张常光+赵均海+杜文超
文章编号:16732049(2014)02000614
收稿日期:20131127
基金项目:国家自然科学基金项目(41202191);中国博士后科学基金项目(2012M520079,2013T60868);教育部高等学校博士学科点专项科研基金项目(20120205120001);陕西省自然科学基础研究计划项目(2014JQ7290);中央高校基本科研业务费专项资金项目(2013G2283007,2014G1281072)
摘要:综述岩石中间主应力效应试验和强度理论的研究进展,总结了岩石中间主应力效应的基本规律和现有岩石强度理论的特点与不足,最后介绍了统一强度理论及其对岩石真三轴试验的预测与在岩土工程中的应用。研究结果表明:中间主应力效应及其区间性是岩石强度的重要特性,且已是目前岩石强度准则建立所必须考虑的基本问题之一;应用统一强度理论并考虑更多复杂因素的综合影响,可得到更符合实际情况的较理想解答。
关键词:岩石;真三轴试验;中间主应力;强度理论
中图分类号:TU452 文献标志码:A
Advances in Rock for Intermediate Principal Stress Effect and Strength Theory
ZHANG Changguang, ZHAO Junhai, DU Wenchao
(School of Civil Engineering, Changan University, Xian 710061, Shaanxi, China)
Abstract: Authors firstly summarized the advances in rock of the intermediate principal stress effect test and strength theory, then found out some basic laws of the intermediate principal stress effect for rock, and characteristics and shortcomings of the existing rock strength theories. Finally, authors introduced the unified strength theory, and its prediction for rock true triaxial tests and applications in geotechnical engineering. The study results show that the intermediate principal stress effect and its range is an important characteristic for rock strength and has been considered as one basic problem for proposing a new failure criterion; a better solution more consistent with actual situations can be obtained by using unified strength theory with taking combined effects of more complex factors into account.
Key words: rock; true triaxial test; intermediate principal stress; strength theory
0引 言
岩石强度理论是研究岩体强度理论的基础,是岩石本构关系的重要组成部分。研究岩石强度理论的目的,就在于根据一定应力状态下岩石强度试验的结果,建立其强度准则,从而得到一般应力状态下的岩石破坏判据。岩石真三轴试验是一种最全面的强度试验,它不仅是建立岩石强度准则的重要资料,更是检验岩石强度准则的有效依据。岩石真三轴试验要求对试件施加3对相互独立均匀的主应力,对试验机的加载能力与控制、变形量测、端部摩擦约束效应等要求都非常高。真三轴试验研究的一个重要内容,就是中间主应力效应研究。岩石的中间主应力效应研究,不仅具有理论上的意义,而且还具有巨大的工程实际意义和社会经济效益。一方面,如果岩石强度与中间主应力σ2无关,只需要考虑大主应力σ1和小主应力σ3,则岩石强度理论可以得到很大简化;在复杂应力试验设备研制中,也只需要有能施加2个方向应力的试验机;在工程实践中只需要分析大主应力σ1和小主应力σ3,就可以很方便地应用现有强度理论来解决实际问题。另一方面,岩石中间主应力效应研究十分困难,除了真三轴试验设备复杂、试验技术要求高、经费投入大外,还有静水应力效应掩盖了中间主应力效应[1],要把它独立出来,需要明确力学和物理概念;MohrCoulomb强度准则和HoekBrown经验强度准则可以适用于拉压特性不同的岩石材料,又可以解释静水应力效应,已被广泛地了解和接受,而这2个理论都没有考虑中间主应力σ2;在理论上要提出一个有一定的物理概念、数学表达式简单又能反映中间主应力效应的新强度理论并非易事,因此,岩石中间主应力效应问题已成为各国学者热心研究而经久不衰的一个问题[2]。本文中笔者在综述岩石中间主应力效应试验和强度理论研究进展的基础上,总结了岩石中间主应力效应的基本规律和现有岩石强度理论的特点与不足,最后介绍了统一强度理论及其对岩石真三轴试验的预测与在岩土工程中的应用。
[HS2][HT4H][STHZ][WTHZ]1岩石中间主应力效应试验进展
从20世纪初Karman和Boker开始研究岩石中间主应力效应,到现在已有约100年的历史,他们发现岩石三轴拉伸时的强度高于三轴压缩时的强度,这是MohrCoulomb强度准则和HoekBrown经验强度准则所不能解释的。岩石中间主应力效应试验在20世纪60年代取得了重要进展,20世纪70年代有了比较明确的结论,代表性的研究者有Hobbs[3],Murrell[4],Handin等[5],Hoskins[6]。在20世纪七八十年代,Mogi为岩石中间主应力效应的阐明做出了杰出的贡献[711],他改造原有轴对称三轴试验机,成功研制了世界上第1台岩石真三轴试验机,得到一系列不同小主应力σ3时的中间主应力效应曲线,利用试验充分证明了岩石中间主应力效应的存在。Mechelis[1213]对大理岩进行了真三轴试验,并指出中间主应力效应是岩石材料的重要特性。Takahashi等[14]对沉积岩进行了真三轴强度和变形试验。Haimson等[1522]改进了Mogi的真三轴试验机,提高了试验机的加载能力,简化了操作程序,对多种脆性硬岩进行了真三轴试验,探讨中间主应力对强度、变形和剪胀的影响规律,同时利用电子扫描显微镜观测裂纹发展和应变局部化情况,并将岩石真三轴试验结果应用于确定地应力分布等。中国台湾车笼埔断层粉砂岩的真三轴试验结果[21]如图1所示。
图1粉砂岩的真三轴试验结果
Fig.1True Triaxial Test Results of Siltstone
从20世纪80年代以来,中国真三轴试验机的研制取得了很大进展,张金铸等[23]、许东俊等[2425]对多种不同岩石进行真三轴试验,发现了中间主应力效应的区间性,尹光志等[26]对嘉陵江石灰岩的真三轴试验也得出同样的结论。许东俊等[27]和耿乃光等[2829]指出,中间主应力σ2的改变(在σ1和σ3都不变的情况下,增加或减小σ2),可以引起岩石的破坏,甚至可能引发地震。李小春等[30]对拉西瓦水电站的花岗岩进行了较完整的真三轴试验,并验证了双剪应力强度理论的正确性。陶振宇等[31]和高延法等[32]对红砂岩进行了中间主应力效应试验,并收集了各国多种岩石真三轴试验资料,分析后指出中间主应力影响系数(在σ3一定时,从σ2=σ3开始变化σ2的过程中,所得最大极限荷载σ1max相对于对称三轴压缩时强度的提高系数)最低为18%,最高为75%,一般在25%~40%范围内。明治清等[33]研制了拉压真三轴仪,[HJ2mm]进行了岩石相似材料的真三轴试验,并验证了广义双剪应力准则的正确性。陈景涛等[34]和向天兵等[3536]对多种硬岩进行了卸载与支护不同应力路径下的真三轴与声发射试验。杨继华等[37]和刘汉东等[38]采用LYC拉压真三轴仪对完整岩体和节理岩体模型进行了试验。
以上岩石真三轴试验结果和得出的曲线都是十分有价值的,但是有些试验的数量不够或只集中于某一些特殊的应力状态,比较系统的岩石极限面试验包括中间主应力效应试验、不同应力角的子午极限线试验和π平面极限线试验,可为工程中验证和选用强度理论提供更加全面的依据。
