华中科技大学附属协和医院 袁莉 赖娇
袁莉 教授、主任医师、博士生导师,华中科技大学附属协和医院内分泌研究室主任,德国海德堡大学医学博士、博士后。中华医学会糖尿病分会全国委员兼流行病学组副组长,湖北省内分泌学会副主任委员。兼任《临床内科》杂志、《临床心血管》杂志、《华中科技大学学报》等杂志编委。长期致力于2型糖尿病病因机制及其慢性并发症防治的研究,造诣深厚。先后负责承担2项国家自然科学基金以及国家支撑计划、卫生部、教育部和省科技课题10余项,数次获得省市科技进步奖,在国内外核心期刊上发表论著260余篇,SCI收录文章30余篇。
肠促胰素类药物由于其良好的降糖效应及其安全性而广受国内外关注。这类药物不仅控制血糖良好、低血糖发生率低,还可减轻体重,在一定程度上改善胰岛细胞功能、减轻胰岛素抵抗[1]。同时,新近研究显示,肠促胰素类药物还具有一系列降糖外的作用。本文将主要介绍肠促胰素类药物降糖之外的研究进展。
胰高血糖素样肽-1(glucagonlike peptide -1,GLP-1)是一种主要在肠道L细胞(它主要分布于回肠和结肠黏膜)分泌产生的肠促胰岛素,由胰高血糖素原基因翻译后经特异性剪切,含30个氨基酸残基组成的多肽,与胰高血糖素的氨基酸序列有50%同源性,故而得名,通过与特异性的GLP-1受体(GLP-1R)相结合从而发挥生物学作用[2,3]。GLP-1受体分布可能存在物种差异[2,4]。目前明确的是GLP-1受体在体内广泛分布于胰岛、脑、心脏、肾脏、胃肠道、肺等器官组织,而在脂肪、肌肉及肝脏组织中的分布尚有争议。
当食物进入胃肠道时可刺激肠道L细胞短时间内快速分泌GLP-1,促进摄入的营养素的快速处理,同时生成的GLP-1与特异性受体结合后对全身多个器官组织产生一系列生理作用[5]。
GLP-1发挥对神经元细胞的增殖,新生和抗凋亡作用,刺激神经元轴突生长,促进神经生长因子诱导的细胞分化,并提高神经生长因子从PC12细胞撤出后的细胞存活率,另外GLP-1受体分布在与食欲调节关系密切的下丘脑室旁核、垂体等处,受体激活后可抑制食欲[5,6]。
GLP-1与β细胞表面的GLP-1R结合后激活环磷酸腺苷(cyclic AMP,cAMP)、蛋白激酶A(protein kinase A,PKA)及磷脂酰肌醇-3-激酶(phosphotidylinositol 3-kinase,Pl3K)等信号通路,增强葡萄糖介导的胰岛素分泌[3,7],降低血糖。同时调节胰岛素基因的活性,促进胰岛素合成与分泌,同时还发挥抑制胰高血糖素分泌,增加β细胞的生长、增殖和分化,和抑制β细胞凋亡的作用[8-14]。
GLP-1呈现出对五肽胃泌素、膳食刺激的胃酸分泌和胃排空有强效抑制作用, GLP-1通过抑制迷走神经而抑制胃和十二指肠平滑肌蠕动,增加幽门部的压力,从而延缓胃排空,抑制胃酸分泌,延缓食物吸收,降低餐后高血糖[15]。
研究发现,GLP-l在肝脏通过激活Pl3K、蛋白激酶B(protein kinase B,PKB)、蛋白激酶C(protein kinase C,PKC)和l型蛋白磷酸酶(PP-1)等信号通路增加糖原合酶a活性,促进肝糖原合成,抑制肝葡萄糖生成。
GLP-1刺激脂肪组织和肌肉对葡萄糖的摄取和储存,增加骨骼肌糖原合成,GLP-1治疗还可降低腹围及皮下脂肪面积[16],增加外周组织对胰岛素的敏感性,改善胰岛素抵抗[17-19]。
GLP-1通过胃排空的减慢和胰高血糖素分泌的葡萄糖依赖性抑制以及外周组织对胰岛素敏感性的提高发挥糖调节作用,使血糖维持稳态[5]。
GLP-1可提高心脏功能(即收缩压、舒张压、平均动脉血压和心率的增加),包括增加心输出量和左心室射血分数[5,6,20]。
