周永军
[摘要] 数学建模的学习有助于学生将数学知识与其他学科知识进行有效融合,不仅提高了学生学习知识的系统性、熟练性、运用性,还能提高学生的应试水平和发展多元化的能力.
[关键词] 初中数学;数学建模;函数;能力;培养
《初中数学新课程标准》指出:数学要致力于学生思维的培养、动手能力的提高,以及注重其数学实际运用能力,将形式化的数学通过学生主动的建构和自我认知,形成牢固的知识体系,并能在实际问题中熟练运用. 结合笔者教学的经验,笔者认为数学实际运用能力相对于传统数学知识而言,体现在数学应用型问题和数学建模之上.何为数学建模呢?用数学教育家佛莱登塔尔的话来说:就是把实际问题转换为一种抽象情境下的数学问题,通过解决数学问题进而解决实际问题的一种模式,其基本思路如图1所示.
传统的数学课程比较注重理论性的数学知识,并且过于注重知识的连接性和反复性、熟练性,久而久之形成了我国特有的中学数学教学特色:即扎实的双基、创新的不足以及动手能力的缺失. 近年来,新课程持续的开展正是为了解决上述问题,在教材中较多的出现了以应用型问题为背景的数学试题,这正是数学建模在初中数学中较为合理的表现形式. 下面,笔者结合苏教版实际教学案例,浅谈初中生数学建模能力的培养.
■ 从几何图形中培养建模思想
例1如图2所示,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径. (2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长. (3)求点B1到最短路径的距离.
分析?摇 本题为中考原型问题,其将“教材最基本的对称模型思想”放到一个具体的几何图形模型中,解决此问题的关键是指导学生将实际问题(空间几何)转化为平面问题,利用对称最短路径思想基本原型求解.在这里,我们将实际问题蚂蚁爬行的最短路径转化为数学模型:两定点之间的最短距离问题.
解析?摇 (1)如图3所示,木柜的可见表面展开图是两个矩形,即ABC1′D1和ACC1A1. 蚂蚁能够最快到达目的地的可能路径有如图3所示的AC1′和AC1.
(2)蚂蚁沿着木柜表面经线段A1B1到C1,爬过的路径的长l1=■=■,蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长是l2=■=■,l1>l2,最短路径的长是l2=■.
(3)作B1E⊥AC1于点E,则B1E=■·AA1=■·5=■■为所求.
说明?摇 本题以实际应用型问题为背景,将距离和最值隐藏于问题的情境之中,其建模的角度在于,要求学生以教材中最基本的模型知识为保障,在分析最值可能产生的前提下,将蚂蚁爬行的几何图形问题转化为数学建模之后的距离最小问题,即两边之和的最小值问题.
下面来看看教材中本实际问题的数学原型:(1)点M,N在直线AB的异侧,在AB上找一点P,使点P到点M,N的距离和最小.
解决方法:如图4所示,利用三角形两边之和大于第三边可知,三点共线时距离和最小.
(2)已知点M,N在直线AB的同侧,在AB上找一点P,使点P到点M,N的距离和最小.
解决方法:将同侧点问题转化为异侧点问题,作点M关于直线AB的对称点,问题转化为教材基本模型(如图5所示).
因此,培养学生将实际问题转化为抽象数学问题是值得教师不断研究的.
■ 从动态问题中培养建模思想
例2如图6所示,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,一只毛毛虫(P)从点D出发,沿射线DA的方向以每秒2个单位长度的速度运动,一只蜗牛(Q)从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动,毛毛虫(P)、蜗牛(Q)分别从D,C同时出发,当蜗牛运动到点B时,毛毛虫随之停止运动,设运动时间为t秒.
(1)设△BPQ的面积为S,求S与t之间的函数关系式.
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
分析?摇 本题为背景经过包装的实际应用型问题,其实质是点运动问题,在教学过程中教师要引导学生将数学本质挖掘出来,使其跃然纸上. 在解决问题的过程中,分类讨论数学思想也是必不可少的.
解析?摇 (1)由图可知,S=■×12×(16-t)=96-6t.
(2)由图可知,CM=PD=2t,CQ=t,若以B,P,Q三点为顶点的三角形是等腰三角形,分三种情况:
①若PQ=BQ,在Rt△PMQ中,PQ 2=t 2+12 2,由PQ 2=BQ 2,得t 2+12 2=(16-t) 2,解得t=■.
