初中数学课精彩导入之我见

2014-08-07 17:06孙建喜
都市家教·下半月 2014年5期
关键词:交点内角数学课

孙建喜

【摘要】常言道:“万事开头难”。要想上好一堂数学课,良好的开端是成功的一半。20多年来,我一直在努力探索和试验,总结出了数学课的几种导入方法,仅供各位同仁参考。

【关键词】教学导入运用;导入发的分解

一、温固知新导入法

温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲切割定理时,先复习相交弦定理内容及证明,即“圆”内两条相交弦被交点分成的两条線段长的积相等。然后移动两弦使其交点在圆外有三种情况。这样学生较易理解切割线定理、推论的数学表达式,在此基础上引导学生叙述定理内容,并总结圆幂定理的共同处是表示线段积相等。区别在于相交弦定理是交点内分线段,而切割线定理,推论是外分线段、切线上定理的两端点重合。这样导入,学生能从旧知识的复习中,发现一串新知识,并且掌握了证明线段积相等的方法。

二、类比导入法

在讲相似三角形性质时,可以从全等三角形性质为例类比。全等三角形的对应边、对应角、对应线段、对应周长等相等。那么相似三角形这几组量怎么样?这种方法使学生能从类推中促进知识的迁移,发现新知识。

三、亲手实践导入法

亲手实践导入法是组织学生进行实践操作,通过学生自己动手动脑去探索知识,发现真理。例如在讲三角形内角和为180°时,让学生将三角形的三个内角剪下拼在一起。从而从实践中总结出三角形内角和为180°,使学生享受到发现真理的快乐。

四、反馈导入法

根据信息论的反馈原理,一上课就给学生提出一些问题,由学生的反馈效果给予肯定或纠正后导入新课。如在上直角三角形习题课时,课前可以先拟一个有代表性的习题让学生讨论。

五、设疑式导入法

设疑式导入法是根据中学生追根求源的心理特点,一上课就给学生创设一些疑问,创设矛盾,设置悬念,引起思考,使学生产生迫切学习的浓厚兴趣,诱导学生由疑到思,由思到知的一种方法。例如:有一个同学想依照亲戚家的三角形玻璃板割一块三角形,他能不能把玻璃带回家就割出同样的一块三角形呢?同学们议论纷纷。然后,我向同学们说,要解决这个问题要用到三角形的判定。现在我们就解决这个问题——全等三角形的判定。

六、演示教具导入法

演示教具导入法能使学生把抽象的东西,通过演示教具形象、具体、生动、直观地掌握知识。例如:在讲弦切角定义时,先把圆规两脚分开,将顶点放在事先在黑板上画好的圆上,让两边与园相交成圆周角∠BAC,当∠BAC的一边不动,另一边AB绕顶点A旋转到与圆相切时,让学生观察这个角的特点,是顶点在圆上一边与圆相交,另一边与圆相切。它与圆周角不同处是其中一条边是圆的切线。这种教学方法,使学生印象深,容易理解,记得牢。

七、直接导入法

它是一上课就把要解决的问题提出来的一种方法。如在讲切割定理时,先将定理的内容写在黑板上,让学生分清已知求证后,师生共同证明。

八、强调式导入法

根据中学生对有意义的东西感兴趣的特点,一上课就叙述本课或本章的重要性的一种方法。例如:三角形是平面几何的重点,而圆是平面几何重点的重点,它在中考试题中占有重要地位,是将来学习深造的基础。今天,我们就学习,第七章圆。总之,数学的导入法很多,其关键就是要创造最佳的课堂气氛和环境,充分调动内在积极因素,激发求知欲,使学生处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。

采用那一种方法导入新课,因课而异、因人而异,不是一层不变的,所以在实际教学中我们要根据授课内容,授课学生选择更适合自己的导入方法,让自己的课讲的更加精彩。

猜你喜欢
交点内角数学课
多边形内角和再探
三角与数列试题精选
初中数学课导入“八法”
三角形分割问题
阅读理解
有趣的数学课
借助函数图像讨论含参数方程解的情况
多边形内外角问题的巧解
试析高中数学中椭圆与双曲线交点的问题
让学生爱上数学课