一项纳入25个随机对照试验的荟萃分析显示,患有或无糖尿病者以及体质指数(body mass index,BM I)≥25kg/m2者在接受GLP-1受体激动剂治疗至少20周后比接受其他治疗(安慰剂、口服降糖药、胰岛素)者获得更大的体重减轻[21]。关于2型糖尿病,AM IGO三年延伸研究及LEAD-1~6研究均显示患者在使用GLP-1受体激动剂治疗后体重下降[17,18,22-25]。而在非糖尿病的肥胖患者中,亦有研究显示利拉鲁肽呈剂量依赖性减轻体重,范围从4.8~7.2kg(平均体重)[26]。GLP-1减重的作用与其减少食欲、增加饱腹感和减少能量摄入有关。一项双盲交叉对照研究的结果表明,GLP-1通过抑制2型糖尿病患者的饥饿感显著减少能量摄取,与安慰剂组相比,GLP-1组能量摄取降低27%(P=0.034),增加饱腹感(P=0.026),同时通过增加2型糖尿病患者的饱腹感、减少能量摄入,GLP-1对减少食欲的效果显著[27]。在健康志愿者中的数据发现,外源性的GLP-1于人类能量摄取和食欲控制可发挥生理调节作用[28]。另外,还有多项研究显示在体瘦者和超重者中GLP-1均可抑制随意能量摄入,且该效应是呈剂量依赖性的,不受GLP-1输注的影响[29]。研究发现,GLP-1可通过迷走神经调节参与饱食信号的传导。此外,GLP-1受体存在于脑中的多个区域,在脑干(极后区和穹窿)的受体被认为涉及诱导饱腹感,不管胃中是否有食物存在[30]。另有实验发现迷走神经根除术和脑干-下丘脑截断术后大鼠摄食量明显减少,表明GLP-1抑制食欲减少能量摄入的机制与迷走神经-脑干-下丘脑相关[31]。生理水平的GLP-1可通过延迟胃排空、减少胃酸分泌、增加饱腹感以减少机体每次食物摄入量、延长进食间隔。临床研究表明,GLP-1受体激动剂还可以通过血糖依赖性控制胰岛素分泌、恢复第一时相胰岛素分泌、抑制胰高血糖素分泌和减少肝糖输出等多种途径达到持续控制HbA1c并降低体重的临床疗效[2]。
Ban等[4]通过组织染色,除胰岛外可见GLP-1R在小鼠心内膜、血管内皮、平滑肌细胞、心肌细胞、左室、右室、室间隔和心房中均有分布,其中于心内膜分布最多,GLP-1R存在于小鼠心血管系统的多个部位,这是GLP-1可以作用于心血管的基础。活化的GLP-1R在心血管功能障碍的临床前模型中发挥多种心血管保护作用,人类受试者的短期研究似乎也证明GLP-1对缺血性心脏疾病患者的心脏功能有温和而有益的作用。GLP-1主要通过增加葡萄糖利用、减少脂肪酸代谢、增强葡萄糖刺激的胰岛素分泌、抑制胰高血糖素分泌等,从而发挥对心血管系统的直接和间接作用[32]。
2.1 降低血压 关于艾塞那肽治疗6 个月的荟萃分析显示,2171例2型糖尿病患者使用艾塞那肽治疗后收缩压(systolic blood pressure,SBP )显著降低[33]。另一项荟萃分析也显示,经GLP-1治疗至少20周后,受试者的收缩压及舒张压均有所下降[21]。LEAD-1~6研究分析显示2型糖尿病患者的收缩压每下降5.6mmHg,可减少9%的主大血管和微血管事件风险以及18%的心血管疾病死亡风险[34]。GLP-1可渗入血脑屏障,刺激迷走神经纤维(通过肠道和肝门静脉),脑干和下丘脑的信号传导激活迷走神经的传出纤维和交感神经元,继而影响心率、心脏的收缩力、血管张力、儿茶酚胺的分泌,以及肾脏中尿液和钠排出,进而调节血压。其对血压的影响机制主要有:①改善血管内皮功能;②促进尿排泄和尿钠排泄;③直接作用于血管上的GLP-1R使血管舒张;④激活神经通路而降低交感神经系统活性;⑤激动GLP-1R受体使体重降低;⑥增加胰岛素导致血管舒张[35]。
2.2. 减少心肌梗死面积,提高存活率,减少心肌细胞凋亡 Noyan-Ashraf等[35]的研究显示给雄性C57BL/6糖尿病小鼠每天2次利拉鲁肽(对照组给予生理盐水)治疗7d后诱导心肌梗死,利拉鲁肽可明显提高心肌梗死后小鼠存活率,预防心脏破裂(12/60 vs 46/60,P=0.0001),减少心肌梗死面积(21%±2% vs 29%±3%,P=0.02),增加心输出量和每搏输出量(12.4±0.6m l/m in vs 9.7±0.6m l/m in,P=0.002),且在停止治疗的第4天仍能观察到利拉鲁肽对心脏的保护作用。其机制可能为利拉鲁肽在心脏激活心脏保护信号通路,诱导cAMP形成,抑制胱天蛋白酶的激活,增强细胞保护作用,减少心肌细胞凋亡,增加心肌葡萄糖摄取,改善内皮依赖性血流介导的血管扩张(flow-mediated dilation,FMD),增加心肌血流灌注,减轻心肌缺血再灌注损伤(ischem ia reperfusion injury,I/R injury),同时还调节心脏保护性基因的活性表达[4,36-38]。
