。分析时将已知点两两分组,分别进行约束平差计算尺度参数。如果尺度参数呈现一致性则说明已知点符合较好,反之则表明已知点间存在粗差。
根据尺度分析法,把四个已知点G2101、JY2、GJ15、CX01两两组成六组进行约束平差。平差时一定要固定一点的准确三维坐标,否则无法正确反映尺度参数,但是由于四个已知点只有一个具有准确高程,所以首先进行无约束平差求得大地高差,通过一点的准确高程进而求得其他点较准确的高程。平差求得的尺度参数K值见表1。
从表2中可以看出尺度参数最大为8.226个ppm,最小仅为-0.054ppm。根据经验,上海城市二等点与GPS的尺度差异一般在百万分之几(即1~10个ppm之间),所以判断四个控制点间符合度较好,所以和初测时相同采用固定G2101、JY2、GJ15、CX01四个点进行约束平差。
2 平差计算
GPS平面控制网采集的数据,采用Balnet基线解算软件和网平差软件进行数据处理,首先进行基线解算,然后选择合理基线进行网平差计算。网平差时,首先对整个GPS控制网在WGS84坐标系中进行无约束平差,然后固定起算点坐标进行约束平差,约束平差时采用54椭球,中央子午线选择上海独立网中央子午线,投影面高程为5m。平差后最弱闭合环相对误差为6.04ppm;最弱点点位中误差为0.41cm;最弱边相对中误差为4.30ppm。可见此次平差计算精度较好,完全符合技术设计的要求。
3 全站仪测角测边检核数据处理
众所周知,光电测距所采集的边长投影到高斯平面是有长度变形的。而长度变形受两方面的影响:一方面是从地面边长投影到椭球面的长度变形△S1,它与该边长S的椭球面Hm高程有关:即△S1/S=Hm/R,R为地球半径(一般取6370 km),一般来讲该项改正为负值。另一方面是从椭球面投影到高斯面的改正△S2,它与距中央子午线的距离ym有关(ym两端点相对于中央子午线投影而成的纵坐标轴的横坐标的平均值):△S2/S =ym2/(2R2),该项改正为正值。由于本工程所在的测区的横坐标较大,一般在20多公里,所以高斯投影的改正必须考虑。对复测采集的边长进行两差改正见表4。
经过两差改正后的距离与GPS平差后的平面距离的比较见表3,实测的角度与GPS平差后反算的角度见表4。从表3,表4中可见边长检核最大差异为12.72mm此边为最长边,最差相对精度为1/181472;角度最大差值为4.1″;完全符合技术设计要求,可见此次GPS成果与全站仪成果符合性较好,也证明了此次成果的可靠性。
4 点位稳定性分析
每次复测结束后,应根据复测结果进行平面控制点的稳定性分析,分析判别方法如下:
(1)根据GB50308-2008《城市轨道交通工程测量规范》中的规定,原测GPS网和复测网的网中的最弱点的点位中误差均应达到:。
(2)两次网的点位坐标变动允许值估算
(1)
、分别为原测网与复测网的最弱点点位中误差,均取其最大值,则可知:
mm (2)
(3)两次网中同一点位较差为:
(3)
、为原测网中某点的坐标。
、为复测网中某点的坐标。
因此,对于网中任一点,如果两次点位坐标的较差大于3.4cm,则可认为该点位有变动,应对坐标值进行修正。
从表5中可以看出,CX05点位的坐标变化值 cm,超出了3.4cm的限差,而其他点位较差都很小,加上前面的分析表明此次成果是可靠的,所以判断CX05号点发生了位移。
5 结语及建议
本文针对GPS网复测工作,对数据处理过程进行了较为详细的阐述,对结果进行了较为严密的分析,现对此次控制网复测数据处理得出的总结及建议阐述如下。
(1)GPS控制网平差前必须要进行已知点兼容性的分析以保证成果的准确性。
(2)由于本工程所在区域离中央子午线较远,光电测距后的边长一定要进行两差改正,否则将不满足检测精度要求。比如本工程中边CX04-CX05,如果不进行改正,其与GPS成果的边长差距将为24.52 mm,这将达不到设计中要求的1/10000的检测精度。
(3)实际工程中对实测边长进行两差改正较为麻烦,建议在今后类似工程建立坐标系时可以适当降低投影面高程,使高程投影误差与高斯投影误差尽量抵消一点,这样即不用改正实测边长也可以保证成果变化不大。
参考文献
[1] 傅晓明,沈云中.GPS起算点坐标的兼容性分析[J].测绘通报,2002,9:10-14.
