王玲玲+热西代古丽·吾吉艾合买提+林琪+翟翔+刘桂东
收稿日期:20131121
基金项目:国家自然科学基金资助项目(11074069, 61176116)
作者简介:王玲玲(1955-),女,河北抚宁人,湖南大学教授
通讯联系人,Email:llwang@hnu.edu.cn
摘要:应用时域有限差分方法(FDTD)研究了基于金属介质金属(MIM)波导缺陷谐振环结构的传输特性. 该结构由一通道波导和位于通道上方的缺陷谐振环组成,与无缺陷谐振腔结构相比,缺陷谐振环结构破坏了环形腔原有的共振模式,从而呈现出新颖的滤波特性. 当缺陷尺寸发生改变时,谐振环有效长度发生变化,通过调整缺陷的尺寸,可以有效调节滤波波长,其数值计算值与传输线理论值基本吻合. 此外,通道波导与谐振环间的耦合强度在一定程度上依赖于缺陷的位置,因此通过调节缺陷的位置可以有效控制滤波强度. 与其他滤波器相比,此结构在不改变结构总尺寸的情况下,可调节滤波波长,实现了更宽频段的滤波,并有效调节其透射率.当缺陷尺寸设定为某一特定值时,能实现模式间的简并,提高滤波性能.
关键词:光学器件;MIM波导;时域有限差分方法;传输线理论;滤波器
中图分类号:O469 文献标识码:A
Study of the Transmission Characteristics
of the Structure of Defective Rectangular Ring
Resonator Based on MIM Waveguide
WANG Lingling, REXIDAIGULI.Wujiaihemaiti, LIN Qi, ZHAI Xiang, LIU Guidong
Abstract: The transmission characteristics of the structure of defective rectangular ring resonator based on metalinsulatormetal waveguide were investigated in the finite difference time domain method. This structure consists of a waveguide channel and a defective rectangular ring resonator,which is parallel to the waveguide.Compared with the perfect rectangular ring resonator, the structure with defect destroys the symmetry of the resonant modes in the resonator, which results in a novel filter function of the complex resonator. The effective length of the structure depends on the size of the defect, so filtering wavelength can be tuned by adjusting the dimension of the defect. The numerical simulation results are essentially in agreement with the transmission line theory calculation results. In addition, the coupling strength between the waveguide channel and defective rectangular ring resonator is dependent on the defect location, which is useful in the control of the transmittance at filtering wavelength. Compared with the other filtering structures, our structure can realize more broadband segment filtering, effectively adjust the filtering wavelength and control the transmittance without changing the overall size. When the size of detect is chosen on a certain value, a new double degenerated mode appears, which improves the filtering properties of the structure. It has potential application in integrated optics due to its miniaturization and simple fabrication process.
Key words: optical devices; MetalInsulatorMetal(MIM) waveguide; finite difference time domain method; transmission line theory; filter
表面等离激元(Surface Plasmon Polariton,SPPs)是入射光子与金属表面自由电子相互作用形成的非辐射电磁模式,是沿着金属介质表面传播的消逝电磁波,在纳米量级上具有显著的局域增强效应[1-3]. 利用SPPs的这一特殊性质,可以有效实现亚波长量级上的电磁传输与调控. 基于SPPs的纳米光子器件是实现纳米全光网络的基础,那么,怎样实现在纳米尺度上对SPPs有效调控成为该领域研究者关注的热点. 例如,基于金属纳米颗粒阵列[4]或金属纳米线[5]的SPPs波导已经在理论上提出并在实验上获得验证,但此类结构能量损失大,有效传播距离小,难以获得应用. 而基于金属绝缘体金属(MetalInsulatorMetal,MIM)的SPPs波导结构可以避免出现辐射模和泄漏模,有效地将电磁波局域在亚波长结构内,从而实现光在纳米尺度内的有效传输[6]. 近年来,关于MIM结构的功能器件,如光分束器[7],定向耦合器[8],布拉格反射器[9-10],滤波器[11-18]等已有报道. 研究者利用谐振腔的共振特性设计了多种滤波结构,基于MIM结构的环形滤波器[16-18]具有选频特性好,结构紧凑等优点,通过调节其结构参数,例如谐振腔尺寸,谐振腔与MIM波导的耦合距离,有效折射率分布等,实现其滤波特性的调节.