2.3 改善血脂谱,降低TC和LDL-C 在1项长达三年半的研究中发现,艾塞那肽在降低患者体重的同时可降低12%的甘油三酯(triglyceride,TG)、6%的低密度脂蛋白胆固醇(low density lipoprotein cholesterol,LDL-C)、5%的总胆固醇(total cholesterol,TC),且增加24%的高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)[24]。另外,在一项8个月的前瞻性试验研究和DURATION-5研究中,艾塞那肽治疗可使TC和LDL-C水平显著下降[39,40]。
2.4 改善氧化应激、减少炎症 GLP-1能合理控制氧化应激的发生,减少炎症反应[41],显著减少颈动脉内中膜厚度(intima-media thickness,IMT)[39]。GLP-1及其类似物通过一氧化氮(nitric oxide,NO)和非NO途径,使NO合成增多,同时GLP-1还能改善内皮功能,进而使动脉内膜增生减缓,延缓动脉粥样硬化的发生和进展[32]。
2.5 GLP-1潜在的心血管保护作用机制 动脉粥样硬化是重要的心血管危险因素,GLP-1通过多种直接或间接途径减少粥样斑块形成:①GLP-1 抑制食欲,延缓胃排空,减少脂类、碳水化合物等摄入[32];②非胃排空依赖性地调节肠淋巴流,减少载脂蛋白B-48(ApoB-48)生成,减少空腹TG,尤其是极低密度脂蛋白胆固醇
(very low density lipoprotein cholesterol,VLDL-C),减少游离脂肪酸分泌[42,43];③抑制单核/巨噬细胞在动脉壁上的浸润、聚集和泡沫化,抑制TNF-α等炎性介质的合成及分泌[44];④减少活性氧(reactive oxygen species,ROS)生成,促进NO分泌,减轻局部炎症,保护内皮细胞[32,45];⑤减少主动脉、冠脉平滑肌细胞增生[32],减轻动脉粥样硬化。
3.1 改善血管内皮 有研究显示,给予维格列汀、艾塞那肽、胰岛素治疗12周后,肠促胰素类药物能显著改善糖尿病大鼠心脏微血管的完整性,显著减少穿过血管内皮细胞的硝酸镧,改善内皮细胞通透性,且此心脏内皮细胞保护作用不依赖降糖作用[46]。GLP-1能剂量依赖性的抑制ROS生成并降低NADPH活性,特别是 GLP-1 在10-8mol/L浓度下对ROS及NADPH的抑制最显著[46]。GLP-1还能明显减少半胱氨酸天冬氨酸蛋白酶3(caspase-3)在高糖诱导的CMECs内的表达,减少心肌内皮细胞凋亡(46.1%±8.5% vs 29.8%±5.3%,P<0.05)[46]。一项随机交叉单盲的试验性研究显示,GLP-1改善FMD,从而改善2型糖尿病合并冠心病患者的内皮功能[47]。Golpon等[48]的研究也证明了GLP-1对血管的舒张功能,同时认为这种功能是NO依赖性的。Gaspari等[49]在体外试验显示利拉鲁肽可减弱1型纤溶酶原激活物抑制剂(PAI-1)和血管黏附分子(VAM)在人血管内皮细胞(hVECs)上的表达,并且对糖尿病早期血管病变内皮细胞功能障碍(ECD)提供细胞保护;在体内试验中利拉鲁肽治疗可增加内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)和降低细胞间黏附分子-1(ICAM-1)在血管内皮细胞中的表达,经治疗的小鼠表现出显著改善血管内皮功能,且呈GLP-1R依赖效应。