[2] 施一民.现代大地控制测量[M].佛山:测绘出版社,2003.endprint
摘 要:针对佛山某管线GPS网复测工作,对数据处理过程进行了较为详细的阐述,包括起算点兼容性的分析、GPS网平差计算、光电测距的改化计算、点位稳定性分析等;并且在数据处理的基础上进行了一些总结,提出了一些建议。
关键词:GPS控制网 数据分析
中图分类号:TB21 文献标识码:A 文章编号:1672-3791(2014)07(b)-0039-02
我院承担某输水管线第三方测量工作。我院对工程的平面和高程控制网进行了首次测量,2009年3月按照周期规定又进行了控制网的第一次复测工作。复测采用9台仪器同步观测4个小时,共1个时段,采用间隔为20s,基线解算及网平差采用BALNET软件。由于本次复测中CX06点的GPS接收数据异常,无法参与计算。为了增强结果的可靠性,又对所有通视的点进行全站仪测边测角的检核。
1 已知点兼容性分析
GPS约束平差是通过固定联测的城市已有已知点的坐标来实现的,那么这些已知点必须是兼容的,否则会损害GPS原有的精度。虽然这是复测工作,控制点应该在初测时已经经过分析,但是按照作业的规范以及作业的严密性这一项工作不能省略,特别是为了控制网的成果与过江管工程一致除了城市二等控制点G2101、JY2、GJ15作为起算点外,还增加了过江管工程原有点CX01为起算点,那么CX01的稳定性一定要进行分析。
已知点兼容性分析采用尺度参数分析法。尺度参数是反应已有控制点与GPS网的比例关系,在约束平差时当选取的几个已知控制点精度不高或相互不一致时,会使约束平差的精度大大降低,这就会必然反应在尺度参数上。分析时将已知点两两分组,分别进行约束平差计算尺度参数。如果尺度参数呈现一致性则说明已知点符合较好,反之则表明已知点间存在粗差。
根据尺度分析法,把四个已知点G2101、JY2、GJ15、CX01两两组成六组进行约束平差。平差时一定要固定一点的准确三维坐标,否则无法正确反映尺度参数,但是由于四个已知点只有一个具有准确高程,所以首先进行无约束平差求得大地高差,通过一点的准确高程进而求得其他点较准确的高程。平差求得的尺度参数K值见表1。
从表2中可以看出尺度参数最大为8.226个ppm,最小仅为-0.054ppm。根据经验,上海城市二等点与GPS的尺度差异一般在百万分之几(即1~10个ppm之间),所以判断四个控制点间符合度较好,所以和初测时相同采用固定G2101、JY2、GJ15、CX01四个点进行约束平差。
2 平差计算
GPS平面控制网采集的数据,采用Balnet基线解算软件和网平差软件进行数据处理,首先进行基线解算,然后选择合理基线进行网平差计算。网平差时,首先对整个GPS控制网在WGS84坐标系中进行无约束平差,然后固定起算点坐标进行约束平差,约束平差时采用54椭球,中央子午线选择上海独立网中央子午线,投影面高程为5m。平差后最弱闭合环相对误差为6.04ppm;最弱点点位中误差为0.41cm;最弱边相对中误差为4.30ppm。可见此次平差计算精度较好,完全符合技术设计的要求。
3 全站仪测角测边检核数据处理
众所周知,光电测距所采集的边长投影到高斯平面是有长度变形的。而长度变形受两方面的影响:一方面是从地面边长投影到椭球面的长度变形△S1,它与该边长S的椭球面Hm高程有关:即△S1/S=Hm/R,R为地球半径(一般取6370 km),一般来讲该项改正为负值。另一方面是从椭球面投影到高斯面的改正△S2,它与距中央子午线的距离ym有关(ym两端点相对于中央子午线投影而成的纵坐标轴的横坐标的平均值):△S2/S =ym2/(2R2),该项改正为正值。由于本工程所在的测区的横坐标较大,一般在20多公里,所以高斯投影的改正必须考虑。对复测采集的边长进行两差改正见表4。
经过两差改正后的距离与GPS平差后的平面距离的比较见表3,实测的角度与GPS平差后反算的角度见表4。从表3,表4中可见边长检核最大差异为12.72mm此边为最长边,最差相对精度为1/181472;角度最大差值为4.1″;完全符合技术设计要求,可见此次GPS成果与全站仪成果符合性较好,也证明了此次成果的可靠性。
4 点位稳定性分析
每次复测结束后,应根据复测结果进行平面控制点的稳定性分析,分析判别方法如下:
(1)根据GB50308-2008《城市轨道交通工程测量规范》中的规定,原测GPS网和复测网的网中的最弱点的点位中误差均应达到:。
(2)两次网的点位坐标变动允许值估算
(1)
、分别为原测网与复测网的最弱点点位中误差,均取其最大值,则可知:
mm (2)
(3)两次网中同一点位较差为:
(3)
、为原测网中某点的坐标。
、为复测网中某点的坐标。
因此,对于网中任一点,如果两次点位坐标的较差大于3.4cm,则可认为该点位有变动,应对坐标值进行修正。
从表5中可以看出,CX05点位的坐标变化值 cm,超出了3.4cm的限差,而其他点位较差都很小,加上前面的分析表明此次成果是可靠的,所以判断CX05号点发生了位移。
5 结语及建议
本文针对GPS网复测工作,对数据处理过程进行了较为详细的阐述,对结果进行了较为严密的分析,现对此次控制网复测数据处理得出的总结及建议阐述如下。
(1)GPS控制网平差前必须要进行已知点兼容性的分析以保证成果的准确性。
(2)由于本工程所在区域离中央子午线较远,光电测距后的边长一定要进行两差改正,否则将不满足检测精度要求。比如本工程中边CX04-CX05,如果不进行改正,其与GPS成果的边长差距将为24.52 mm,这将达不到设计中要求的1/10000的检测精度。
(3)实际工程中对实测边长进行两差改正较为麻烦,建议在今后类似工程建立坐标系时可以适当降低投影面高程,使高程投影误差与高斯投影误差尽量抵消一点,这样即不用改正实测边长也可以保证成果变化不大。
参考文献
[1] 傅晓明,沈云中.GPS起算点坐标的兼容性分析[J].测绘通报,2002,9:10-14.
[2] 施一民.现代大地控制测量[M].佛山:测绘出版社,2003.endprint