另外,Mogi[11],Tiwari等[3940]对各向异性岩石进行了真三轴试验,指出中间主应力效应与弱面倾向、岩石种类等密切相关。张强勇等[41]、朱维申等[4243]、陈安敏等[44]、孙晓明等[45]以及姜耀东等[46]对真三向应力作用下的隧道变形与破坏开展了大型地质力学模型试验研究,更加全面地认识真实地应力下岩石的强度特性、破裂过程及机制和隧道的锚固效应。
总之,岩石的中间主应力效应已经被大量的试验所证实,并认为是岩石的一个重要特性。岩石中间主应力效应的基本规律为[1,25]:
(1)中间主应力σ2对岩石强度有明显的影响。在小主应力σ3一定的应力状态下,增加σ2的各种应力状态(σ1≥σ2>σ3)下的岩石强度均大于轴对称压缩状态(σ1>σ2=σ3)下的岩石强度,因此常规三轴压缩状态下所得出的岩石强度均偏低,考虑中间主应力σ2效应,岩石强度可以提高20%~30%。
(2)中间主应力σ2效应存在区间性。中间主应力σ2从σ2=σ3的下限值增加到σ2=σ1的上限值过程中,岩石的强度先逐渐增加,达到一定峰值后随着σ2的继续增加而逐渐降低。三轴拉伸(σ2=σ1>σ3)时岩石的强度略高于三轴压缩(σ2=σ3<σ1)时的岩石强度。
(3)在一定应力状态下,单独改变(增加或减小)中间主应力σ2可以引起岩石的破坏。岩石越致密坚硬,中间主应力σ2效应越大,但是仍小于小主应力σ3的围压效应。
在工程应用中,考虑岩石的中间主应力效应,可以充分发挥岩石材料的强度潜能,减弱支护强度或降低衬砌厚度,减小工程投资,这是对岩石中间主应力效应及其应用的一个重要推动。但是如何在理论上使用比较简单的数学表达式描述岩石强度,对其中间主应力效应的各个规律进行解释,并且能灵活地适用于各种岩石不同程度的中间主应力效应,这是20世纪90年代以来的又一难题[1]。
[HS2][HT4H][STHZ][WTHZ]2岩石强度理论研究进展
建立一个科学合理的岩石强度理论,对于工程设计、灾害预防、资源开发等领域都具有重要意义。俞茂宏[47]将众多强度理论划分为单剪强度理论、双剪强度理论和八面体剪应力强度理论三大系列。沈珠江[48]则将强度理论分为理论公式、经验公式和内插公式三大类。
在岩石强度理论的发展历程中,最初引用金属强度(屈服)理论和土体强度理论,后来随着岩石试验技术的发展,逐渐发现岩石材料的基本力学特性[49]:单轴拉压强度不等,拉伸子午线与压缩子午线不重合(应力Lode角效应),静水应力效应,中间主应力效应及其区间性,不同的岩石材料具有不同程度的中间主应力效应以及屈服面的外凸性等。结合已有岩石试验结果,修正金属和土体的强度理论,至今已提出几十个岩石的屈服或破坏准则。
目前岩土工程中最常用的当数MohrCoulomb强度准则和外接圆DruckerPrager准则,前者忽略中间主应力影响而计算偏保守,后者夸大中间主应力影响而计算偏危险,实际上二者对中间主应力的处理为2个极端情况。
MohrCoulomb强度准则的表达式为
σ1-σ3=σ1+σ32sin(φ)+ccos(φ)(1)
式中:c,φ分别为材料的粘聚力和内摩擦角。
MohrCoulomb强度准则属于单剪强度理论,只考虑了最大剪应力τ13=(σ1-σ3)/2及其面上的正应力σ13=(σ1+σ3)/2对材料屈服或破坏的影响,只适用于σ2=σ3<σ1的轴对称特殊应力状态,没有考虑材料的中间主应力σ2效应,与很多材料的真三轴试验结果相差较大。
外接圆DruckerPrager准则的表达式为
J2=βI1+k(2)
式中:β,k均为材料强度参数;I1为应力张量第一不变量,也称为静水应力,I1=σ1+σ2+σ3;J2为应力偏量第二不变量,J2=[(σ1-σ2)2+(σ2-σ3)2+(σ3-σ1)2]/6。
外接圆DruckerPrager准则属于八面体剪应力强度理论,也称为广义Mises准则,考虑了中间主应力效应和静水应力效应,并且具有光滑圆锥极限面,在大型计算分析软件中得到了广泛应用和推广。但是外接圆DruckerPrager准则认为中间主应力σ2对材料强度的影响和小主应力σ3一样,高估了σ2对材料强度的提高作用,同时没有反映岩土材料拉压异性、应力Lode角效应等基本力学特性,难以和岩土材料的真三轴试验相吻合。
在众多岩石经验强度准则中,HoekBrown经验强度准则被工程所接受,广泛应用于岩石边坡和地下隧道工程,其主要原因在于它与许多岩石轴对称三轴试验结果相吻合,同时参数取值能反映岩体的结构特征。HoekBrown经验强度准则是Hoek等[50]通过试错法拟合大量轴对称三轴试验结果提出的,最初应用于完整岩石,后来曾进行多次调整[51],最新版(2002版)的广义HoekBrown经验强度准则[52]的表达式为
[JB(]σ1=σ3+σc(mbσ3 σc+s)a
mb=miexp(IGS-100 28-14D)
s=exp(IGS-100 8-3D)
a=0.5+1 6[exp(-IGS 15)-exp(-20 3)]
(3)
式中:σc为完整岩石的单轴抗压强度;mb,s,a均为岩体的材料参数;mi为完整岩石的mb值,可根据岩体的岩性、结构和构造确定;D为岩体扰动参数,与岩体的开挖方式及扰动程度有关,取值范围为0~1,0表示未扰动状态;IGS为地质强度指标,与岩体的岩性、结构和不连续面等有关,可通过对表面开挖或暴露的岩体进行肉眼观察或经验判断来评定。
HoekBrown经验强度准则和MohrCoulomb强度准则以及很多其他经验强度准则一样,均忽略了中间主应力效应及其区间性,只适用于三轴等围压试验的应力状态,并不能代表岩石在一般三向应力状态下的强度特性。不少学者对HoekBrown经验强度准则进行了修正,以考虑中间主应力σ2的影响,朱合华等[53]对其进行了很好的总结。
Pan等[54]提出的经验强度准则通式为
9 2σcτ2oct+3 22mbτoct-mbI1=sσc
(4)
昝月稳等[55]和Yu等[56]提出的经验强度准则通式为
[JB(]F=σ1-1 1+b(bσ2+σ3)-σc[mb (1+b)σc·(bσ2+σ3)+s]a=0 F≥F′
F′=1 1+b(σ1+bσ2)-σ3-σc(mbσ3 σc+s)a=0F′>F
(5)
Zhang等[57]提出的经验强度准则通式为
9 2σcτ2oct+3 22mbτoct-mbσ13=sσc
(6)
Zhang[58]提出的经验强度准则通式为
1 σ1/a-1c(3 2τoct)1/a+mb 23 2τoct-mbσ13=sσc
(7)
式中:F,F′均为主应力强度理论函数;τoct为八面体剪应力,τoct=[(σ1-σ2)2+(σ2-σ3)2+(σ3-σ1)2]0.5/6,;b为强度理论选择参数,其取值的范围为0~1。
Mogi[7]根据所做的岩石真三轴试验结果,提出的经验强度准则通式为
σ1-σ3=f(σ1+μσ2+σ3) μ∈ [0.1,0.2]
(8)
Mogi[8]修改的广义Mises准则通式为
τoct=f(σ1+σ3)或τoct=f(σ1+μσ2+σ3)
(9)
式中:f为单调递增函数,可以采用一次直线、二次多项式或幂函数来表示;μ为强度拟合参数。
Mogi通过岩石真三轴试验,发现中间主应力σ2对岩石强度的影响要比小主应力σ3的影响小,因此式(8),(9)中用μσ2来反映中间主应力σ2的作用。
Haimson等[15]假定岩石破坏面平行于σ2方向,破坏面上的有效正应力与中间主应力σ2无关,建议的经验强度准则通式为
τoct=f(σ1+σ3 2)=f(σ13)
(10)
AlAjmi等[5960]建立了岩石抗剪强度参数与直线型Mogi经验强度准则中拟合参数之间的关系,修改后的直线型Mogi经验强度准则称为MogiCoulomb强度准则,其表达式为
τoct=22 3sin(φ)σ13+223ccos(φ)
(11)
另外,Wiebols等[61]推导出一个基于岩石内应变能的强度准则,但是应用时需要知道难以量测的破裂面摩擦因数。Costamagna等[62]提出一个复杂的四参数岩土强度准则,可以退化为多种非线性强度准则。Mortara[63]基于MatsuokaNakai准则[空间滑动面准则,即Spatially Mobilized Plane (SMP)准则]和LadeDuncan准则的相似形式,通过类比提出了一个新的非线性强度准则。姚仰平等[64]利用插值方法建立了介于SMP准则[HJ1.95mm]和Mises准则之间的广义非线性强度理论。胡小荣等[65]通过考虑十二面体单元主剪面上的3个主剪面应力对的共同作用,提出了一个适用于岩土材料的三剪新强度准则。周凤玺等[66]同样利用插值方法,提出了广义DruckerPrager准则。尤明庆[6769]提出了四参数的岩石指数型强度准则。肖杨等[70]利用插值方法,提出了介于MatsuokaNakai准则和LadeDuncan准则之间的破坏准则。Liu等[71]采用插值方法建立了介于MatsuokaNakai准则和DruckerPrager准则之间的非线性统一DPMNU准则。