3.2 改善微循环
3.2.1 胰岛微循环 胰岛是分散在整个胰腺的高度血管化结构,所包含有的毛细血管网是胰腺外分泌部的5~10倍[50],其体积大约只有整个胰腺的1%,但其血流灌注却占胰腺的7%~10%[51]。OLETF和LETO大鼠的动物实验发现,在非糖尿病大鼠胰岛内,胰岛微血管致密成簇,形成典型的球状结构,β细胞均匀弥散分布;肥胖的糖尿病大鼠中,胰岛略纤维化,胰岛微血管可形成球状结构,但毛细血管网数量减少,β细胞成团散布但数量相对丰富;消瘦的糖尿病大鼠胰岛大部分被增生的结缔组织占据,胰岛微血管数量少且稀疏,β细胞稀疏分布[52]。糖耐量异常和糖尿病动物模型均存在胰岛微循环异常,长期胰岛高灌注和由此产生的毛细血管内高压导致毛细血管功能和结构的破坏,造成胰岛血流量(islet blood f l ow,IBF)相对或绝对不足且局部血流调节受损,能进一步损伤胰岛功能。GLP-1受体激动剂降低大鼠高糖负荷后IBF,从而逆转胰岛毛细血管内高压,可能是其促进β细胞增殖分化,抑制β细胞凋亡以外的另一个β细胞保护机制[53]。另外,有研究显示GLP-1能抑制脂质过氧化,还原内源性抗氧化剂的活性,从而逆转oxLDL对小鼠胰岛内皮细胞造成的损伤[54]。
3.2.2 肾脏微循环 糖尿病早期即存在急性肾小球肥大,随着系膜细胞基质增加,毛细血管表面积减少,滤过面积减少。基底膜增厚导致了通透性的改变,滤过屏障损伤,肾小球细胞外基质的堆积,最终导致肾小球栓塞、纤维化、滤过能力下降、尿蛋白增多[55]。M ima等[56]的免疫双标研究表明,糖尿病小鼠与非糖尿病小鼠相比肾小球内皮细胞GLP-1R表达降低了43%±12%。同时M ima[56]的研究也显示艾塞那肽可以抑制AngⅡ诱导的PAI-1增加,抑制氧化应激,显著降低糖尿病小鼠的尿蛋白,减少糖尿病小鼠胞外基质堆积,延缓糖尿病肾病进展。
在动物模型中发现了使用GLP-1治疗减少脂肪肝的证据[57],而12个RCT研究的荟萃分析,3900例病例,也发现经利拉鲁肽治疗≥20周后,ALT下降(-2.2IU/L,-3.6~0.9)[21]。同时,另一研究显示艾塞那肽治疗3年,ALT显著降低,作用可长期维持,且ALT改善程度与体重减轻相关,体重下降越多,ALT降低越明显[21]。一项纳入LEAD-1~6研究的荟萃分析显示,GLP-1可改善2 型糖尿病患者的肝功能且具有剂量依赖性[58]。另外,2006年的一个病例报告,一例59岁的2型糖尿病患者在接受GLP-1受体激动剂(艾塞那肽)治疗44周后,经肝脏光谱测定肝脏平均脂肪含量从15.8%下降到4.3%[59]。还有一些研究发现,GLP-1减少肥胖小鼠肝细胞脂肪[60],明显改善肝细胞脂肪变性[61],在TZD基础上能进一步减少肝脏脂肪。越来越多的证据表明,GLP-1具有逆转或延缓非酒精性脂肪肝进展至肝硬化的潜在作用。
其机制可能是通过分布于肝细胞上的受体发挥作用,减少肝细胞内脂滴沉着,降低肝细胞内TG,提高胰岛素的敏感性,改善肝细胞脂肪变性[60,61];降低肝细胞内质网应激反应,来防止肝细胞脂肪酸相关性死亡,同时通过激发自噬作用减低肝细胞的脂负荷,从而延缓肝脏脂肪变性的发展[57]。
随着对GLP-1的不断研究,发现中枢孤束核尾部亦存在能分泌GLP-1的GLP-1神经元。Perry等[62,63]研究显示GLP-1在大鼠嗜铬细胞瘤细胞和人神经母细胞瘤细胞系具有刺激神经突向外生长的作用,类似神经生长因子(nerve grow th factor,NGF),并且GLP-1通过增加cAMP的释放,减少谷氨酸诱导的海马神经元凋亡。用施旺细胞条件培养基培养小鼠背根神经节(dorsal root ganglion,DRG)以模仿糖尿病神经病变的实验中明确了GLP-1R在DRG神经元中的表达,同时发现GLP-1R激动剂可显著促进DRG受损的神经突生长[64]。