近年来,基于MIM矩形谐振腔结构的表面等离子体波导滤波器的研究指出,通过调整谐振腔的长度,可以有效地滤掉特定波长[19],且能量损耗小. 然而,这种结构由于尺寸的限制,无法实现更宽频段的滤波. 目前,理论上提出一种基于MIM波导填充谐振环结构, 该结构由一通道波导和与通道耦合的谐振腔组成,SPPs在该谐振腔内传播时发生共振耦合形成驻波,通过在环中引入金属结构改变谐振腔的耦合长度,实现滤波带宽的调控,基于该结构的波分复用器也随之提出[20]. 以上研究中,均通过改变结构尺寸达到调控滤波波长. 为了使结构更加紧凑、工艺更加简单,本文提出并在数值上证实了基于缺陷谐振环MIM表面等离激元波导结构滤波器,该结构由一通道波导和位于通道上方的缺陷谐振环组成, 采用时域有限差分(FDTD)方法,通过改变缺陷的几何尺寸,模拟计算该结构的透射谱及共振模式下的磁场分布,并与传输线模型的计算结果进行比较,以明确该滤波器的传输特性. 结果表明,缺陷的设置破坏了环腔结构谐振腔原有的对称性,影响原有的几种共振模式,从而出现了新颖的滤波特性. 其滤波特性依赖于缺陷的尺寸,通过改变缺陷尺寸可以有效调节滤波波长,并且当缺陷尺寸设定为某一特定值时,有些模式间发生简并,可以提高该结构的滤波性能. 此外,缺陷谐振环结构的部分谐振模式依赖于缺陷的位置,当缺陷位置不同时,通道波导与缺陷谐振环之间的耦合强度不同,对不同共振波长下的透射率有一定的影响.
1数值模拟与结构分析
基于缺陷谐振环MIM表面等离激元波导结构滤波器的结构如图1(a)所示.在数值模拟过程中,设通道波导和谐振环宽度均为d=50 nm, 通道波导与缺陷谐振环之间的耦合宽度为t=20 nm,环长度L=300 nm,谐振环的缺陷宽度为a,深度为b. 通道波导和缺陷谐振环中填充介质均为空气(εd=1). 灰色部分为金属Ag,其相对介电常数在可见光到近红外波段可以采用Drude模型[21-22]进行计算:
式中:εω为入射频率无限大时对应的介电常数,其值约为3.7; ωp为金属表面电荷发生集体振荡的本征频率,其值约为1.38×1016rad/s; γ为金属中电荷发生集体振荡的阻尼系数,其值约为2.73×1013rad/s; ω为入射波频率. 使用FDTD Solution 6.0软件进行模拟计算,计算步长设定为dx=dy=2 nm,边界条件均采用完全匹配层(PML). S处放置横磁波模式波源,Q处放置能量监控器.
采用传输线理论分析该滤波结构的共振条件时[23],等效电路如图1(b)所示.缺陷谐振环的等效阻抗定义为:
Zequ=R+iω(Lm+Le)+1/iωC.(2)
式中:等效电阻R=leff/σ b,leff=4(L-2d)+2b,σ=iω(εm-ε0),leff为缺陷环有效长度,σ为等效电导率;Lm=μ0(L-2d)2为谐振环的磁场电感;Le=Leff/ω2εmd为谐振环的电子自感;C=ε0d/a 为缺陷结构的等效电容. 谐振环滤波器的等效电路如图1(b)所示,等效阻抗Zequ作为负载,加载在特征阻抗为Z0=β dε0ω的传输线上,则广义阻抗可表示为:
Z=ZL=ZR=Z0(Zequ/2)-iZ0tan (β leff/2)Z0-i(Zequ/2)tan (β leff/2).(3)
式中:传播常数β=neff /ε0ω可以由MIM波导的色散关系εdkm+εmkdtanh(-ikdd/2)=0得出,k0=2π/λ为真空中的波矢,km=(β2-εmk20)1/2,kd=(β2-εd k20)1/2.当复阻抗匹配,即Z*L=ZR时,可以得到共振条件和相应的共振波长λm.