从上述各准则的表达式和建立方法可以看出:①中间主应力效应已是目前岩石强度准则建立所必须考虑的基本问题之一,除MohrCoulomb强度准则和HoekBrown经验强度准则外,其他准则都包含了中间主应力σ2,能在一定程度上反映中间主应力的影响;②各准则多是对真三轴试验数据的直接拟合,或通过插值、类比方法来建立新的强度准则,公式的参数众多且缺乏明确的物理意义;③新提出的各准则之间没有内在的联系,有的准则极限面覆盖范围有限,公式非线性程度高,难以应用于结构的解析计算,且式(6)~(11)不满足屈服面的外凸性,给数值计算带来很大困难;④Mogi系列经验强度准则以τoct和σ13表示的拟合公式,即式(9)~(11)的计算值非常接近试验数据,但是并不能证明Mogi经验准则的正确性[72],因为在岩石真三轴试验数据中τoct和σ13具有极高的正相关性。
3统一强度理论
20世纪60年代以来,俞茂宏基于双剪单元体力学模型[12,7376],建立了具有简单而统一的数学表达式、能适用于众多材料的统一强度理论,且其参数可以由简单试验获得。
以压应力为正、拉应力为负时的统一强度理论表达式为
F=ασ1-1 1+b(bσ2+σ3)=σt
σ2≤σ3+ασ1 1+α
(12)
F′=α 1+b(σ1+bσ2)-σ3=σt
σ2≥σ3+ασ1 1+α
(13)
式中:σt为岩石单轴拉伸强度;α为岩石的单轴拉压强度比;α,b取不同的值时,可以表示或线性逼近现有的各种强度准则。
图2为单轴拉压特性不同材料(α≠1)的统一强
图2 α≠1时统一强度理论在π平面上的极限线
Fig.2 Limit Loci of Unified Strength Theory on π Plane when α≠1
度理论在π平面上的极限线[1],其中,σ′1,σ′2,σ′3分别为大主应力、中间主应力和小主应力在π平面上的投影,θσ为应力Lode角,θb为临界应力Lode角。图3为α≠1,b=3/4时统一强度理论在主应力空间的三维极限面[2],其中,σ1=σ2=σ3表示静水应力轴。
图3 α≠1,b=3/4时统一强度理论的空间极限面
Fig.3 Limit Loci of Unified Strength Theory in Principal Stress Space when α≠1,b=3/4
统一强度理论包含了现有各种主要强度理论和一些尚未发表过的新强度理论,将众多已有强度理论作为其特例或是线性逼近,已形成一个全新的强度理论体系。统一强度理论很好地考虑了中间主应力对岩土材料强度的影响,与多种岩土材料的真三轴试验结果相吻合,可以很方便地用于结构解析计算,并且在数值模拟中很好地解决了角点奇异性。总之,统一强度理论同时具有周培源关于评价新理论的3个特点[77],并且还有其他一些特点,具有重要的理论意义和工程应用价值。
3.1岩石真三轴试验验证
应用强度理论或破坏准则的最终合理性以及其有效范围依赖于所形成的模型预测试验数据的能力,[HJ1.8mm]现有复杂应力状态下不同特性岩土类材料的试验结果在π平面上的极限线多为凸形,并且位于0<b≤1范围内,此处仅给出3种有代表性岩石真三轴试验结果的验证和比较。
图4为Mogi[9]真三轴试验得出粗面岩的π平面极限线。由图4可以看出,对于不同参数b的统一强度理论极限线:b=1时的极限线稍大,b=0时的极限线稍小,b=1/2时的极限线与试验结果吻合很好,图4中的DruckerPrager准则内切锥与试验结果相差较大。
图4粗面岩的π平面极限线
Fig.4Limit Loci on π Plane for Volcanic Rock
图5为Mechelis[13]真三轴试验得出的3组静水应力p作用下大理岩的π平面极限线。图6为李小春等[30]得出的在静水应力80~200 MPa范围内,6组花岗岩的真三轴试验结果。这9组试验结果均与b=1的统一强度理论相吻合。
图5 大理岩的π平面极限线
Fig.5Limit Loci on π Plane for Mable
图6花岗岩的π平面极限线
Fig.6Limit Loci on π Plane for Granite
3.2统一强度理论在岩土工程中的应用
统一强度理论作为工程应用的基础理论,[HJ1.95mm]其生命力不仅在于能被试验结果所证实,还在于它具有应用的可行性和广泛性。统一强度理论已在土木工程的很多领域得到初步应用,但是与单剪强度理论相比,统一强度理论的推广应用还只是一个开始,缺乏系统化研究,并且在很多方面应该说还远远不够或是空白,推广应用时将会碰到一系列新的问题。下述将简单介绍统一强度理论在土力学和地基工程、地下以及矿山等岩土工程中的一些代表性推广与应用。
1994年俞茂宏在《岩土工程学报》发表了关于岩土类材料的统一强度理论的论文[78],标志着统一强度理论在岩土材料中应用的开始,后于1997年在《土木工程学报》又发表了关于统一滑移线场理论的论文[79],进一步拓展了统一强度理论在岩土结构极限荷载求解方面的应用范围。
赵均海等[8081]、张永强等[82]、程彩霞等[83]用统一强度理论和统一滑移线场理论分析了某些塑性平面应变问题,包括边坡稳定极限荷载、厚壁圆筒和球壳的弹性极限荷载及塑性极限荷载。此外,周小平等[84]、范文等[85]、高江平等[86]以及王祥秋等[87]用统一强度理论分析了饱和土条形地基的极限承载力,得出了考虑中间主应力影响的饱和土地基极限承载力新公式。谢群丹等[88]及陈秋南等[89]用统一强度理论推导了饱和土的侧向土压力计算公式,范文等[90]推导了饱和土地基临界荷载统一解,杨小礼等[91]探讨了条形基础下纤维加筋土的地基承载力统一解。
柱孔扩张是地下和矿山等工程中的典型问题。蒋明镜等[92]、曹黎娟等[93]、王亮[94]、汪鹏程等[9596]、罗战友等[97]对理想弹塑性和应变软化模型的柱孔扩张问题,采用统一强度理论进行了较系统的研究。此后,王延斌等[98]应用空间轴对称统一特征线场理论又进行了新的研究。
胡小荣等[99]应用统一强度理论分析了理想弹塑性围岩巷道问题,并假定塑性区体积应变为0,不考虑剪胀和塑性区弹性应变的影响,与巷道真实变形情况相差较大。徐栓强等[100101]、宋俐等[102]和范文等[103]得出了压力隧洞弹塑性分析的统一解,蔡晓鸿等[104]和马青等[105]基于统一强度理论分析了围岩的抗力系数。张常光等[106108]结合水工压力隧洞的特点,考虑多种因素的综合影响,采用统一强度理论分析了施工期和运行期水工隧洞的应力场和位移场。曾开华等[109110]和张常光等[111115]提出了基于统一强度理论的理想弹塑性模型和弹脆塑性模型的隧道收敛约束分析新方法。张常光等[116120]和赵均海等[121]将统一强度理论和双应力状态变量相结合,建立了非饱和土抗剪强度统一解,并将其用于非饱和土的侧向土压力、地基极限承载力和临界荷载,得到一系列新的成果和有意义的结论。
总之,将统一强度理论应用于岩土类材料,可以考虑岩土类材料的基本力学特性,并且与现有的岩土类材料真三轴试验数据相吻合,还可以充分发挥材料和结构的强度潜能,能取得明显的经济效益,其计算结果具有重要的工程应用价值,为工程技术人员在各种工程应用的发挥和创造性创造了条件。统一强度理论是更加合理和更符合试验结果的系列强度准则,可以很方便地应用于结构弹塑性解析解和其他问题,但是在应用统一强度理论时,应更加注重对所研究问题的深入分析,考虑更多复杂因素的综合影响,得到更符合实际情况的较理想解答,为工程设计和生产实践提供更好的理论指导。
4结语
(1)中间主应力效应及其区间性是岩石材料强度的重要特性,单独改变(增加或减小)中间主应力可以引起岩石的破坏。考虑岩石的中间主应力效应,可以充分发挥岩石材料的强度潜能,减小工程投资。
(2)中间主应力效应已是目前岩石强度准则建立所必须考虑的基本问题之一,但是现有各准则多是对真三轴试验数据的直接拟合,或通过插值、类比方法来建立的,各准则之间没有内在的联系,公式的参数众多且缺乏明确的物理意义。
(3)统一强度理论很好地考虑了中间主应力对岩土材料强度的影响,将其应用于岩土类材料可以考虑岩土类材料的基本力学特性,并且与现有的岩土类材料真三轴试验数据相吻合,取得了明显的经济效益,但是应更加注重对所研究问题的深入分析,考虑更多复杂因素的综合影响,得到更符合实际情况的较理想解答。
参考文献:
References:
[1] 俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
YU Maohong.Twinshear Theory and Its Application[M].Beijing:Science Press,1998.