②若BP=BQ,在Rt△PMB中,BP 2=(16-2t) 2+12 2,由BP 2=BQ 2,得(16-2t) 2+12 2=(16-t) 2,无解,所以BP≠BQ.
③ 若PB=PQ,由PB 2=PQ 2得(16-2t) 2+12 2=t 2+12 2,解得t■=■,t■=16(不合题意,舍去).
综合上面讨论可知,当t=■秒或t=■秒时,以B,P,Q三点为顶点的三角形是等腰三角形.
说明?摇 实际应用型问题在去情境时,要引导学生掌握抽象的数学化本质. 正确处理中考中常见动态应用型问题,有助于提高其“去情境、知本质”的数学建模思想.在转化为数学问题之后,问题所需要的基础知识是一种动态函数的思想,正确的分类和运算是解决问题的保障.笔者曾经用中考问题做过测试,能全部将三种分类计算正确的学生少之又少,他们出现的错误主要集中在基本运算、勾股定理使用、因式分解运算等匪夷所思的错误,因此平时提高教学也不能忽视在运算环节给予学生更多方面的指导.
■ 从函数问题中培养建模思想
例3一次足球赛中,某人对着球门练习射门,如图7所示,足球运行的轨迹是抛物线,其飞行高度记为y(m),且y是关于时间x(s)的函数,已知足球飞行1 s时,此时足球高度为2.44 m,足球从飞出到落地共用3 s.
(1)请写出高度y关于时间x的函数关系式.
(2)在飞行中足球高度能否达到4.88 m?请解释依据.
(3)若最后足球沿着球门左上角飞入球门,球门的高为2.44 m. 请问:离球门左边框12 m处的守门员至少要以多大的平均速度到球门的左边框才能将足球击出?
分析?摇 围绕抛物线为数学本质建构的数学建模问题,是典型的中考应用型函数建模问题.关于此类函数建模的数学应用型问题,笔者建议:(1)了解与本类数学问题相关的函数模型;(2)建立合乎依据的数学函数类型;(3)将足球飞行轨迹的问题抽象为数学建模中的抛物线问题,极大地增强学生将实际问题数学化的能力.
解析?摇 (1)由题意,将问题转化为坐标系中的抛物线问题,如图8所示,令y=ax2+bx,依题可知:当x=1时,y=2.44;当x=3时,y=0.所以a+b=2.44,9a+3b=0, 解得a=-1.22,b=3.66,所以y=-1.22x2+3.66x.
(2)不能. 理由:由4.88=-1.22x2+3.66x化简得x2-3x+4=0,因为(-3)2-4×4<0,所以方程4.88=-1.22x2+3.66x无解. 所以足球的飞行高度不能达到4.88 m.
(3)由2.44=-1.22x 2+3.66x化简得x 2-3x+2=0,解得x■=1(舍去),x■=2. 所以平均速度至少为■=6(m/s).
说明?摇 本题的实际背景是考查二次函数为背景的函数型数学建模问题,教师对应用型问题的教学指导要注重将学生从纯粹理论的解题中解放出来,善于从实际问题中抽象函数的本质,进一步提高其解决数学建模能力. 对函数型建模问题要多研究、多训练,提高学生从实际应用型问题中提炼不同函数的能力.
总之,新课程下的初中数学不再像传统教学一样只注重纯粹理论性的数学解题,更注重生活中数学的应用和培养学生解决实际问题的能力. 通过上述小结的三类问题,引发笔者产生了一些思考:
(1)数学建模在初中数学中的应用大都还是限于一些函数应用型问题的具体体现,在教学中教师要以这些应用型问题为背景,以学过的数学理论知识来解决实际问题,这对学生在脑海中产生数学建模的概念大有帮助.
(2)现今的数学教育不仅仅要注重分数,更要为学生的可持续发展奠定基调.随着各大学自主招生的进一步展开,对学生能力的要求也随之增高.建模能力的培养应从初中数学应用型问题起步,训练学生的转化、化归、抽象概括能力,这些能力将伴随学生进一步的学习、生活,这正是素质教育需要体现的.
鉴于中考应试的实际,在数学教学中以建模问题引领应用型问题的教学,既保障了学生的应试能力,也提高了学生将实际问题处理、抽象为数学问题的建模能力,值得我们在教学中继续研究.