2结果讨论与分析
当结构未引进缺陷(即a=b=0)时,由图2 (a) 的透射谱可以看出,3个波谷对应的共振波长分别为λ=681,747,1 372 nm. 图2(b) 为λ=681 nm时的磁场分布,磁场强度主要集中在环形腔四边中心位置,对应TM2f模式. 图2(c) 为共振波长λ=747 nm时对应的TM2c模式,磁场强度主要集中在环形腔4个顶点位置,该模式是由于环形腔的4个转角使SPPs发生反射共振,导致相应的电磁能量有效地局域在环形腔内形成的. 图2(d) 为共振波长λ=1 372 nm时对应TM1模式. 根据传输线理论可以预测,改变环形腔的有效长度可以调控滤波器的频率特性. 结构中引入缺陷,在不改变结构总尺寸大小的情况下,能改变共振环的有效长度,从而达到调节滤波波长的目的.
为了验证上述预测理论,设缺陷宽度与深度相等,即a=b,研究缺陷边长对传输特性的影响. 结果显示,当0 图4分别给出TM1g,TM2g模式滤波波长与缺陷宽度a及缺陷深度b的关系. 固定缺陷深度b=50 nm,改变缺陷宽度a,发现随着a的增大,TM2g模式对应的滤波波长没有明显变化,而TM1g所对应的共振波长随宽度a单调递增,如图4(a)所示.固定缺陷宽度a=50 nm,改变缺陷深度b时,透射谱上出现3个波谷,分别对应TM2g,TM2c和TM1g模式,其中TM2g,TM1g模式对应的共振波长随深度b单调递增,如图4(b)所示.因此,通过改变缺陷的结构参数可以调节滤波波长.
最后研究缺陷设置在不同位置时该结构的传输特性. 在其他参数不变的情况下,取缺陷尺寸a=b=150 nm. 图5(a)和(b)分别为正立的凹字形结构与朝右的凹字形结构的透射谱.由图5可知,波长分别为716,864,1 314,1 830 nm处出现波谷,当共振波长分别为716,864 nm时发生二级谐振,对应模式分别为TM2c和TM2g;当波长分别为1 314,1 830 nm时发生一级谐振,分别对应TM1n和TM1g模式. 图6(a)~图6(h)为在2种情况下,4种模式对应的磁场分布,由图6(a)和(e)可知,波长716 nm对应TM2c模式,磁场均局域在谐振腔的4个角并无差异,然而,TM2g,TM1n,TM1g模式的磁场分布不同,其中TM2g,TM1g模式磁场局域在缺陷里,如图6(d)和图6(h)所示,这是由缺陷谐振环表面的环形电流引起的. 此外,对于2种不同缺陷位置,缺陷环与通波导间的耦合强度不同.
与正立的凹字形结构相比,朝右的凹字形缺陷在TM1n模式下谐振环与通道之间的耦合较弱,而TM1g模式下缺陷谐振环与通道波导间的耦合强度较强,因此调节缺陷位置可以有效控制谐振强度.
3结论
本文应用时域有限差分方法研究了基于MIM波导缺陷谐振环结构的传输特性. 结果表明,当设置缺陷时,破坏了环腔结构谐振腔原有的对称性,影响原有的几种共振模式,从而出现了新颖的滤波特性. 当改变缺陷宽度和深度时,可以有效调节不同模式所对应的滤波波长. 将缺陷尺寸调节到特定值时,产生了新的共振模式,提高了该结构的滤波性能. 最后研究了缺陷位置对共振模式的影响,缺陷位置不同时,通道波导与缺陷谐振环之间的耦合强度不同,因此通过调节缺陷的位置可以有效控制滤波强度. 以上结果将有助于设计复合结构滤波器,在集成光学器件设计方面具有潜在的应用价值.
参考文献
[1]OZBAY E. Merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311 (5758): 189-193.
[2]BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424 (6950): 824-830.
[3]RAETHER H. Surface plasmon on smooth and rough surfaces and on gratings[M]. Berling: SpringerVerlag, 1988:124-125.
[4]MAIER S A, KIK E G, ATWATER H A. Local detection of electromagnetic energy transport below the diffraction limit in the metal nanoparticle plasmon waveguides[J]. Nature Mater, 2003, 2(4): 229-232.
[5]TAKAHARA J, YAMAGISHI S, TAKI H. Guiding of a onedimensional optical beam with nanometer diameter [J]. Opt Lett,1997, 22(7): 474-475.