[2]俞茂宏,ODA Y,盛 谦,等.统一强度理论的发展及其在土木水利等工程中的应用和经济意义[J].建筑科学与工程学报,2005,22(1):2441.
YU Maohong,ODA Y,SHENG Qian,et al.Development of Unified Strength Theory and Its Applications in Civil Engineering and Its Economic Significance[J].Journal of Architecture and Civil Engineering,2005,22(1):2441.
[3]HOBBS D W.The Strength of Coal Under Biaxial Compression[J].Colliery Engineering,1962,39:285290.
[4]MURRELL S A F.The Effect of Triaxial Stress Systems on the Strength of Rocks at Atmospheric Temperatures[J].Geophysical Journal of the Royal Astronomical Society,1965,10(3):231281.
[5]HANDIN J,HEARD H C,MAGOUIRK J N.Effect of the Intermediate Principal Stress on the Failure of Limestone,Dolomite,and Glass at Different Temperature and Strain Rate[J].Journal of Geophysics Research,1967,72(2):611640.
[6]HOSKINS E R.The Failure of Thickwalled Hollow Cylinders of Isotropic Rock[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1969,6(1):99116.
[7]MOGI K.Effect of the Intermediate Principal Stress on Rock Failure[J].Journal of Geophysics Research,1967,72(20):51175131.
[8]MOGI K.Effect of the Triaxial Stress System on the Failure of Dolomite and Limestone[J].Tectonophysics,1971,11(2):111127.
[9]MOGI K.Fracture and Flow of Rocks Under High Triaxial Compression[J].Journal of Geophysics Research,1971,76(5):12551269.
[10]MOGI K.Fracture and Flow of Rocks[J].Tectonophysics,1972,13(1/2/3/4):541568.
[11]MOGI K.Flow and Fracture of Rocks Under General Triaxial Compression[J].Applied Mathematic and Mechanics:English Edition,1981,2(6):635651.
[12]MECHELIS P.Polyaxial Yielding of Granular Rock[J].Journal of Engineering Mechanics,1985,111(8):10491066.
[13]MECHELIS P.True Triaxial Cyclic Behavior of Concrete and Rock in Compression[J].International Journal of Plasticity,1987,3(3):249270.
[14]TAKAHASHI M,KOIDE H.Effect of the Intermediate Principal Stress on Strength and Deformation Behavior of Sedimentary Rocks at the Depth Shallower than 2 000 m[C]//MAURY V,FOURMAINTRAUX D.Proceedings of Rock at Great Depth.Rotterdam:Balkema A A,1989:1926.
[15]HAIMSON B,CHANG C.A New True Triaxial Cell for Testing Mechanical Properties of Rock,and Its Use to Determine Rock Strength and Deformability of Westerly Granite[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(1/2):285296.
[16]CHANG C,HAIMSON B.True Triaxial Strength and Deformability of the German Continental Deep Drilling Program (KTB) Deep Hole Amphibolite[J].Journal of Geophysical Research,2000,105(B8):1899919013.
[17]HAIMSON B C,CHANG C.True Triaxial Strength of KTB Amphibolite Under Borehole Wall Conditions and Its Use to Estimate the Maximum Horizontal Insitu Stress[J].Journal of Geophysical Research,2002,107(B10):22572271.
[18]CHANG C,HAIMSON B C.Nondilatant Deformation and Failure Mechanism in Two Long Valley Caldera Rocks Under True Triaxial Compression[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(3):402414.
[19]HAIMSON B C.True Triaxial Stresses and the Brittle Fracture of Rock[J].Pure and Applied Geophysics,2006,163(5/6):11011130.
[20]OKU H,HAIMSON B,SONG S R.True Triaxial Strength and Deformability of the Siltstone Overlying the Chelungpu Fault (ChiChi Earthquake),Taiwan[J].Geophysical Research Letters,2007,34(9):15.
[21]HAIMSON B C,RUDNICKI J W.The Effect of the Intermediate Principal Stress on Fault Formation and Fault Angle in Siltstone[J].Journal of Structural Geology,2010,32(11):17011711.
[22]HAIMSON B.Consistent Trends in the True Triaxial Strength and Deformability of Cores Extracted from ICDP Deep Scientific Holes on Three Continents[J].Tectonophysics,2011,503(1/2):4551.
[23]张金铸,林天健.三轴试验中岩石的应力状态和破坏性质[J].力学学报,1979(2):99106.
ZHANG Jinzhu,LIN Tianjian.Stress Conditions and the Variation of Rupture Characteristics of a Rock as Shown by Triaxial Tests[J].Acta Mechanica Sinica,1979(2):99106.
[24]许东俊.高孔隙性软弱砂岩在一般三轴应力状态下的力学特性[J].岩土力学,1982,3(1):1325.
XU Dongjun.Mechanical Properties of Weak Porous Sandstone Under General Triaxial Stress States[J].Rock and Soil Mechanics,1982,3(1):1325.
[25]许东俊,耿乃光.岩石强度随中间主应力变化规律[J].固体力学学报,1985(1):7280.
XU Dongjun,GENG Naiguang.The Variation Law of Rock Strength with Increase of Intermediate Principal Stress[J].Acta Mechanica Solida Sinica,1985(1):7280.
[26]尹光志,李 贺,鲜学福,等.工程应力变化对岩石强度特性影响的试验研究[J].岩土工程学报,1987,9(2):2028.
YIN Guangzhi,LI He,XIAN Xuefu,et al.The Experimental Study of the Influence of Engineering Stress Changes on Strength Characteristics of Rocks[J].Chinese Journal of Geotechnical Engineering,1987,9(2):2028.
[27]许东俊,耿乃光.中等主应力变化引起的岩石破坏与地震[J].地震学报,1984,6(2):159166.
XU Dongjun,GENG Naiguang.Rock Rupture Caused by Change of the Intermediate Principal Stress and Earthquake[J].Acta Seismologica Sinica,1984,6(2):159166.
[28]耿乃光,许东俊.最小主应力减小引起岩石破坏时中间主应力的影响[J].地球物理学报,1985,28(2):191197.
GENG Naiguang,XU Dongjun.Rock Rupture Caused by Decreasing the Minimum Principal Stress[J].Acta Geophysica Sinica,1985,28(2):191197.
[29]耿乃光.应力减小引起地震[J].地震学报,1985,7(4):445451.
GENG Naiguang.Earthquakes Caused by Stress Decreasing[J].Acta Seismologica Sinica,1985,7(4):445451.
[30]李小春,许东俊.双剪应力强度理论的实验验证——拉西瓦花岗岩强度特性真三轴试验研究[R].武汉:中国科学院武汉岩土力学研究所,1990.
LI Xiaochun,XU Dongjun.Experimental Verification of the Twin Shear Theory—True Triaxial Test Research of Strength of Laxiwa Granite[R].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,1990.
[31]陶振宇,高延法.红砂岩真三轴压力试验与岩石强度极限统计[J].武汉水利电力大学学报,1993,26(4):300305.
TAO Zhenyu,GAO Yanfa.True Triaxial Pressure Experiment for Red Sand Rock and Limit Statistics of Rock Strength[J].Journal of Wuhan University of Hydraulic and Electrical Engineering,1993,26(4):300305.