研究发现,GLP-1能提高小鼠的空间学习、认知和记忆功能, 在Morris水迷宫(Morris water maze, MWM)实验中观察到GLP-1改善了大鼠的行为:大鼠用更短的途程找到目标(平台),当去掉平台后大鼠在正确区域停留时间更长。此试验显示GLP-1可增强联想学习和空间学习,且这些作用能被GLP-1R拮抗剂阻断;通过海马基因转移增加GLP-1R的表达能有效地增强学习和记忆;联想学习模式的训练还可使GLP-1R转录合成相应上调[65]。此外,有研究表明GLP-1可使β-淀粉样蛋白斑在皮层减少40%~50%,改善阿兹海默病模型小鼠的认知功能[66]。
综上所述,GLP-1R在体内分布广泛,不仅在调节血糖稳态中发挥重要作用,也有越来越多降糖外效应的研究证据,包括:①减轻体重,增加饱感,减少食欲和能量摄入;②心血管与内皮的保护作用;③改善微循环的作用;④减少肝内脂肪,改善非酒精性脂肪肝的作用;⑤一定的神经保护作用。这些作用的研究机制虽然尚不清楚,有些是直接通过GLP-1受体,有些可能是降糖和减重的间接作用,需要更长期的临床验证,但是GLP-1R激动剂的降糖及降糖外作用在未来的临床应用将有更广阔的前景。
[1] 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2013)[J].中华糖尿病杂志, 2014(6): 447-498.
[2] Holst JJ. The physiology of glucagon-like peptide 1[J]. Physiological reviews, 2007, 87(4): 1409-1439.
[3] Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans[J]. American journal of physiology Endocrinology and metabolism, 2004, 287(2): E199-206.
[4] Ban K, Noyan-Ashraf MH, Hoefer J, et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 recep tor-dependent and -independent pathways[J]. Circulation, 2008, 117(18): 2340-2350.
[5] Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP[J]. Gastroenterology, 2007, 132(6): 2131-2157.
[6] Gallw itz B. Glucagon-like peptide-1 analogues for type 2 diabetes mellitus: current and emerging agents[J]. Drugs, 71(13): 1675-1688.
[7] M eloni AR, DeYoung MB, Lowe C, et al. GLP-1 receptor activated insulin secretion from pancreatic beta-cells: mechanism and glucose dependence[J]. Diabetes, Obesity & Metabolism, 2013, 15(1): 15-27.
[8] D rucker DJ. G lucagon-like pep tide-1 and the islet beta-cell: augmentation of cell proliferation and inhibition of apoptosis[J]. Endocrinology, 2003, 144(12): 5145-5148.
