岳海青
【摘要】数学思维是人脑和数学对象(空间形式、数量关系、结构关系)交互作用并按照一般思维规律认识数学内容的内在理性活动。数学知识具有严谨性、抽象性和系统性。数学的直觉思维是人的感性认识到理性认识的过程,是数学分析思维的基础。
【关键词】直觉思维;中学数学;培养
一、直觉思维的意义
直觉思维是指对一个问题未经逐步分析,仅依据内因的感知迅速地对问题答案做出判断,猜想、设想,或者在对疑难百思不得其解之时,突然对问题有“灵感”和“顿悟”,甚至对未来事物的结果有“预感”、“预言”等都是直觉思维。 直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象做出的敏锐而迅速的假设、猜想或判断,它省去了一步一步分析推理的中间环节,而采取了“跳跃式”的形式。它是一瞬间的思维火花,是长期积累的一种升华,是思维过程的高度简化,但是它却清晰地触及到事物的“本质”。
伟大的数学家、物理学家和天文学家彭加勒说:“逻辑用于证明,直觉用于发明。”前苏联科学家凯德洛夫更明确地说:“没有任何一个创造性行为能离开直觉活动。”直觉思维就是指人们不受逻辑规则约束直接领悟事物本质的一种思维方式。数学直觉思维是直接反映数学对象、结构以及关系的思维活动。思维者不是按部就班地推理,而是对思维对象从整体上进行考察,调动自身的全部知识经验,通过丰富的想象作出的敏锐而迅速的假设,猜想或判断,跳过若干中间步骤或放过个别细节而直接把握研究对象的本质和联系。
数学直觉思维的表现形式是以人们已有的知识、经验和技能为基础,通过观察、联想、类比、归纳、猜测之后对所研究的事物作出一种比较迅速的直接的综合判断,它不受固定的逻辑约束,以潜逻辑的形式进行。关于数学直觉思维的研究,目前比较统一的看法是认为存在着两种不同的表现形式,即数学直觉和数学灵感。这两者的共同点是它们都能以高度省略、简化和浓缩的方式洞察数学关系,能在一瞬间迅速解决有关数学问题。
二、加强直觉思维培养的必要性
长期以来,人们在数学教学中重视逻辑思维,偏重演绎推理,强调严密论证的作用,而忽视数学审美的桥梁作用,甚至认为数学思维只包括逻辑思维。这样的数学教学仅赋予学生以“再现性思维”和“过去的数学”,扼杀了学生的“再创造思维”严重制约着学生的创造力。美国著名心理学家布鲁纳指出:“直觉思维、预感的训练,是正式的学术学科和日常生活中创造性思维的很受忽视而又重要的特征。”所以在高中数学教学过程中,教师有必要加强学生的直觉思维能力。
从数学教学来讲,新的高中数学课程标准与旧的教学大纲相比,更加注重于直觉思维能力的培养。课程标准对思维能力的表述更广泛要求更高,特别指出:“思维能力主要是指会观察、比较、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法,辩解数学关系,形成良好的思维品质。”而直觉思维作为一种重要数学思维能力,其思维的敏捷性、创造性更是体现于此,所以对我们数学教师来说,加强对学生直觉思维能力的培养是非常重要的。
三、直觉思维的主要特点
直觉思维具有自由性、灵活性、自发性、偶然性、不可靠性等特点,从培养直觉思维的必要性来看,直觉思维有以下三个主要特点:
(1)简约性:直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象作出的敏锐而迅速的假设,猜想或判断,它省去了一步一步分析推理的中间环节,而采取了“跳跃式”的形式。它是一瞬间的思维火花,是长期积累上的一种升华,是思维者的灵感和顿悟,是思维过程的高度简化,但是它却清晰的触及到事物的“本质”。