[32]高延法,陶振宇.岩石强度准则的真三轴压力试验检验与分析[J].岩土工程学报,1993,15(4):2632.
GAO Yanfa,TAO Zhenyu.Examination and Analysis of True Triaxial Compression Testing of Strength Criteria of Rock[J].Chinese Journal of Geotechnical Engineering,1993,15(4):2632.
[33]明治清,沈 俊,顾金才.拉压真三轴仪的研制及其应用[J].防护工程,1994(3):19.
MING Zhiqing,SHEN Jun,GU Jincai.Development and Application of Tensilecompression True Triaxial Apparatus[J].Protection Engineering,1994(3):19.
[34]陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报,2006,25(8):15371543.
CHEN Jingtao,FENG Xiating.True Triaxial Experimental Study on Rock with High Geostress[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(8):15371543.
[35]向天兵,冯夏庭,陈炳瑞,等.开挖与支护应力路径下硬岩破坏过程的真三轴与声发射试验研究[J].岩土力学,2008,29(增1):500506.
XIANG Tianbing,FENG Xiating,CHEN Bingrui,et al.True Triaxial and Acoustic Emission Experimental Study of Failure Process of Hard Rock Under Excavating and Supporting Stress Paths[J].Rock and Soil Mechanics,2008,29(S1):500506.
[36]向天兵,冯夏庭,陈炳瑞,等.三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J].岩土力学,2009,30(10):29082916.
XIANG Tianbing,FENG Xiating,CHEN Bingrui,et al.Rock Failure Mechanism and True Triaxial Experimental Study of Specimens with Single Structural Plane Under Threedimensional Stress[J].Rock and Soil Mechanics,2009,30(10):29082916.
[37]杨继华,刘汉东.岩石强度和变形真三轴试验研究[J].华北水利水电学院学报,2007,28(3):6668.
YANG Jihua,LIU Handong.True Triaxial Experimental Study on Rock Strength and Deformation[J].Journal of North China Institute of Water Conservancy and Hydroelectric Power,2007,28(3):6668.
[38]刘汉东,曹 杰.中间主应力对岩体力学特性影响的试验研究[J].人民黄河,2008,30(1):5960.
LIU Handong,CAO Jie.Test and Study on Influence of Intermediate Main Stress to Characteristic of Rock Mechanics[J].Yellow River,2008,30(1):5960.
[39]TIWARI R P,RAO K S.Physical Modeling of a Rock Mass Under a Truetriaxial Stress State[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(S1):396401.
[40]TIWARI R P,RAO K S.Response of an Anisotropic Rock Mass Under Polyaxial Stress State[J].Journal of Materials in Civil Engineering,2007,19(5):393403.
[41]张强勇,李术才,尤春安,等.新型组合式三维地质力学模型试验台架装置的研制及应用[J].岩石力学与工程学报,2007,26(1):143148.
ZHANG Qiangyong,LI Shucai,YOU Chunan,et al.Development and Application of New Type Combination 3D Geomechanical Model Test Rack Apparatus[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(1):143148.
[42]朱维申,李 勇,张 磊,等.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩石力学与工程学报,2008,27(7):13081314.
ZHU Weishen,LI Yong,ZHANG Lei,et al.Geomechanical Model Test on Stability of Cavern Group Under High Geostress[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(7):13081314.
[43]朱维申,张乾兵,李 勇,等.真三轴荷载条件下大型地质力学模型试验系统的研制及其应用[J].岩石力学与工程学报,2010,29(1):17.
ZHU Weishen,ZHANG Qianbing,LI Yong,et al.Development of Largescale Geomechanical Model Test System Under True Triaxial Loading and Its Applications[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(1):17.
[44]陈安敏,顾金才,沈 俊,等.地质力学模型试验技术应用研究[J].岩石力学与工程学报,2004,23(22):37853789.
CHEN Anmin,GU Jincai,SHEN Jun,et al.Application Study on the Geomechanical Model Experiment Techniques[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(22):37853789.
[45]孙晓明,何满潮,刘成禹,等.真三轴软岩非线性力学试验系统研制[J].岩石力学与工程学报,2005,24(16):28702874.
SUN Xiaoming,HE Manchao,LIU Chengyu,et al.Development of Nonlinear Triaxial Mechanical Experiment System for Soft Rock Specimen[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):28702874.
[46]姜耀东,刘文岗,赵毅鑫.一种新型真三轴巷道模型试验台的研制[J].岩石力学与工程学报,2004,23(21):37273731.
JIANG Yaodong,LIU Wengang,ZHAO Yixin.Design and Development of a New Type of Triaxial System for Roadway Model Test[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(21):37273731.
[47]俞茂宏.双剪应力强度理论研究[M].西安:西安交通大学出版社,1988.
YU Maohong.Researches on the Twin Shear Stress Strength Theory[J].Xian:Xian Jiaotong University Press,1998.
[48]沈珠江.关于破坏准则和屈服函数的总结[J].岩土工程学报,1995,17(1):18.
SHEN Zhujiang.Summary on the Failure Criteria and Yield Functions[J].Chinese Journal of Geotechnical Engineering,1995,17(1):18.
[49]俞茂宏,刘继明,ODA Y,等.论岩土材料屈服准则的基本特性和创新[J].岩石力学与工程学报,2007,26(9):17451757.
YU Maohong,LIU Jiming,ODA Y,et al.On Basic Characteristics and Innovation of Yield Criteria for Geomaterials[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(9):17451757.
[50]HOEK E,BROWN E T.Empirical Strength Criterion for Rock Masses[J].Journal of Geotechnical Engineering,1980,106(9):10131035.
[51]HOEK E,BROWN E T.Practical Estimates of Rock Mass Strength[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(8):11651186.
[52][KG-*5]HOEK E,CARRANZATORRES C,CORKUM B.HoekBrown Failure Criterion—2002 Edition[C]//HAMMAH R,BAWDEN W,CURRAN J,et al.Proceedings of the 5th North American Rock Mechanics Symposium.Toronto:University of Toronto Press,2002:12671273.
[53]朱合华,张 琦,章连洋.HoekBrown强度准则研究进展与应用综述[J].岩石力学与工程学报,2013,32(10):19451963.
ZHU Hehua,ZAHNG Qi,ZHANG Lianyang.Review of Research Progresses and Applications of HoekBrown Strength Criterion[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(10):19451963.
[54]PAN X D,HUDSON J A.A Simplified Three Dimensional HoekBrown Yield Criterion[C]//ROMANA M.Rock Mechanics and Power Plants.Rotterdam:Balkema A A,1988:95103.
[55]昝月稳,俞茂宏,王思敬.岩石的非线性统一强度准则[J].岩石力学与工程学报,2002,21(10):14351441.
ZAN Yuewen,YU Maohong,WANG Sijing.Nonlinear Unified Strength Criterion of Rock[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(10):14351441.
[56][KG-*5]YU M H,ZAN Y W,ZHAO J,et al.A Unified Strength Criterion for Rock Material[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(8):975989.
[57]ZHANG L Y,ZHU H H.Threedimensional HoekBrown Strength Criterion for Rocks[J].Journal of Geotechnical and Geoenvironmental Engineering,2007,133(9):11281135.
[58][KG0.5mm][KG-*3]ZHANG L Y.A Generalized Threedimensional HoekBrown Strength Criterion[J].Rock Mechanics and Rock Engineering,2008,41(6):893915.
[59]ALAJMI A M,ZIMMERMAN R W.Relation Between the Mogi and the Coulomb Failure Criteria[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(3):431439.
[60]ALAJMI A M,ZIMMERMAN R W.Stability Analysis of Vertical Boreholes Using the MogiCoulomb Failure Criterion[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(8):12001211.
[61]WIEBOLS G,COOK N.An Energy Criterion for the Strength of Rock in Polyaxial Compression[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1968,5(6):529549.
[62]COSTAMAGNA R,BRUHNS O T.A Fourparameter Criterion for Failure of Geomaterials[J].Engineering Structures,2007,29(3):461468.
[63]MORTARA G.A New Yield and Failure Criterion for Geomaterials[J].Geotechnique,2008,58(2):125132.
[64]姚仰平,路德春,周安楠,等.广义非线性强度理论及其变换应力空间[J].中国科学:E辑,2004,34(11):12831299.