[9] Zhou J, Wang X, Pineyro MA, et al. G lucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulinproducing cells[J]. Diabetes, 1999, 48(12): 2358-2366.
[10] Perfetti R, Zhou J, Doyle ME, et al. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats[J]. Endocrinology, 2000, 141(12): 4600-4605.
[11] Buteau J, El-Assaad W, Rhodes CJ, et al. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity[J]. Diabetologia, 2004, 47(5): 806-815.
[12] Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets[J]. Endocrinology, 2003, 144(12): 5149-5158.
[13] Buteau J, Roduit R, Susini S, et al. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1(PDX-1) DNA binding activity in beta(INS-1)-cells[J]. Diabetologia, 1999, 42(7): 856-864.
[14] Leech CA, Holz GG, Chepurny O, et al. Expression of cAMPregulated guanine nucleotide exchange factors in pancreatic beta-cells. Biochem ical and biophysical research communications[J]. 2000, 278(1): 44-47.
[15] Schirra J, Nicolaus M, Woerle HJ, et al. GLP-1 regulates gastroduodenal motility involving cholinergic pathways[J]. Neurogastroenterology and Motility: the Of f i cial Journal of the European Gastrointestinal Motility Society, 2009, 21(6): 609-18, e21-22.
[16] Suzuki D, Toyoda M, Kimura M, et al. Effects of liraglutide, a human glucagon-like peptide-1 analogue, on body weight, body fat area and body fat-related markers in patients w ith type 2 diabetes mellitus[J]. Internal Medicine, 2013, 52(10): 1029-1034.
[17] M arre M, Shaw J, Brandle M, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaem ic and weight control compared w ith adding rosiglitazone or placebo in subjects w ith type 2 diabetes(LEAD-1 SU)[J]. Diabetic Medicine: a Journal of the British Diabetic Association, 2009, 26(3): 268-278.
[18] Garber A, Henry R, Ratner R, et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes(LEAD-3 Mono): a random ised, 52-week, phase III, double-blind, parallel-treatment trial[J]. Lancet, 2009, 373(9662): 473-481.
[19] Russell-Jones D, Vaag A, Schm itz O, et al. Liraglutide vs insulin glargine and placebo in combination w ith metform in and sulfonylurea therapy in type 2 diabetes mellitus(LEAD-5 met+SU): a randomised controlled trial[J]. Diabetologia, 2009, 52(10): 2046-2055.
[20] Nikolaidis LA, Elahi D, Shen YT, et al. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs w ith dilated cardiom yopathy[J]. American Journal of Physiology Heart and Circulatory Physiology, 2005, 289(6): H2401-2408.
[21] Vilsboll T, Christensen M, Junker AE, et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and metaanalyses of random ised controlled trials[J]. Bri Med J, 2012, 344: d7771.
[22] Nauck M, Frid A, Hermansen K, et al. Ef f i cacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination w ith metform in, in type 2 diabetes: the LEAD(liraglutide effect and action in diabetes)-2 study[J]. Diabetes Car, 2009, 32(1): 84-90.
[23] Zinman B, Gerich J, Buse JB, et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination w ith metformin and thiazolidinedione in patients with type 2 diabetes(LEAD-4 Met+TZD)[J]. Diabetes Care, 2009, 32(7): 1224-1230.
[24] K lonoff DC, Buse JB, Nielsen LL, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients w ith type 2 diabetes treated for at least 3 years[J]. Current M edical Research and Opinion, 2008, 24(1): 275-286.
[25] Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide tw ice a day for type 2 diabetes: a 26-week random ised, parallel-group, multinational, open-label trial(LEAD-6)[J]. Lancet, 2009, 374(9683): 39-47.
[26] Astrup A, Rossner S, Van Gaal L, et al. Effects of liraglutide in the treatment of obesity: a random ised, double-blind, placebo-controlled study[J]. Lancet, 2009, 374(9701): 1606-1616.
[27] Gutzw iller JP, Drewe J, Goke B, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients w ith diabetes mellitus type 2[J]. The American Journal of Physiology, 1999, 276(5 Pt 2): R1541-1544.
[28] Flint A, Raben A, Astrup A, et al. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans[J]. The Journal of Clinical Investigation, 1998, 101(3): 515-520.