(2)创造性:现代社会需要创造性的人才,我国的教材由于长期以来借鉴国外的经验,过多的注重培养逻辑思维,培养的人才大多数习惯于按部就班、墨守成规,缺乏创造能力和开拓精神。直觉思维是基于研究对象整体上的把握,不专意于细节的推敲,是思维的大手笔。正是由于思维的无意识性,它的想象才是丰富的,发散的,使人的认知结构向外无限扩展,因而具有反常規律的独创性。
(3)自信力:学生对数学产生兴趣的原因有两种,一种是教师的人格魅力,其二是来自数学本身的魅力。不可否认情感的重要作用,但是,兴趣更多来自数学本身。成功可以培养一个人的自信,直觉发现伴随着很强的“自信心”。相比其它的物资奖励和情感激励,这种自信更稳定、更持久。当一个问题不用通过逻辑证明的形式而是通过自己的直觉获得,那么成功带给他的震撼是巨大的,内心将会产生一种强大的学习钻研动力,从而更加相信自己的能力。
四、直觉思维的培养
(1)扎实的基础是产生直觉的源泉。直觉不是靠“机遇”,直觉的获得虽然具有偶然性,但决不是无缘无故的凭空臆想,而是以扎实的知识为基础。若没有深厚的功底,是不会进发出思维的火花的。阿提雅说:“一旦你真正感到弄懂一样东西,而且你通过大量例子以及通过与其它东两的联系取得了处理那个问题的足够多的经验。对此你就会产生一种关于正在发展的过程是怎么回事以及什么结论应该是正确的直觉。”
(2)渗透数学的哲学观点及审美观念。直觉的产生是基于对研究对象整体的把握,而哲学观点有利于高屋建瓴的把握事物的本质。这些哲学观点包括数学中普遍存在的对立统一、运动变化、相互转化、对称性等。美感和美的意识是数学直觉的本质,提高审美能力有利于培养数学事物间所有存在着的和谐关系及秩序的直觉意识,审美能力越强,则数学直觉能力也越强。
(3)重视解题教学。教学中选择适当的题目类型,有利于培养,考察学生的直觉思维。 例如选择题,由于只要求从四个选择支中挑选出来,省略解题过程,容许合理的猜想,有利于直觉思维的发展。实施开放性问题教学,也是培养直觉思维的有效方法。开放性问题的条件或结论不够明确,可以从多个角度由果寻因,由因索果,提出猜想,由于答案的发散性,有利于直觉思维能力的培养。
(4)设置直觉思维的意境和动机诱导。这就要求教师转变教学观念,把主动权还给学生。对于学生的大胆设想给予充分肯定,对其合理成分及时给予鼓励,爱护、扶植学生的自发性直觉思维,以免挫伤学生直觉思维的积极性和学生直觉思维的悟性。教师应及时因势利导,解除学生心中的疑惑,使学生对自己的直觉产生成功的喜悦感。
“跟着感觉走”是教师经常讲的一句话,其实这句话里已蕴涵着直觉思维的萌芽,只不过没有把它上升为一种思维观念。教师应该把直觉思维冠冕堂皇的在课堂教学中明确的提出,制定相应的活动策略,从整体上分析问题的特征;重视数学思维方法的教学,诸如:换元、数形结合、归纳猜想、反证法等,对渗透直觉观念与思维能力的发展大有裨益。
直觉思维与逻辑思维同等重要,偏离任何一方都会制约一个人思维能力的发展,伊思.斯图尔特曾经说过这样一句话,“数学的全部力量就在于直觉和严格性巧妙的结合在一起,受控制的精神和富有灵感的逻辑。”受控制的精神和富有美感的逻辑正是数学的魅力所在,也是数学教育者努力的方向。
总之,随着社会的发展,教育的观念都在不断地变化,从应试教育向素质教育,从专才向创新人才的培养,这就给我们教师提出了新的要求,新的挑战。直觉思维作为一种重要思维,是培养创新思维能力的一条重要途径,在高中数学学习阶段,教师要注重培养学生的直觉思维能力,直觉思维能力的培养对数学的发展乃至整个科学的发展都有着十分重要的意义。