[6]MAIER S A. Plasmonic field enhancement and SERS in the effective mode volume picture[J]. Opt Express, 2006, 14 (5): 1957-1964.
[7]VERONIS G, FAN S. Bends and splitters in metaldielectricmetal subwavelength plasmonic waveguides[J]. Appl Phys Lett, 2005, 87(13): 131102.
[8]ZHAO H, GUANG X, HUANG J. Novel optical directional coupler based on surface plasmon polaritons[J]. Physica E, 2008, 40(10): 3025-3029.
[9]HOSSEINI A, NEJATI H, MASSOUD Y. Modeling and design methodology for metalinsulatormetal plasmonic Bragg reflectors[J]. Opt Express, 2008, 16(3): 1475-1480.
[10]LIU J Q, WANG L L, HE M D,et al.A wide bandgap plasmonic Bragg reflector[J]. Opt Express, 2008, 16(7): 4888-4894.
[11]TAO J, HUANG X, LIN X,et al.A narrowband subwavelength plasmonic waveguide filter with asymmetrical multiple teethshaped structure[J]. Opt Express, 2009, 17(16): 13989-13994.
[12]TAO J, HUANG X, LIN X,et al.Systematical research on characteristics of doubleside teethshaped nanoplasmonic waveguide filters[J]. J Opt Soc Am B, 2010, 27(2): 323-327.
[13]XIAO S, LIU L, QIU M. Resonator channel drop filters in a plasmonpolaritons metal[J]. Opt Express, 2006, 14(7): 2932-2937.
[14]LU H, LIU X, MAO D,et al.Tunable bandpass plasmonic waveguide filters with nanodisk resonators[J]. Opt Express, 2010, 18(17): 17922-17927.
[15]WANG G, LU H, LIU X,et al.Tunable multichannel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt Express, 2011,19(4): 3513-3518.
[16]HOSSEINI A, MASSOUD Y. Nanoscale surface Plasmon based resonator using rectangular geometry[J]. Appl Phys Lett, 2007, 90(18): 181102.
[17]WANG T, WEN X, YIN C,et al.The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Opt Express, 2009, 17(26): 24096-24101.
[18]PENG X, LI H, WU G,et al.Research on transmission characteristics of aperturecoupled square ring resonator based filter[J]. Opt Commun, 2013, 294: 368-371.
[19]王玲玲, 张振, 王柳,等.基于矩形谐振腔MIM波导结构的表面等离子体带阻滤波器[J]. 湖南大学学报:自然科学版,2012, 39(5): 65-68.
WANG Lingling, ZHANG Zhen, WANG Liu,et al.Study of the surface plasmon bandstop filter based on the structure of rectangular resonator MIM waveguide[J]. Journal of Hunan University: Natural Sciences,2012, 39(5): 65-68.(In Chinese)
[20]ZAND I, MAHIGIR A, PAKIZEH T,et al.Selectivemode optical nanofilters based on plasmonic complementary splitring resonators[J]. Opt Express, 2012, 20(7): 7516-7525.
[21]LIN X, HUANG X. Toothshaped plasmonic waveguide filters with nanometeric sizes[J]. Opt Lett, 2008, 33(23): 2874-2876.
[22]HAN Z, FORSBERG E, HE S. Surface plasmon Bragg gratings formed in metalinsulatormetal waveguides[J]. IEEE Photon Technol Lett, 2007, 19(2): 91-93.
[23]ZAND I, ABRISHAMIAN M S, BERINI P. Highly tunable nanoscale metalinsulatormetal split ring core ring resonators (SRCRRs)[J]. Opt Express, 2013, 21(1): 79-86.
[24]ECONOMOU E N. Surface plasmons in thin films[J]. Phys Rev,1969, 182: 539-554.
[13]XIAO S, LIU L, QIU M. Resonator channel drop filters in a plasmonpolaritons metal[J]. Opt Express, 2006, 14(7): 2932-2937.
[14]LU H, LIU X, MAO D,et al.Tunable bandpass plasmonic waveguide filters with nanodisk resonators[J]. Opt Express, 2010, 18(17): 17922-17927.
[15]WANG G, LU H, LIU X,et al.Tunable multichannel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt Express, 2011,19(4): 3513-3518.