[29] Verdich C, Flint A, Gutzw iller JP, et al. A meta-analysis of the effect of glucagon-like peptide-1(7-36) amide on ad libitum energy intake in humans[J]. The Journal of Clinical Endocrinology and M etabolism, 2001, 86(9): 4382-4389.
[30] A lvarez E, M artinez MD, Roncero I, et al. The expression of GLP-1 receptor mRNA and protein allow s the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem[J]. Journal of Neurochemistry, 2005, 92(4): 798-806.
[31] Abbott CR, M onteiro M, Small CJ, et al. The inhibitory effects of peripheral adm inistration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagalbrainstem-hypothalam ic pathway[J]. Brain Research, 2005, 1044(1): 127-131.
[32] Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system[J]. Endocrine Reviews, 2012, 33(2): 187-215.
[33] Okerson T, Yan P, Stonehouse A, et al. Effects of exenatide on systolic blood pressure in subjects w ith type 2 diabetes[J]. American Journal of Hypertension, 2010, 23(3): 334-339.
[34] Davies MJ, Kela R, Khunti K. Liraglutide - overview of the preclinical and clinical data and its role in the treatment of type 2 diabetes[J]. Diabetes, Obesity & Metabolism, 2011, 13(3): 207-220.
[35] Sivertsen J, Rosenmeier J, Holst JJ, et al. The effect of glucagon-like peptide 1 on cardiovascular risk[J]. Nature Reviews Cardiology, 2012, 9(4): 209-222.
[36] Noyan-Ashraf MH, M omen MA, Ban K, et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in m ice[J]. Diabetes, 2009, 58(4): 975-983.
[37] Timmers L, Henriques JP, de Kleijn DP, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury[J]. Journal of the American College of Cardiology, 2009, 53(6): 501-510.
[38] Sonne DP, Engstrom T, Treim an M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) am ide against ischem iareperfusion injury in rat heart[J]. Regulatory Peptides, 2008, 146(1-3): 243-249.
[39] Rizzo M, Chandalia M, Patti AM, et al. Liraglutide decreases carotid intima-media thickness in patients w ith type 2 diabetes: 8-month prospective pilot study[J]. Cardiovascular Diabetology, 2014, 13(1): 49.
[40] Blevins T, Pullman J, Malloy J, Yet al. DURATION-5: exenatide once weekly resulted in greater improvements in glycemic control compared w ith exenatide tw ice daily in patients w ith type 2 diabetes[J]. The Journal of Clinical Endocrinology and Metabolism, 2011,96(5): 1301-1310.
[41] Clarke SJ, M cCormick LM, Dutka DP. Optimising cardioprotection during myocardial ischaem ia: targeting potential intracellular pathways w ith glucagon-like peptide-1[J]. Cardiovascular Diabetology, 2014, 13: 12.
[42] Qin X, Shen H, Liu M, et al. GLP-1 reduces intestinal lymph flow, triglyceride absorption, and apolipoprotein production in rats[J]. American Journal of Physiology Gastrointestinal and LiverPhysiology, 2005, 288(5): G943-949.
[43] Hsieh J, Longuet C, Baker CL, et al. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice[J]. Diabetologia, 2010, 53(3): 552-561.
[44] Arakawa M, M ita T, Azuma K, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagonlike peptide-1 receptor agonist, exendin-4[J]. Diabetes, 2010, 59(4): 1030-1037.
[45] Erdogdu O, Nathanson D, Sjoholm A, et al. exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor[J]. Molecular and Cellular Endocrinology, 2010, 325(1-2): 26-35.
[46] Wang D, Luo P, Wang Y, et al. Glucagon-like peptide-1 protects against cardiac m icrovascular injury in diabetes via a cAMP/PKA/Rhodependent mechanism[J]. Diabetes, 2013, 62(5): 1697-1708.
[47] Nystrom T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients w ith stable coronary artery disease[J]. American Journal of Physiology Endocrinology and Metabolism, 2004, 287(6): E1209-1215.
[48] Golpon HA, Puechner A, Welte T, et al. Vasorelaxant effect of glucagonlike peptide-(7-36)amide and amylin on the pulmonary circulation of the rat[J]. Regulatory Peptides, 2001, 102(2-3): 81-86.