YAO Yangping,LU Dechun,ZHOU Annan,et al.Generalized Nonlinear Strength Theory and Transformed Stress Space[J].Science in China:Series E,2004,34(11):12831299.
[65]胡小荣,俞茂宏.岩土类介质强度准则新探[J].岩石力学与工程学报,2004,23(18):30373043.
HU Xiaorong,YU Maohong.New Research on Failure Criterion for Geomaterial[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(18):30373043.
[66]周凤玺,李世荣.广义DruckerPrager强度准则[J].岩土力学,2008,29(3):747751.
ZHOU Fengxi,LI Shirong.Generalized DruckerPrager Strength Criterion[J].Rock and Soil Mechanics,2008,29(3):747751.
[67]尤明庆.岩石指数型强度准则在主应力空间的特征[J].岩石力学与工程学报,2009,28(8):15411551.
YOU Mingqing.Characteristics of Exponential Strength Criterion of Rock in Principal Stress Space[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(8):15411551.
[68][KG-*5]YOU M Q.Truetriaxial Strength Criteria of Rock[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(1):115127.
[69]尤明庆.完整岩石的强度和强度准则[J].复旦学报:自然科学版,2013,52(5):569582.
YOU Mingqing.Strength and Strength Criteria for Intact Rocks[J].Journal of Fudan University:Natural Science,2013,52(5):569582.
[70]肖 杨,刘汉龙,朱俊高.一种散粒体材料破坏准则研究[J].岩土工程学报,2010,32(4):586591.
XIAO Yang,LIU Hanlong,ZHU Jungao.Failure Criterion for Granular Soils[J].Chinese Journal of Geotechnical Engineering,2010,32(4):586591.
[71]LIU M C,GAO Y F,LIU H L.A Nonlinear DruckerPrager and MatsuokaNakai Unified Failure Criterion for Geomaterials with Separated Stress Invariants[J].International Journal of Rock Mechanics and Mining Sciences,2012,50:110.
[72]COLMENARES L B,ZOBACK M D.A Statistical Evaluation of Intact Rock Failure Criteria Constrained by Polyaxial Test Data for Five Different Rocks[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(6):695729.
[73]YU M H,YANG S Y,FAN S C,et al.Unified Elastoplatic Associated and Nonassociated Constitutive Model and Its Engineering Applications[J].Computers and Structures,1999,71(6):627636.
[74]YU M H.Advances in Strength Theories for Materials Under Complex Stress State in the 20th Century[J].Applied Mechanics Reviews,2002,55(3):169218.
[75]YU M H.Unified Strength Theory and Its Applications[M].New York:Springer,2004.
[76]俞茂宏.线性和非线性的统一强度理论[J].岩石力学与工程学报,2007,26(4):662669.
YU Maohong.Linear and Nonlinear Unified Strength Theory[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(4):662669.
[77]章道义.周培源:中国科教界一颗明亮的星[N].科技日报,20020828(4).
ZHANG Daoyi.ZHOU Peiyuan:a Shining Star in Chinese Scientific Community[N].Science and Technology Daily,20020828(4).
[78]俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报,1994,16(2):110.
YU Maohong.Unified Strength Theory for Geomaterials and Its Applications[J].Chinese Journal of Geotechnical Engineering,1994,16(2):110.
[79]俞茂宏,杨松岩,刘春阳,等.统一平面应变滑移线场理论[J].土木工程学报,1997,30(2):1426,41.
YU Maohong,YANG Songyan,LIU Chunyang,et al.Unified Planestrain Slip Line Field Theory System[J].China Civil Engineering Journal,1997,30(2):1426,41.
[80]赵均海,张永强,李建春,等.用统一强度理论和统一滑移线场理论求解某些塑性平面应变问题[J].机械工程学报,1999,35(6):6166.
ZHAO Junhai,ZHANG Yongqiang,LI Jianchun,et al.Solutions of Some Plastic Plane Strain Problems Based on the Unified Strength Theory and Unified Slip Line Field Theory[J].Chinese Journal of Mechanical Engineering,1999,35(6):6166.
[81]赵均海,朱 倩,张常光,等.基于双剪统一强度理论的球壳弹塑性性能[J].长安大学学报:自然科学版, 2013,33(6):7478.
ZHAO Junhai,ZHU Qian,ZHANG Changguang,et al.Elastoplastic Research of Spherical Shell Based on Twin Shear Unified Strength Theory[J].Journal of Changan University:Natural Science Edition,2013,33(6):7478.
[82]张永强,范 文,俞茂宏.边坡极限载荷的统一滑移线解[J].[JP2]岩石力学与工程学报,2000,19(增1):994996.[JP]
ZHANG Yongqiang,FAN Wen,YU Maohong.Unified Slip Line Solution of Ultimate Load of Slope[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(S1):994996.
[83]程彩霞,赵均海,魏雪英.边坡极限荷载的统一滑移线解与有限元分析[J].工业建筑,2005,35(10):3335,46.
CHENG Caixia,ZHAO Junhai,WEI Xueying.Solution of Ultimate Load for Slope by Unified Slip Line Field Method and Finite Element Method[J].Industrial Construction,2005,35(10):3335,46.
[84]周小平,黄煜镔,丁志诚.考虑中间主应力的太沙基地基极限承载力公式[J].岩石力学与工程学报,2002,21(10):15541556.
ZHOU Xiaoping,HUANG Yubin,DING Zhicheng.Influence of Intermediate Principal Stress on the Formula of Terzaghi Ultimate Bearing Capacity of Foundations[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(10):15541556.
[85]范 文,白晓宇,俞茂宏.基于统一强度理论的地基极限承载力公式[J].岩土力学,2005,26(10):16171622.
FAN Wen,BAI Xiaoyu,YU Maohong.Formula of Ultimate Bearing Capacity of Shallow Foundation Based on Unified Strength Theory[J].Rock and Soil Mechanics,2005,26(10):16171622.
[86]高江平,俞茂宏,李四平.太沙基地基极限承载力的双剪统一解[J].岩石力学与工程学报,2005,24(15):27362740.
GAO Jiangping,YU Maohong,LI Siping.Doubleshear Unified Solution of Terzaghi Ultimate Bearing Capacity of Foundation[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(15):27362740.
[87]王祥秋,杨林德,高文华.基于双剪统一强度理论的条形地基承载力计算[J].土木工程学报,2006,39(1):7982.
WANG Xiangqiu,YANG Linde,GAO Wenhua.Calculation of Bearing Capacity About the Strip Foundation Based on the Twin Shear Unified Strength Theory[J].China Civil Engineering Journal,2006,39(1):7982.
[88]谢群丹,何 杰,刘 杰,等.双剪统一强度理论在土压力计算中的应用[J].岩土工程学报,2003,25(3):343345.
XIE Qundan,HE Jie,LIU Jie,et al.Unified Twin Shear Strength Theory for Calculation of Earth Pressure[J].Chinese Journal of Geotechnical Engineering,2003,25(3):343345.
[89]陈秋南,张永兴,周小平.三向应力作用下的Rankine被动土压力公式[J].岩石力学与工程学报,2005,24(5):880882.
CHEN Qiunan,ZHANG Yongxing,ZHOU Xiaoping.Formula of Rankine Passive Earth Pressure in Triaxial State of Stress[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(5):880882.
[90]范 文,林永亮,秦玉虎.基于统一强度理论的地基临界荷载公式[J].长安大学学报:地球科学版,2003,25(3):4851.
FAN Wen,LIN Yongliang,QIN Yuhu.Formula for Critical Load of Foundation Based on the Unified Strength Theory[J].Journal of Changan University:Earth Science Edition,2003,25(3):4851.
[91]杨小礼,李 亮.条形基础下纤维加筋土地基承载力初探[J].地下空间,2000,20(1):5860,80.
YANG Xiaoli,LI Liang.Primary Investigation on Bearing Capacity of Fiber Reinforced Soil Ground Under Strip Foundation[J].Underground Space,2000,20(1):5860,80.
[92]蒋明镜,沈珠江.岩土类软化材料的柱形孔扩张统一解问题[J].岩土力学,1996,17(1):18.