[16]HOSSEINI A, MASSOUD Y. Nanoscale surface Plasmon based resonator using rectangular geometry[J]. Appl Phys Lett, 2007, 90(18): 181102.
[17]WANG T, WEN X, YIN C,et al.The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Opt Express, 2009, 17(26): 24096-24101.
[18]PENG X, LI H, WU G,et al.Research on transmission characteristics of aperturecoupled square ring resonator based filter[J]. Opt Commun, 2013, 294: 368-371.
[19]王玲玲, 张振, 王柳,等.基于矩形谐振腔MIM波导结构的表面等离子体带阻滤波器[J]. 湖南大学学报:自然科学版,2012, 39(5): 65-68.
WANG Lingling, ZHANG Zhen, WANG Liu,et al.Study of the surface plasmon bandstop filter based on the structure of rectangular resonator MIM waveguide[J]. Journal of Hunan University: Natural Sciences,2012, 39(5): 65-68.(In Chinese)
[20]ZAND I, MAHIGIR A, PAKIZEH T,et al.Selectivemode optical nanofilters based on plasmonic complementary splitring resonators[J]. Opt Express, 2012, 20(7): 7516-7525.
[21]LIN X, HUANG X. Toothshaped plasmonic waveguide filters with nanometeric sizes[J]. Opt Lett, 2008, 33(23): 2874-2876.
[22]HAN Z, FORSBERG E, HE S. Surface plasmon Bragg gratings formed in metalinsulatormetal waveguides[J]. IEEE Photon Technol Lett, 2007, 19(2): 91-93.
[23]ZAND I, ABRISHAMIAN M S, BERINI P. Highly tunable nanoscale metalinsulatormetal split ring core ring resonators (SRCRRs)[J]. Opt Express, 2013, 21(1): 79-86.
[24]ECONOMOU E N. Surface plasmons in thin films[J]. Phys Rev,1969, 182: 539-554.
[13]XIAO S, LIU L, QIU M. Resonator channel drop filters in a plasmonpolaritons metal[J]. Opt Express, 2006, 14(7): 2932-2937.
[14]LU H, LIU X, MAO D,et al.Tunable bandpass plasmonic waveguide filters with nanodisk resonators[J]. Opt Express, 2010, 18(17): 17922-17927.
[15]WANG G, LU H, LIU X,et al.Tunable multichannel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt Express, 2011,19(4): 3513-3518.
[16]HOSSEINI A, MASSOUD Y. Nanoscale surface Plasmon based resonator using rectangular geometry[J]. Appl Phys Lett, 2007, 90(18): 181102.
[17]WANG T, WEN X, YIN C,et al.The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Opt Express, 2009, 17(26): 24096-24101.
[18]PENG X, LI H, WU G,et al.Research on transmission characteristics of aperturecoupled square ring resonator based filter[J]. Opt Commun, 2013, 294: 368-371.
[19]王玲玲, 张振, 王柳,等.基于矩形谐振腔MIM波导结构的表面等离子体带阻滤波器[J]. 湖南大学学报:自然科学版,2012, 39(5): 65-68.
WANG Lingling, ZHANG Zhen, WANG Liu,et al.Study of the surface plasmon bandstop filter based on the structure of rectangular resonator MIM waveguide[J]. Journal of Hunan University: Natural Sciences,2012, 39(5): 65-68.(In Chinese)
[20]ZAND I, MAHIGIR A, PAKIZEH T,et al.Selectivemode optical nanofilters based on plasmonic complementary splitring resonators[J]. Opt Express, 2012, 20(7): 7516-7525.
[21]LIN X, HUANG X. Toothshaped plasmonic waveguide filters with nanometeric sizes[J]. Opt Lett, 2008, 33(23): 2874-2876.
[22]HAN Z, FORSBERG E, HE S. Surface plasmon Bragg gratings formed in metalinsulatormetal waveguides[J]. IEEE Photon Technol Lett, 2007, 19(2): 91-93.
[23]ZAND I, ABRISHAMIAN M S, BERINI P. Highly tunable nanoscale metalinsulatormetal split ring core ring resonators (SRCRRs)[J]. Opt Express, 2013, 21(1): 79-86.
[24]ECONOMOU E N. Surface plasmons in thin films[J]. Phys Rev,1969, 182: 539-554.