[49] Gaspari T, Liu H, Welungoda I, et al. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse m odel[J]. Diabetes & Vascular Disease Research: Of f i cial Journal of the International Society of Diabetes and Vascular Disease, 2011, 8(2): 117-124.
[50] El-Gohary Y, Sims-Lucas S, Lath N, et al. Three-dimensional analysis of the islet vasculature[J]. Anatom ical Record, 2012, 295(9): 1473-1481.
[51] Olsson R, Carlsson PO. The pancreatic islet endothelial cell: emerging roles in islet function and disease[J]. The InternationalJournal of Biochemistry & Cell Biology, 2006, 38(5-6): 710-714.
[52] M izuno A, Noma Y, Kuwajima M, et al. Changes in islet capillary angioarchitecture coincide w ith im paired B-cell function but not w ith insulin resistance in male Otsuka-Long-Evans-Tokushima fatty rats: dimorphism of the diabetic phenotype at an advanced ages[J]. Metabolism: Clinical and Experimental, 1999, 48(4): 477-483.
[53] Wu L, Olverling A, Huang Z, et al. GLP-1, exendin-4 and C-peptide regulate pancreatic islet m icrocirculation, insulin secretion and glucose tolerance in ratss[J]. Clinical science, 2012, 122(8): 375-384.
[54] Liu FQ, Zhang XL, Gong L, et al. Glucagon-like peptide 1 protects m icrovascular endothelial cells by inactivating the PARP-1/iNOS/NO pathways[J]. Molecular and Cellular Endocrinology, 2011, 339(1-2): 25-33.
[55] Rask-M adsen C, K ing GL. Vascular com p lications of diabetes: mechanisms of injury and protective factors[J]. Cell Metabolism, 2013, 17(1): 20-33.
[56] M ima A, Hiraoka-Yamomoto J, Li Q, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes[J]. Diabetes, 2012 ,61(11): 2967-2979.
[57] Sharma S, Mells JE, Fu PP, et al. GLP-1 analogs reduce hepatocyte steatosis and im prove survival by enhancing the unfolded protein response and promoting macroautophagy[J] PloS One, 2011, 6(9): e25269.
[58] A rmstrong MJ, Houlihan DD, Rowe IA, et al. Safety and efficacy of liraglutide in patients w ith type 2 diabetes and elevated liver enzymes: individual patient data meta-analysis of the LEAD program[J]. A limentary Pharmacology & Therapeutics, 2013, 37(2): 234-242.
[59] Tushuizen ME, Bunck MC, Pouwels PJ, et al. Incretin m imetics as a novel therapeutic option for hepatic steatosis[J]. Liver International: Official Journal of the International Association for the Study of the Liver, 2006, 26(8): 1015-1017.
[60] Ding X, Saxena NK, Lin S, et al. exendin-4, a glucagon-like protein-1(GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob m ice[J]. Hepatology, 2006, 43(1): 173-181.
[61] Gupta NA, Mells J, Dunham RM, et al. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway[J]. Hepatology, 2010, 51(5): 1584-1592.
[62] Perry T, Haughey NJ, Mattson MP, et al. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4[J]. The Journal of Pharmacology and Experimental Therapeutics, 2002, 302(3): 881-888.
[63] Perry T, Lahiri DK, Chen D, et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve grow th factor-mediated differentiation in PC12 cells[J]. The Journal of Pharmacology and Experimental Therapeutics, 2002, 300(3): 958-966.
[64] Himeno T, Kam iya H, Naruse K, et al. Bene f i cial effects of exendin-4 on experimental polyneuropathy in diabetic m ice[J]. Diabetes, 2011, 60(9): 2397-2406.
[65] During MJ, Cao L, Zuzga DS, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection[J]. Nature medicine, 2003, 9(9):1173-1179.
[66] M cClean PL, Parthsarathy V, Faivre E, et al. The diabetes drug liraglutide prevents degenerative processes in a mouse model of A lzheimer's disease[J]. The Journal of Neuroscience: the of f i cial journal of the Society for Neuroscience, 2011, 31(17): 6587-6594.