JIANG Mingjing,SHEN Zhujiang.Unified Solution to Expansion of Cylindrical Cavity for Geomaterials with Strainsoftening Behaviour[J].Rock and Soil Mechanics,1996,17(1):18.
[93]曹黎娟,赵均海,魏雪英.基于统一强度理论的灰土挤密桩应力分析[J].岩土力学,2006,27(10):17861790.
CAO Lijuan,ZHAO Junhai,WEI Xueying.Stress Analysis of Limesoil Compacted Pile Based on the Unified Strength Theory[J].Rock and Soil Mechanics,2006,27(10):17861790.
[94]王 亮.基于统一强度理论的桩基扩孔问题弹塑性分析[D].西安:长安大学,2007.
WANG Liang.Elastoplastic Analysis on Hole Expansion Issue of Pile Based on the Theory of Unified Strength[D].Xian:Changan University,2007.
[95]汪鹏程,朱向荣.应变软化及剪胀性土体中考虑大应变的孔扩张问题解析[J].浙江大学学报:工学版,2004,38(7):909914.
WANG Pengcheng,ZHU Xiangrong.Analysis of Cavity Expansion in Soil with Shear Dilation and Strain Softening Considering Large Deformation[J].Journal of Zhejiang University:Engineering Science,2004,38(7):909914.
[96]汪鹏程,朱向荣,方鹏飞.考虑土应变软化及剪胀特性的大应变球孔扩张的问题[J].水利学报,2004(9):7882,87.
WANG Pengcheng,ZHU Xiangrong,FANG Pengfei.Expansion of Large Strain Spherical Cavity in Soil in Consideration of Dilation and Strain Softening[J].Journal of Hydraulic Engineering,2004(9):7882,87.
[97]罗战友,夏建中,龚晓南.不同拉压模量及软化特性材料的球形孔扩张问题的统一解[J].工程力学,2006,23(4):2227.
LUO Zhanyou,XIA Jianzhong,GONG Xiaonan.Unified Solution for the Expansion of Spherical Cavity in Strainsoftening Materials with Different Elastic Moduli in Tensile and Compression[J].Engineering Mechanics,2006,23(4):2227.
[98]王延斌,范 文,徐栓强.基于统一强度理论的柱形孔扩张问题研究[J].[JP2]岩土力学,2003,24(增2):125132.[JP]
WANG Yanbin,FAN Wen,XU Shuanqiang.Solution to Expansion of Cylindrical Cavity Based on the Unified Strength Theory[J].Rock and Soil Mechanics,2003,24(S2):125132.
[99]胡小荣,俞茂宏.统一强度理论及其在巷道围岩弹塑性分析中的应用[J].中国有色金属学报,2002,12(5):10211026.
HU Xiaorong,YU Maohong.Unified Strength Theory and Its Application in Elastoplastic Analysis to Tunnel[J].The Chinese Journal of Nonferrous Metals,2002,12(5):10211026.
[100]徐栓强,俞茂宏,胡小荣.基于双剪统一强度理论的地下圆形洞室稳定性的研究[J].煤炭学报,2003,28(5):522526.
XU Shuanqiang,YU Maohong,HU Xiaorong.The Stability Analysis of Circular Tunnel Based the Twin Shear Unified Strength Theory[J].Journal of China Coal Society,2003,28(5):522526.
[101]XU S Q,YU M H.The Effect of the Intermediate Principal Stress on the Ground Response of Circular Openings in Rock Mass[J].Rock Mechanics and Rock Engineering,2006,39(2):169181.
[102]宋 俐,张永强,俞茂宏.压力隧洞弹塑性分析的统一解[J].工程力学,1998,15(4):5761.
SONG Li,ZHANG Yongqiang,YU Maohong.Plastoelastic Unified Analysis of Pressure Tunnel[J].Engineering Mechanics,1998,15(4):5761.
[103]范 文,俞茂宏,陈立伟.考虑材料剪胀及软化的有压隧洞弹塑性分析的解析解[J].工程力学,2004,21(5):1624.
FAN Wen,YU Maohong,CHEN Liwei.An Analytic Solution of Elasticplastic Pressure Tunnel Considering Material Softening and Dilatancy[J].Engineering Mechanics,2004,21(5):1624.
[104]蔡晓鸿,蔡勇斌,蔡勇平,等.考虑中间主应力影响的压力隧洞围岩抗力系数通用计算式[J].岩土工程学报,2007,29(7):10041008.
CAI Xiaohong,CAI Yongbin,CAI Yongping,et al.Calculation of Resistance Coefficient of Adjoining Rock for Pressure Tunnels Considering Effect of Intermediate Principal Stress[J].Chinese Journal of Geotechnical Engineering,2007,29(7):10041008.
[105]马 青,赵均海,魏雪英.基于统一强度理论的巷道围岩抗力系数研究[J].岩土力学,2009,30(11):33933398.
MA Qing,ZHAO Junhai,WEI Xueying.Investigation of Rock Resistant Coefficient in Rocks Around Tunnel Based on Unified Strength Theory[J].Rock and Soil Mechanics,2009,30(11):33933398.
[106]张常光,张庆贺,赵均海.考虑应变软化、剪胀和渗流的水工隧洞解析解[J].岩土工程学报,2009,31(12):19411946.
ZHANG Changguang,ZHANG Qinghe,ZHAO Junhai.Analytical Solutions of Hydraulic Tunnels Considering Strain Softening,Shear Dilation and Seepage[J].Chinese Journal of Geotechnical Engineering,2009,31(12):19411946.
[107]张常光,张庆贺,赵均海,等.具有衬砌的圆形水工隧洞弹塑性应力统一解[J].同济大学学报:自然科学版,2010,38(1):5053,134.
ZHANG Changguang,ZHANG Qinghe,ZHAO Junhai,et al.Elasticplastic Stress Unified Solutions of a Circular Hydraulic with Lining[J].Journal of Tongji University:Natural Science,2010,38(1):5053,134.
[108]张常光,胡云世,赵均海,等.深埋圆形水工隧洞弹塑性应力和位移统一解[J].岩土工程学报,2010,32(11):17381745.
ZHANG Changguang,HU Yunshi,ZHAO Junhai,et al.Elasticplastic Unified Solutions for Stresses and Displacements of a Deep Buried Circular Hydraulic Tunnel[J].Chinese Journal of Geotechnical Engineering,2010,32(11):17381745.
[109]曾开华,鞠海燕,张常光.深埋圆形隧道弹塑性位移统一解及其比较分析[J].岩土力学,2011,32(5):13151319.
ZENG Kaihua,JU Haiyan,ZHANG Changguang.Elastoplastic Unified Solution for Displacements Around a Deep Circular Tunnel and Its Comparative Analysis[J].Rock and Soil Mechanics,2011,32(5):13151319.
[110]曾开华,鞠海燕,盛国君,等.巷道围岩弹塑性解析解及工程应用[J].煤炭学报,2011,36(5):752755.
ZENG Kaihua,JU Haiyan,SHENG Guojun,et al.Elasticplastic Analytical Solutions for Surrounding Rocks of Tunnels and Its Engineering Applications[J].Journal of China Coal Society,2011,36(5):752755.
[111]张常光,赵均海,张庆贺.基于统一强度理论的深埋圆形岩石隧道收敛限制分析[J].岩土工程学报,2012,34(1):110114.
[JP2]ZHANG Changguang,ZHAO Junhai,ZHANG Qing[JP]he.Convergenceconfinement Analysis of Deep Circular Rock Tunnels Based on Unified Strength Theory[J].Chinese Journal of Geotechnical Engineering,2012,34(1):110114.
[112]ZHANG C G,WANG J F,ZHAO J H.Unified Solutions for Stresses and Displacements Around Circular Tunnels Using the Unified Strength Theory[J].Science China:Technological Sciences,2010,53(6):16941699.
[113]ZHANG C G,ZHANG Q H,ZHAO J H,et al.Unified Analytical Solutions for a Circular Opening Based on Nonlinear Unified Failure Criterion[J].Journal of Zhejiang University:Science A,2010,11(2):7179.
[114]ZHANG C G,ZHAO J H,ZHANG Q H,et al.A New Closedform Solution for Circular Openings Modeled by the Unified Strength Theory and Radiusdependent Youngs Modulus[J].Computers and Geotechnics,2012,42:118128.
[115]赵均海,李爱国,张常光.圆形隧道弹脆塑性围岩自承载能力分析[J].中国公路学报,2014,27(4):8590.
ZHAO Junhai,LI Aiguo,ZHANG Changguang.Selfcarrying Capacity of Surrounding Rock for a Circular Tunnel Based on Elasticbrittleplastic Model[J].China Journal of Highway and Transport,2014,27(4):8590.
[116]张常光,张庆贺,赵均海.非饱和土抗剪强度及土压力统一解[J].岩土力学,2010,31(6):18711876.
ZHANG Changguang,ZHANG Qinghe,ZHAO Junhai.Unified Solutions of Shear Strength and Earth Pressure for Unsaturated Soils[J].Rock and Soil Mechanics,2010,31(6):18711876.
[117]张常光,曾开华,赵均海.非饱和土临界荷载和太沙基极限承载力解析解[J].同济大学学报:自然科学版,2010,38(12):17361740.
ZHANG Changguang,ZENG Kaihua,ZHAO Jun[JP2]hai.Analytical Solutions of Critical Load and [JP]Terzaghis Ultimate Bearing Capacity for Unsaturated Soil[J].Journal of Tongji University:Natural Science,2010,38(12):17361740.
[118]张常光,胡云世,赵均海.平面应变条件下非饱和土抗剪强度统一解及其应用[J].岩土工程学报,2011,33(1):3237.
ZHANG Changguang,HU Yunshi,ZHAO Junhai.Unified Solution of Shear Strength for Unsaturated Soil Under Plane Strain Condition and Its Application[J].Chinese Journal of Geotechnical Engineering,2011,33(1):3237.
[119]张常光,赵均海,张冬芳.非饱和土强度非线性及对被动土压力的影响[J].广西大学学报:自然科学版,2012,37(4):797802.
ZHANG Changguang,ZHAO Junhai,ZHANG Dong[JP]fang.Nonlinearity of Unsaturated Soils Strength and Its Influence on Passive Earth Pressure[J].Journal of Guangxi University:Natural Science Edition,2012,37(4):797802.
[120]张常光,赵均海,朱 倩.非饱和土抗剪强度公式分类及总结[J].建筑科学与工程学报,2012,29(2):7482.
ZHANG Changguang,ZHAO Junhai,ZHU Qian.Classification and Summary of Shear Strength Formulae for Unsaturated Soils[J].Journal of Architecture and Civil Engineering,2012,29(2):7482.
[121]赵均海,梁文彪,张常光,等.非饱和土库仑主动土压力统一解[J].岩土力学,2013,34(3):609614.
ZHAO Junhai,LIANG Wenbiao,ZHANG Changguang,et al.Unified Solution of Coulombs Active Earth Pressure for Unsaturated Soils[J].Rock and Soil Mechanics,2013,34(3):609614.
[115]赵均海,李爱国,张常光.圆形隧道弹脆塑性围岩自承载能力分析[J].中国公路学报,2014,27(4):8590.
ZHAO Junhai,LI Aiguo,ZHANG Changguang.Selfcarrying Capacity of Surrounding Rock for a Circular Tunnel Based on Elasticbrittleplastic Model[J].China Journal of Highway and Transport,2014,27(4):8590.
[116]张常光,张庆贺,赵均海.非饱和土抗剪强度及土压力统一解[J].岩土力学,2010,31(6):18711876.
ZHANG Changguang,ZHANG Qinghe,ZHAO Junhai.Unified Solutions of Shear Strength and Earth Pressure for Unsaturated Soils[J].Rock and Soil Mechanics,2010,31(6):18711876.
[117]张常光,曾开华,赵均海.非饱和土临界荷载和太沙基极限承载力解析解[J].同济大学学报:自然科学版,2010,38(12):17361740.
ZHANG Changguang,ZENG Kaihua,ZHAO Jun[JP2]hai.Analytical Solutions of Critical Load and [JP]Terzaghis Ultimate Bearing Capacity for Unsaturated Soil[J].Journal of Tongji University:Natural Science,2010,38(12):17361740.
[118]张常光,胡云世,赵均海.平面应变条件下非饱和土抗剪强度统一解及其应用[J].岩土工程学报,2011,33(1):3237.
ZHANG Changguang,HU Yunshi,ZHAO Junhai.Unified Solution of Shear Strength for Unsaturated Soil Under Plane Strain Condition and Its Application[J].Chinese Journal of Geotechnical Engineering,2011,33(1):3237.
[119]张常光,赵均海,张冬芳.非饱和土强度非线性及对被动土压力的影响[J].广西大学学报:自然科学版,2012,37(4):797802.
ZHANG Changguang,ZHAO Junhai,ZHANG Dong[JP]fang.Nonlinearity of Unsaturated Soils Strength and Its Influence on Passive Earth Pressure[J].Journal of Guangxi University:Natural Science Edition,2012,37(4):797802.
[120]张常光,赵均海,朱 倩.非饱和土抗剪强度公式分类及总结[J].建筑科学与工程学报,2012,29(2):7482.
ZHANG Changguang,ZHAO Junhai,ZHU Qian.Classification and Summary of Shear Strength Formulae for Unsaturated Soils[J].Journal of Architecture and Civil Engineering,2012,29(2):7482.
[121]赵均海,梁文彪,张常光,等.非饱和土库仑主动土压力统一解[J].岩土力学,2013,34(3):609614.
ZHAO Junhai,LIANG Wenbiao,ZHANG Changguang,et al.Unified Solution of Coulombs Active Earth Pressure for Unsaturated Soils[J].Rock and Soil Mechanics,2013,34(3):609614.
[115]赵均海,李爱国,张常光.圆形隧道弹脆塑性围岩自承载能力分析[J].中国公路学报,2014,27(4):8590.
ZHAO Junhai,LI Aiguo,ZHANG Changguang.Selfcarrying Capacity of Surrounding Rock for a Circular Tunnel Based on Elasticbrittleplastic Model[J].China Journal of Highway and Transport,2014,27(4):8590.
[116]张常光,张庆贺,赵均海.非饱和土抗剪强度及土压力统一解[J].岩土力学,2010,31(6):18711876.
ZHANG Changguang,ZHANG Qinghe,ZHAO Junhai.Unified Solutions of Shear Strength and Earth Pressure for Unsaturated Soils[J].Rock and Soil Mechanics,2010,31(6):18711876.
[117]张常光,曾开华,赵均海.非饱和土临界荷载和太沙基极限承载力解析解[J].同济大学学报:自然科学版,2010,38(12):17361740.
ZHANG Changguang,ZENG Kaihua,ZHAO Jun[JP2]hai.Analytical Solutions of Critical Load and [JP]Terzaghis Ultimate Bearing Capacity for Unsaturated Soil[J].Journal of Tongji University:Natural Science,2010,38(12):17361740.
[118]张常光,胡云世,赵均海.平面应变条件下非饱和土抗剪强度统一解及其应用[J].岩土工程学报,2011,33(1):3237.
ZHANG Changguang,HU Yunshi,ZHAO Junhai.Unified Solution of Shear Strength for Unsaturated Soil Under Plane Strain Condition and Its Application[J].Chinese Journal of Geotechnical Engineering,2011,33(1):3237.
[119]张常光,赵均海,张冬芳.非饱和土强度非线性及对被动土压力的影响[J].广西大学学报:自然科学版,2012,37(4):797802.
ZHANG Changguang,ZHAO Junhai,ZHANG Dong[JP]fang.Nonlinearity of Unsaturated Soils Strength and Its Influence on Passive Earth Pressure[J].Journal of Guangxi University:Natural Science Edition,2012,37(4):797802.
[120]张常光,赵均海,朱 倩.非饱和土抗剪强度公式分类及总结[J].建筑科学与工程学报,2012,29(2):7482.
ZHANG Changguang,ZHAO Junhai,ZHU Qian.Classification and Summary of Shear Strength Formulae for Unsaturated Soils[J].Journal of Architecture and Civil Engineering,2012,29(2):7482.
[121]赵均海,梁文彪,张常光,等.非饱和土库仑主动土压力统一解[J].岩土力学,2013,34(3):609614.
ZHAO Junhai,LIANG Wenbiao,ZHANG Changguang,et al.Unified Solution of Coulombs Active Earth Pressure for Unsaturated Soils[J].Rock and Soil Mechanics,2013,34(3):609614.